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thesis, doc. Ing. Edita Pelantová, CSc., for expertly governing me and for a lot of
valuable advice, and further to Ing. Zuzana Masáková, PhD. for many suggestions
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List of used symbols

Common symbols for set of numbers are used: N for natural numbers, Z for integers,
Q for rational numbers and R for real numbers.

Other symbols used in this work are listed in the following table, for those newly
defined the explanation of symbol is supplemented with a respective page number.

[i, j] closed interval in R

(i, j) open interval in R

bzc bottom integer part of the number z ∈ R

{z} fractional part of the number z ∈ R

:= equality giving a definition
.
= approximate equality

<lex relation “strictly less” on a lexicographically ordered set

<z real part of a complex number z

=z imaginary part of a complex number z

Q[α] extension of the field Q by an irrational number α

Z[λ] ring of polynomials in λ with integer coefficients

(x)β β-expansion of a number x, p. 9

Fin(β) set of all numbers having finite β-expansion for given β, p. 10

fp(x) number of fractional digits in the β-expansion of x, p. 10

dβ(1) Rényi development of unit, p. 10

Zβ set of all β-integers for given β, p. 12

L⊕(β) maximal number of fractional digits arising under addition

of two β-integers, p. 17

L⊗(β) maximal number of fractional digits arising under multiplication

of two β-integers, p. 17

(x)F representation of a number x in a n-generalized

Fibonacci sequence, p. 30
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Chapter 1

Introduction

In 1952 A. Rényi proved in his work Representations for real numbers and their ergodic
properties [11], that for each real base β > 1 and for every positive real number x,
there exists a unique representation by the expression

x = xkβ
k + xk−1β

k−1 + . . . + x0β
0 + x−1β

−1 + x−2β
−2 . . . (1.1)

which fulfills the conditionsxi > 0, x− (xkβ
k + . . .+xiβ

i) < βi for i = k, k−1, k−2, . . .
and where the coefficients xk, xk−1, . . . are non-negative integers less than β. The
representation of the number x of this form is called the β-expansion of x.

For β = 10 or β = 2 the β-expansion of a number x is the ordinary representation
of x in the decimal or binary numeration system. In these systems addition and
multiplication of numbers with finite representation (1.1) is very simple and algorithms,
which perform these arithmetic operations, as well as the number of required steps,
are known. Similar algorithms are used generally in all systems where the base β is an
integer > 1.

The situation is completely different if we start to count in a system with an irra-
tional base β. In fact, only little is known about arithmetical rules in these systems.
But why should we use these numeration systems at all?

Whether are the computations preformed by a human or by a computer, it is possi-
ble to work only with numbers that have a finite number of digits in their representation
in the given numeration system (we will denote the set of these numbers having finite
β-expansion by the symbol Fin(β)). In a numeration system with an integer base β
every number x with finite representation has the form x = p

q
, where p, q are integers,

i.e. x is a rational. If we choose for the base of our system an irrational number β, the
set Fin(β) will contain also some irrational numbers x.

That is precisely why we concern ourselves with systems having irrational base:
exact arithmetics with irrational numbers is the ground of the new methods for building
aperiodic random numbers generators, for new cryptographic methods, and last but
not least for mathematical modelling of the recently discovered materials with long
range order – the so called quasicrystals.

This work is divided into three chapters.
The first chapter contains mathematical background necessary for this work. We

remind basic notations from number theory such as algebraic numbers, Pisot num-
bers and algebraic extensions Q[α] of the field Q of rationals. Then we introduce
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β-expansion, i.e. representation numbers in a system with irrational basis, we show
two ways to generate these representations and we define two important sets of num-
bers – the set of all integers in a system with irrational basis (i.e. β-integers) and
previously mentioned set of all numbers having finite representation (Fin(β)). We also
demonstrate some interesting properties of the set of all β-integers. Finally there is
indicated the main problem of the arithmetics of irrational numbers – the sum or prod-
uct of two β-integers can have non-zero fractional part, the set Fin(β) even does not
have to be closed under arithmetic operations.

The second chapter engages in the arithmetics of β-integers itself. At first we dis-
cuss some necessary and some sufficient conditions for Fin(β) to be a ring (i.e. be
closed under arithmetic operations). The second section then describes a software li-
brary written for performing computations in the ring Fin(β) for some irrationalities β.
Consecutively we show the way to generate the set of different β-integers large enough,
needed in the last section of this chapter to obtain the lower bounds on L⊕(β) and
L⊗(β) – i.e. on the number of fractional digits arising under addition and multiplication
of β-integers – for some irrationalities β.

The last chapter describes two methods to estimate the maximal number of frac-
tional digits that may appear by addition or multiplication of β-integers. These meth-
ods are then applied to three different numeration systems with irrational base (minimal
Pisot number numeration system, Tribonacci number numeration system and γ, where
γ is the greatest root of the equation x3 = 25x2 + 15x + 2).

Putting together the lower bounds obtained experimentally by means of computer
computation in the second chapter and the upper bounds found theoretically using
the properties of numbers, we gain either the exact values of L⊕ and L⊗ or possibly
interval of values these coefficients can take.

This use of described methods includes fairly large amount of computations carried
out by a computer which produce a lot of output data. These are written out in
files contained on the associated CD-ROM. All programs written and used for these
analysis are also on the CD-ROM. The content of the disc is summarized in one of
the Appendixes, whereas the second one contains the user manual to the program
BetaArithmetic.

All irrationalities to which we applied our methods for estimates on L⊕ and L⊗ were
cubic algebraic integers. This is because for quadratic irrationalities enough results are
known, especially for the golden mean, i.e. τ = 1+

√
5

2
, the root of the equation x2 = x+1

(see [8]).
In [5] there is shown that the values of coefficients are L⊕(β) = L⊗(β) = 1 for a β –

root of an equation x2 = mx− 1 and L⊕(β) = L⊗(β) = 2 for a β – root of an equation
x2 = mx + 1. More general formula can be found in [7] which asserts that for a β > 1
– root of an equation x2 = mx + n, m ≤ n, the values of coefficients are bounded by
following constants: 2

⌊
m+1

m−m+1

⌋
≤ L⊕ ≤ 2

⌈
m

m−n+1

⌉
and L⊗ ≤ 4L⊕ log2(m + 2).

The only known results relating to cubic irrationalities are the estimates for the β
- Tribonacci number. In [9] there is shown that L⊗(β) ≤ 9 and Arnoux conjectures
there that L⊗(β) = 3. One of our results refutes conjecture of Arnoux and improves
the bound found by Messaoudi. We show that 4 ≤ L⊗ ≤ 5.
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Chapter 2

Preliminaries

This first chapter summarizes the mathematical background necessary for the whole
work.

In the first section we remind the some basic terms from the number theory: alge-
braic numbers, Pisot numbers and corresponding extensions Q[α] of the field Q by an
irrational number α.

The second section introduces way to represent real numbers in the numeration
system with an irrational base. There are two ways for generating of these repre-
sentations and also some commonly used terms connected with them. Two examples
(Tribonacci numeration system and minimal Pisot numeration system) are introduced
to demonstrate preceding notion.

Third part demonstrates some interesting properties of sets of all integers in systems
with irrational base, impossible to see in any system with integer base, whereas the
last section contains short remark about unusual but very important properties of
arithmetic operations in these systems.

2.1 Algebraic numbers

Definition 2.1.1. The number x ∈ C is called algebraic number, if it is a root of the
polynomial

p(x) = anxn + an−1x
n−1 + . . . + a1x + x0, a0, . . . , an ∈ Z (2.1)

Definition 2.1.2. A non-zero polynomial of the form (2.1) with the minimal possible
degree, having an algebraic number α as its root, is called the minimal polynomial of
α, the degree of this polynomial is called the degree of α.

Obviously the minimal polynomial p(x) of an algebraic number α is irreducible over
the field Q (otherwise there exists some polynomial of smaller degree with a root α,
which is the contradiction with the minimality of p(x)) and every root of the polynomial
p(x) has the multiplicity equal to one (the same argumentation).

Definition 2.1.3. Let α be an algebraic number of the degree m. Let us denote α(1) :=
α and the other roots of the minimal polynomial α(2), . . . , α(m). These numbers are
called Galois conjugates of the number α.
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It is well known, that the minimal subfield of complex numbers C which contains
all the rationals Q as well as the algebraic number α of the degree m is

Q[α] ≡ Q[α(1)] := {y0 + y1α + y2α
2 + . . . + ym−1α

m−1 | yi ∈ Q, ∀i = 0, . . .m − 1}.

Identically we can construct these minimal fields for all the Galois conjugates of
the number α: Q[α(2)], . . . , Q[α(m)]. These fields are mutually isomorphic. The isomor-
phism (so called k-th Galois isomorphism) Q[α] → Q[α(k)] is induced by the assignment
α 7→ α(k), hence for β ∈ Q[α] the image β(k) under the k-th Galois isomorphism is

β = y0 + y1α + . . . + ym−1α
m−1 7→ β(k) = y0 + y1α

(k) + . . . + ym−1(α
(k))m−1 .

For the numbers β, γ ∈ Q[α], the k-th Galois isomorphism fulfills following relations

(β + γ)(k) = β(k) + γ(k)

(β.γ)(k) = β(k).γ(k) .

Definition 2.1.4. An algebraic number α of the order m with monic minimal poly-
nomial (i.e. the leading coefficient am is equal to 1) is called an algebraic integer. An
algebraic integer is said to be a Pisot number if it is greater than 1 and all its Galois
conjugates have modulus strictly less than one. Pisot number is called unitary if the
product of all roots of its minimal polynomial is +1 or -1.

2.2 Beta expansions

Definition 2.2.1. Let β > 1 be a real number. A β-representation of a number x ∈ R+

is a sequence (xi)k≥i≥−∞ of non-negative integers, such that

x = xkβ
k + xk−1β

k−1 + . . . + x1β + x0 + x−1β
−1 + . . . (2.2)

We use usual radix scale for a β-representation of a number x

(x)β = xkxk−1 . . . x1x0 • x−1x−2 . . .

the symbol between coefficients x0 and x−1 is called fractional point.

Certainly, there can be more than one β-representation of a given x ∈ R+.

Example. Let β be the real root of the equation x3 = x2 + x + 1. Since 2β3 + β =
β3 + β2 + 2β + 1, the sequences

2010 • 000 . . . and 1121 • 000 . . .

are the β-representations of the same number x.

Among all β-representations of a given x ∈ R+ there exists one particular β-
representation – called β-expansion.

Definition 2.2.2. The β-expansion of a non-negative number x is the sequence (xi)k≥i>−∞
computed by the “greedy algorithm”:
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1. find k ∈ Z, such that βk ≤ x < βk+1

2. xk := bx/βkc, rk := {x/βk}

3. i := k − 1

4. xi := bβri+1c, ri = {βri+1}

5. if ri 6= 0 then i := i − 1 and go to step 4.

The described algorithm implies:

1. xi ∈ {0, 1, . . . , dβe − 1}

2. 0 < x − xkβ
k − xk−1β

k−1 − . . . − xiβ
i < βi.

Since limi→−∞ βi = 0, the sequence gained by this algorithm is a β-representation.

Example. Let β and x are the same as in the last example (i.e. β
.
= 1, 83928676,

x
.
= 14, 283812), we can find β-expansion of the number x using “greedy algorithm”.

The highest power of β less than x is β4. By the sequential calculation we get the result

10011 • 000 . . .

If an expansion ends in infinitely many zeros, is is said to be finite and the ending
zeros are omitted. The set of all real numbers x, for which the β-expansions of their
modulus |x| is finite, is denoted by

Fin(β) := {x ∈ R | |x| has a finite β-expansion}.

Definition 2.2.3. Let x ∈ R, x > 0 and let
∑n

k=−N xkβ
k be its β-expansion with

x−N 6= 0. If N > 0 the r =
∑−1

k=−N xkβ
k is called the β-fractional part of x. If

N ≤ 0 we set fp(x) := 0 , for N > 0 we define fp(x) := N , i.e. fp(x) is the number of
fractional digits in the β-expansion of x.

For 0 ≤ x < 1 the coefficients of the β-expansion of x may be expressed using the
β-transformation of the unit interval

Tβ(x) := {βx}, x ∈ [0, 1)

and formula
x−k−1 = bβT k

β (x)c. (2.3)

For x ∈ (0, 1) the coefficients x−k−1 coincide with the coefficients obtained by the
greedy algorithm. For x = 1 the output of the greedy algorithm is 1 = 1•, whereas the
formula (2.3) gives the Rényi development of 1 dβ(1)

dβ(1) = t1t2 . . . , where tk = bβT k−1
β (1)c.

Obviously, the numbers tk are non-negative integers smaller than β, t1 = bβc and

1 =

∞∑

k=1

tkβ
−k. (2.4)

10



Using the greedy algorithm we can find a unique β-expansion for every x ∈ R+.
However, there exist sequences (2.2) that do not correspond to any number x. The first
condition for a β-representation to be a β-expansion follows from the greedy algorithm:
the coefficients in the expansion are the non-negative integers less or equal to β − 1 for
β ∈ N − {1}, or bβc for β /∈ N, β > 11 i.e. the coefficients are less or equal to dβe − 1.

One can imagine a β-expansion of a number x as a infinite word in an alphabet
A = {0, 1, . . . , dβe−1} with a marked position of the fractional point. For β ∈ N, β > 1
every word in this alphabet corresponds to a β-expansion of some number x. For β /∈ N

is the situation different. It is clear that the answer to a question whether a infinite
word in the alphabet A corresponds to a β-expansion of a number x does not depend
on the position of the fractional point. Therefore we will consider words s1s2s3 . . . and
interpret their value as x = •s1s2 . . . = s1β

−1 +s2β
−2 + · · · . In order to state necessary

and sufficient condition (see [10]) for a word s1s2s3 . . . to be a β-expansion of a number
x we need following definitions.

Definition 2.2.4. Let s = s1s2s3 . . . sn . . . be an infinite sequence of non-negative num-
bers. The sequence σ(s) = s2s3 . . . sn . . . is called the shift of sequence s. The symbol
σp(s) denotes p-fold multiple shift, i.e. p shifts applied to the sequence s stepwise.

Definition 2.2.5. Let x be a finite word. The symbol xω denotes the sequence xxx. . .,
i.e. infinite-fold multiple concatenation of the word x to itself.

Theorem 2.2.1 (Parry). Let β be a real number strictly greater than one. Let dβ(1) =
t1t2 . . . be the Rényi development of 1. Let s be an infinite sequence of non-negative
integers.

(i) If dβ(1) is infinite, the condition

∀p ≥ 0 σp(s) <lex dβ(1)

is necessary and sufficient for the sequence s to be the β-expansion of some x ∈
[0, 1).

(ii) If dβ(1) is finite, say dβ(1) = t1 . . . tn−1tn, then s is the β-expansion of a number
x ∈ [0, 1) if and only if

∀p ≥ 0 σp(s) <lex d∗(1, β) = (t1 . . . tn−1(tn − 1))ω.

Notice that the finite sequence cncn−1 . . . c0 of non-negative integers satisfies the
Parry condition above, if

cici−1 . . . c0 <lex dβ(1) ∀i = 0, 1, . . . , n

Such sequences (words) are called admissible. A finite sequence of non-negative integers
is called forbidden, if it is not admissible.

1These two conditions can be replaced by the only one: the coefficients are non-negative integers
less or equal to dβe − 1.
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For s given base β, an important role is played by those numbers play these ones,
whose β-expansion has no fractional part. These numbers are called β-integers, the set
of all β-integers for given β is denoted by Zβ.

Zβ :=

{

x ∈ Fin(β)

∣
∣
∣
∣
|x| =

k∑

i=0

xiβ
i is the β-expansion

}

.

If β is as integer, β ≥ 2, the set Zβ coincides with the set of all rational integers Z.

2.3 Examples of numeration systems

2.3.1 Minimal Pisot number numeration system

The base of this numeration system is the minimal Pisot number. It is known that
the smallest among all irrational Pisot numbers is the real number β, solution of the
equation x3 = x + 1.

• The value of the base is β
.
= 1.325, hence only 0 and 1 are allowed to be coefficients

os the β-expansions.

• Two other roots of this equation are complex numbers β ′ .
= −0.662 + i0.562 and

β ′′ .
= −0.662 − i0.562. They are mutually complex conjugated, their modulus is

|β ′| = |β ′′|
.
= 0.869.

• The Rényi development of unit is dβ(1) = 10001. Therefore an infinite word
xk . . . x0•x−1x−2 . . . over the alphabet A = {0, 1} is a β-expansion in the minimal
Pisot numeration system, if and only if digits 1 are separated by at least four
zeros, i.e. xi + xi−1 + · · · + xi−4 ≤ 1 for i ≤ k.

2.3.2 Tribonacci numeration system

Second example of a numeration system with an irrational base β is the Tribonaci
numeration system. The base of this system is the so-called Tribonacci number – the
real root of the equation x3 = x2 + x + 1.

• The value of the base is β
.
= 1.839, hence the β-expansions have coefficients only

0 and 1.

• Two other roots of this equation are complex numbers β ′ .
= −0.419 + i0.606 and

β ′′ .
= −0.419 − i0.606. Obviously, they are mutually complex conjugated, their

modulus is |β ′| = |β ′′|
.
= 0.737.

• The Rényi development of 1 in this case is dβ(1) = 111, therefore the forbidden
string of coefficients is 111, i.e. behind each pair of 1 there has to be at least
one 0 in any β-expansion in this numeration system. More precisely if xk . . . x0 •
x−1x−2 . . . is a β-expansion then xixi−1xi−2 = 0 for i ≤ k.

12



Remark. Tribonacci number from is a special case of the so-called n-generalized golden
mean, i.e. the real root of the equation

xn = xn−1 + · · ·+ x + 1 .

We will demonstrate two interesting properties of the set Zβ on a example of n-
generalized golden mean in the section 2.4.

2.3.3 Numeration system with base β solution of the equation

x3 = 25x2 + 15x + 2

The Pisot number β, which is the base of this numeration system, is the greatest root
of the equation x3 = 25x2 + 15x + 2.

• The value of the base is β
.
= 25.589. Since bβc = 25, β-expansion of any x is a

word in the 26 letter alphabet A. To avoid confusion we will denote the letters
of this alphabet as A = {(0), (1), . . . , (25)}.

• Two other roots of the equation are β ′ .
= −0.388 and β ′′ .

= −0.202.

• Rényi development on unit is dβ(1) = (25)(15)(2), therefore behind each coeffi-
cient (25) there has to be either a coefficient smaller than 15 or one of the words
(15)(0), (15)(1).

• Note that this Pisot number differ from all previous examples: it is not a unit
and it is totally real.

2.4 The set of beta integers Zβ

If β ∈ N then Zβ = Z and therefore all distances between neighbours in the set Zβ

are equal to 1. For β /∈ N, the constituent neighbouring elements of the set Zβ are
not well-proportioned in the real axis, contrariwise there are more admissible distances
between neighbours (see Figure 2.1). The set of distances between neighbours in Zβ

has at least two elements.

Figure 2.1: Several elements of the set Zβ in the Tribonaci numeration system

Theorem 2.4.1. [13]. Let dβ(1) = t1t2 . . . be the Rényi development of unit. Then
D > 0 is a distance between neighbours in the set Zβ if and only if

D =

∞∑

i=0

ti+k

βi+1
, for some k = 1, 2, . . .

13



It is easy to see that the set of distances between neighbours in Zβ is finite if
and only if the Rényi development of unit is finite or eventually periodic, numbers β
fulfilling this condition are called β-numbers.

We will state and prove previous theorem for a special irrationality – n-generalized
golden mean.

Proposition 2.4.2. Let β be the n-generalized golden mean. Then there are just n
different distances between neighbouring elements of the set Zβ, namely

Di =
k∑

i=1

1

βi
, for k = 1, 2, . . . , n.

Proof. Let x and y be the neighbouring elements of the set Zβ. We divide the proof
into two parts.

1. Let x and y have β-expansions of different lengths. Let x be the smaller one and
y the larger one. Let k be the length of x.

As y is longer than x, its β-expansion begins with αk+1 = 1 and the other
coefficients in the expansion are zeros – if there were some non-zero coefficient, we
could replace it with zero and so create the β-expansion of number w: x < w < y,
which is in contradiction with the condition that x and y are neighbours.

By the same token the β-expansion of x is as dense (full of 1s) as possible, starting
with αk = 1.

(a) Let 0 ≤ k < n. As the β-expansion of x is shorter than the length of
forbidden factor dβ(1), all its coefficients can be equal to 1. The difference
between numbers then depends on k2:

1 0 . . . 0
︸ ︷︷ ︸

|.|=k

− 1 . . . 1
︸ ︷︷ ︸

|.|=k

= 0. 1 . . . 1
︸ ︷︷ ︸

|.|=n−k

Therefore if dβ(1) = t1 . . . tn is the Rényi development of 1, all the elements
of the set {0.tn−i . . . tn | 0 ≤ i < n} are the distances between neighbouring
elements in the set Zβ.

(b) Let n ≤ k. In this case the β-expansion of x is longer than n, hence not all
its coefficients can be equal to 1; since it has to be dense, it will be composed
of as many factors 1 . . . 10 of length n as possible followed by factor 1 . . . 1
of length less than n.

It is easy to see that the results of subtraction will be the same as for
0 ≤ k < n. Let us show one example for n = 4:

1 0000 0000 0000 00 − 1110 1110 1110 11 =

= 1110 1110 1110 11.11 − 1110 1110 1110 11 = 0.11

2the symbol |.| denotes the length of respective string
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2. Let x and y have β-expansions of the same length (e.g. k). Let l be the smallest

number such that α
(y)
k−1−l 6= α

(x)
k−1−l, where α

(y)
i and α

(x)
i are coefficients in the

β-expansions of y and x respectively. It means that α
(y)
i = α

(x)
i ∀i ∈ {k − 1, k −

2, . . . , k−l}, these coefficient has no effect on the result of subtraction and we can
discard them. After this discard the numbers will have β-expansions of different
lengths. We have already solved this case.

The distances between β-integers have one more important property. Let us denote
constituent distances by letters

A(0) = .t1 . . . tn

A(1) = .t2 . . . tn
...

A(n−1) = .tn

From the proof of Proposition 2.4.2 easily follows, that the gap A(i) is between two
neighbouring β-integers if and only if the expansion of the shorter one ends in arbitrary
(e.g. l) number of factors 1 . . . 10 of length n with the factor 1. . . 1 of length i on the
very end and the expansion of the longer one ends with the number 1 followed by
l ∗ n + i zeros.

Let us take a pair of numbers, which forms some of the gaps A(0), . . . , A(n−1) and
multiply both numbers by β. These multiplied numbers will certainly remain the
elements of the set Zβ. We concern ourselves with the question whether they are
immediate neighbours in the lexicographically ordered set Zβ too.

1. Let i < n − 1. Let x, y ∈ Zβ be the neighbours with the gap A(i) between them.
x and y multiplied by β

βx = 0

|.|=n
︷ ︸︸ ︷

11 . . .10 . . .

|.|=n
︷ ︸︸ ︷

11 . . . 10

|.|=i
︷ ︸︸ ︷

11 . . . 1 0

βy = 1 00 . . .00 . . . 00 . . . 0000 . . .0
︸ ︷︷ ︸

|.|=l∗n+i

0

are surely not the neighbours, because there is the number

w := 0

|.|=n
︷ ︸︸ ︷

11 . . .10 . . .

|.|=n
︷ ︸︸ ︷

11 . . . 10

|.|=i
︷ ︸︸ ︷

11 . . . 1 1

between them. The distances are |w − βx| = 1 = A(0) and |βy − w| = A(i+1).
Hence we gain following substitution rules

A(i) 7→ A(0)A(i+1) ∀i ∈ [0, n − 1) . (2.5)
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2. Let x, y ∈ Zβ be the neighbours with the gap A(n−1) between them. In this case
the β-multiples of x and y

βx = 0

|.|=n
︷ ︸︸ ︷

11 . . . 10 . . .

|.|=n
︷ ︸︸ ︷

11 . . . 10

|.|=n
︷ ︸︸ ︷

11 . . . 10

βy = 1 00 . . . 00 . . . 00 . . . 0000 . . . 0
︸ ︷︷ ︸

|.|=l∗n+n

0

remains the neighbours in the set Zβ. The gap A(n − 1) between them was
transformed into A(0). Therefore we gain one more substitution rule

A(n−1) 7→ A(0) . (2.6)

As we have discussed all possible gaps among elements of the set Zβ, we can conclude
that using obtained substitutions (2.5) and (2.6) we are able to easily generate the whole
set Zβ (for several elements of the set Zβ is this procedure graphically demonstrated
on the Figure 2.2).

Figure 2.2: Generation of the set Zβ for β Tribonacci number, by means of substitutions
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2.5 Arithmetic properties of beta-expansions

In case that β ∈ Z, β > 1, Fin(β) is closed under operations of addition, subtraction
and multiplication, i.e. Fin(β) is a ring. It is also easy to determine the β-expansion
of x + y, x− y and x · y with the knowledge of the β-expansions of x and y. The result
of these arithmetic operations for two β-integers is always a β-integer.

In case that β > 1 is not a rational integer, the situation is more complicated and
generally we do not know any criteria which would decide whether Fin(β) is a ring or
not. Unlike the integer base, the result of addition, subtraction and multiplication of
two β-integers can have non-zero fractional part.

Example. We will sum the numbers 1 and 1 in the Tribonaci numeration system. The
value of the result is 2. But the number 2 is forbidden coefficient in the β-expansion of
any number. Thus in this numeration system We have to use another technique: we
substitute one 1 with its numerical equivalent – the Rényi development of unit. Only
then we sum the numbers.

1 + 1 = 1 + 0.111 = 1.111

However the result is not yet admissible, because it contains the forbidden factor 111.
Now we substitute the most left occurrence of the factor 0.111 with the word 1.

1.111 7→ 10.001

Finally, this is the correct β-expansion of the number 2 in the Tribonaci numeration
system.

Besides the question whether results of these arithmetic operations are always finite
or not, we are also interested in describing the length of the resulting β-fractional
part. It is possible to convert the sum x + y and the product x · y of two numbers
x, y ∈ Fin(β) by multiplication by a suitable factor βk into a sum or product of two
β-integers. Therefore we define following constants.

Definition 2.5.1. Let β > 1. We denote

L⊕ = L⊕(β) := max{fp(x + y) | x, y ∈ Zβ, x + y ∈ Fin(β)}

L⊗ = L⊗(β) := max{fp(x · y) | x, y ∈ Zβ, x · y ∈ Fin(β)}.
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Chapter 3

Algorithms for the arithmetics

In this chapter we at first discuss the question of the set Fin(β) being a ring. We prove
that it is enough to study the question of addition of positive numbers to decide whether
Fin(β) is or is not a ring. Afterwards we show necessary and sufficient condition for
Fin(β) being closed under addition of positive numbers.

In the prove of the theorem stating the sufficient condition, we show the algorithm
for performing arithmetic operations. This algorithm was used to write a computer
program BetaArithmetic. This program is in detail described in the second section of
this chapter.

The third section engages in a problem of consecutive generation of all β-integers
in a numeration system with irrational base. This is a crucial task when we try to find
good lower bounds on the values of L⊕ and L⊗. In the last section of this chapter,
there are found some lower bounds on these coefficients, namely for those numeration
systems, introduced in the second chapter.

3.1 Addition of positive β-integers

According to our definition from the previous section, Fin(β) contains both positive
and negative numbers. Therefore we first justify why, in order to decide about Fin(β)
being a ring, we shall study only the question of addition of positive numbers.

Proposition 3.1.1. Let β > 1 and dβ(1) be its development of unit.

(i) If dβ(1) is infinite, then Fin(β) is not a ring.

(ii) If dβ(1) is finite, then Fin(β) is a ring if and only if Fin(β) is closed under
addition of positive elements.

Proof. (i) Let dβ(1) = t1t2t3 . . . be infinite. Then (2.4) implies

1 −
1

β
=

t1 − 1

β
+

t2
β2

+
t3
β3

+ · · · (3.1)

Since (t1 − 1)t2t3 . . . <lex dβ(1), the expression on the right hand side of (3.1) is the
β-expansion of 1 − β−1 which therefore does not belong to Fin(β).
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(ii) Let

1 =
t1
β

+
t2
β2

+ · · ·+
tm
βm

, (3.2)

and let Fin(β) be closed under addition of positive numbers. Consider arbitrary x ∈
Fin(β) and arbitrary ` ∈ Z such that x > β`. Then the β-expansion of x has the form

x =
n∑

i=−N

xiβ
i

where n ≥ `. Repeated application of (3.2) allows us to create another representation
of x, say

x =
∑̀

i=−M

x̃iβ
i

such that x̃` ≥ 1. Then

(x̃` − 1)β` +

`−1∑

i=−M

x̃iβ
i

is a finite β-representation of x−β`. Such representation can be interpreted as a sum of
a finite number of positive elements of Fin(β), which is, according to the assumption,
again in Fin(β).

It suffices to realize that subtraction x − y of arbitrary x, y ∈ Fin(β), x > y > 0
is a finite number of subtractions of some powers of β. Therefore Fin(β) being closed
under addition of positive elements implies being closed under addition of arbitrary
x, y ∈ Fin(β).

Since multiplication of numbers x, y ∈ Fin(β) is by the distributive law addition of
a finite number of summands from Fin(β), the proposition is proved.

From now on, we focus on addition x + y for x, y ∈ Fin(β), x, y ≥ 0. Without loss
of generality we can assume x, y ∈ Zβ.

Let x, y ∈ Zβ, x, y ≥ 0 with β-expansions

x =
n∑

k=0

akβ
k and y =

n∑

k=0

bkβ
k.

By simple summation of corresponding coefficients we obtain a β-representation of
the sum x + y

n∑

k=0

(ak + bk)β
k.

If the sequence of coefficients (an + bn)(an−1 + bn−1) . . . (a0 + b0) verifies the Parry
condition (Theorem 2.2.1), we have directly the β-expansion of x + y. In the opposite
case, the sequence must contain a forbidden factor.

Special role in our consideration play the so-called minimal forbidden strings.

Definition 3.1.1. Let β > 1. A forbidden string ukuk−1 . . . u0 of non-negative integers
is called minimal, if
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(i) uk−1 . . . u0 and uk . . . u1 are admissible, and

(ii) ui ≥ 1 implies uk . . . ui+1(ui − 1)ui−1 . . . u0 is admissible, for all i = 0, 1, . . . , k.

Obviously, a minimal forbidden string ukuk−1 . . . u0 contains at least one non-zero
digit, say ui ≥ 1. The string is a β-representation of the addition of two β-integers

z = ukβ
k + · · ·+ ui+1β

i+1 + (ui − 1)βi + ui−1β
i−1 + · · ·+ u0

w = βi.

The β-expansion of a number is lexicographically the greatest among all its β-
representations, and thus if the sum z + w belongs to Fin(β), then there exists a finite
β-representation of z + w lexicographically strictly greater than ukuk−1 . . . u0, (the β-
expansion of z + w).
We have thus shown the following necessary condition:

Proposition 3.1.2 (Property T). If Fin(β) is closed under addition of two positive
numbers, then β must satisfy the following property:

For every minimal forbidden string ukuk−1 . . . u0 there exists a finite sequence of non-
negative integers vnvn−1 . . . v` , such that

1. k, ` ≤ n,

2. vnβn + · · ·+ v`β
` = ukβ

k + · · ·+ u1β + u0,

3. vnvn−1 . . . v` >lex 00 . . . 0
︸ ︷︷ ︸

(n−k)times

uk . . . u0.

The rewriting of the β-representation z = ukβ
k+· · ·+u1β+u0 on a lexicographically

strictly greater β-representation z = vnβn + · · ·+ v`β
` will be called a transcription.

In general we shall apply the transcription on a β-representation of a number z
in the following way. Every β-representation of z which contains a forbidden string
can be written as a sum of a minimal forbidden string βj(ukβ

k + · · · + u1β + u0)
and a β-representation of some number z̃. The new transcribed β-representation of
z is obtained by digit-wise addition of the transcription βj(vnβn + · · · + v`β

`) of the
minimal forbidden string and the β-representation of z̃.

Obviously, the transcribed β-representation of z is lexicographically strictly greater
than the original one. This transcription may be repeated until the β-representation
does not contain any forbidden string. In general, it can happen that the procedure may
be repeated infinitely many times. The following theorem provide sufficient condition,
in order that this situation is avoided.

Theorem 3.1.3. Let β > 1 satisfy Property T, and suppose that for every minimal
forbidden string ukuk−1 . . . u0 we have the following condition:

If vnvn−1 . . . v` is the lexicographically greater string of T corresponding to ukuk−1 . . . u0

then
vn + vn−1 + · · ·+ vl ≤ uk + uk−1 + · · · + u0 .

Then Fin(β) is closed under addition of positive elements. Moreover, for every positive
x, y ∈ Fin(β), the β-expansion of x + y can be obtained from any β-representation of
x + y using finitely many transcriptions.
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Proof. Without loss of generality, it suffices to decide about finiteness of the sum x+y
where x =

∑n

k=0 akβ
k and y =

∑n

k=0 bkβ
k are the β-expansions of x and y, respectively.

We prove the theorem by contradiction, i.e. suppose that we can apply a transcription
to the β-representation

∑n

k=0(ak + bk)β
k infinitely many times.

We find M ∈ N such that x + y < βM+1. Then the β-representation of x + y
obtained after the k-th transcription is of the form

x + y =

M∑

i=`k

c
(k)
i βi ,

where `k is the smallest index of non-zero coefficient in the β-representation in the k-th
step.

Since for every exponent i ∈ Z there exists a non-negative integer fi such that
x + y ≤ fiβ

i, we have that c
(k)
i ≤ fi for every step k.

Realize that for every index p ∈ Z, p ≤ M , there are only finitely many sequences
cMcM−1 . . . cp satisfying 0 ≤ ci ≤ fi for all i = M, M − 1, . . . , p. Since in every step k

the sequence c
(k)
M c

(k)
M−1 . . . lexicographically increases, we can find for every index p the

step κ, so that the digits c
(k)
M , c

(k)
M−1, . . . , c

(k)
p are constant for k ≥ κ. Formally, we have

(∀p ∈ Z, p ≤ M)(∃κ ∈ N)(∀k ∈ N, k ≥ κ)(∀i ∈ Z, M ≥ i ≥ p)(c
(k)
i = c

(κ)
i ) (3.3)

Since by assumption of the proof, the transcription can be performed infinitely many
times, it is not possible that the digits c

(κ)
i for i < p are all equal to 0. Let us denote

by t the maximal index t < p with non-zero digit, i.e. cκ
t ≥ 1.

In order to obtain the contradiction, we use the above idea (3.3) repeatedly. For
p = 0 we find κ =: κ1 and t =: t1 satisfying

x + y =
M∑

i=0

c
(κ1)
i βi + c

(κ1)
t1

βt1 +

t1−1∑

i=`κ1

c
(κ1)
i βi .

In further steps k ≥ κ1 the digit sum
∑M

i=0 c
(k)
i remains constant, since the digits

c
(k)
i remain constant. The digit sum

∑(−1)
i=t1

c
(k)
i ≥ 1, because the sequence of digits

lexicographically increases. For every k ≥ κ1 we therefore have

M∑

i=t1

c
(k)
i ≥ 1 +

M∑

i=0

c
(k)
i .

We repeat the same considerations for p = t1. Again, we find the step κ =: κ2 > κ1

and the position t =: t2 < t1, so that for every k ≥ κ2

M∑

i=t2

c
(k)
i ≥ 1 +

M∑

i=t1

c
(k)
i .

In the same way we apply (3.3) and find steps κ3 < κ4 < κ5 < . . . and positions t3 >

t4 > t5 . . . such that the digit sum
∑M

i=ts
c
(κs)
i increases with s at least by 1. Since there

are infinitely many steps, the digit sum increases with s to infinity, which contradicts
the fact that we started with the digit sum

∑n

k=0(ak + bk) and the transcription we use
do not increase the digit sum.
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In order to check whether β satisfies Property T we have to know all the minimal
forbidden strings. Let the Rényi development of 1 be finite, i.e. dβ(1) = t1t2 . . . tm,
then we have following candidates for minimal forbidden strings:

• The only minimal forbidden word of the length 1 is t1 +1: every smaller string is
not strictly lexicographically greater than dβ(1), all greater words do not fit the
second condition in the Definition 3.1.1.

• The only minimal forbidden string of the length 2 is t1(t2 +1): the first digit has
to be t1 – every smaller digit causes the word to be admissible, all greater digits
contradict the first condition in the definition of minimal forbidden string. If the
second digit was smaller the whole word would been admissible, on the contrary
if the second digit was greater the word would not fit the second condition in the
Definition 3.1.1.

• Using the same argumentation, we can show that there is at most one minimal
forbidden string for each length k = 1, 2, . . . , n − 1: t1t2 . . . tk−1(tk + 1).

• The minimal forbidden string of the length n is t1t2 . . . tn.

Note that not all the above forbidden strings must be minimal. For example if β has
the Rényi development of 1 being dβ(1) = 111, the above list of strings is equal to 2,
12, 111. However, 12 is not minimal.

In [6] it is shown that if β has a finite development of 1 with decreasing digits, then
Fin(β) is closed under addition. The proof includes an algorithm for addition. Let us
show that the result of [6] is a consequence of our Theorem 3.1.3.

Corollary 3.1.4. Let dβ(1) = t1 . . . tm, t1 ≥ t2 ≥ · · · ≥ tm ≥ 1. Then Fin(β) is closed
under addition of positive elements.

Proof. We shall verify the assumptions of Theorem 3.1.3. Consider the forbidden string
t1t2 . . . ti−1(ti + 1), for 1 ≤ i ≤ m − 1. Clearly, if we consider the forbidden string the
β-representation of a number x

x = t1β
i−1 + · · ·+ (ti−2)β

2 + ti−1β + (ti + 1)

by digit-wise summation of x with following two “zeros”1

βi − t1β
i−1 − · · · − tmβ−m+i

−1 + t1β
−1 + · · ·+ tmβ−m

we obtain following equality

t1β
i−1 + · · ·+ ti−1β + (ti + 1) =

= βi + (t1 − ti+1)β
−1 + · · · + (tm−i − tm)β−(m−i) + tm−i+1β

−(m−i+1) + · · ·+ tmβ−m.

1i.e. β-representations of the number 0.
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The assumption of the corollary assure that the coefficients on the right hand side
are non-negative. The digit sum on the left and on the right is the same. Thus

1 0 0 . . . 0
︸ ︷︷ ︸

i times

(t1 − ti+1)(t2 − ti+2) . . . (tm−i − tm)tm−i+1 . . . tm

is the desired finite string lexicographically strictly greater than 0 t1t2 . . . ti−1(ti + 1).
It remains to transcribe the string t1t2 . . . tm−1tm into the lexicographically greater

string 1 0 0...0
︸ ︷︷ ︸

m times

.

The conditions of Theorem 3.1.3 are however satisfied also for other irrationals
that do not fulfil assumptions of Corollary 3.1.4. As an example we may consider the
minimal Pisot number. It is known that the smallest among all Pisot numbers is β
solution of the equation x3 = x + 1. The Rényi development of 1 is dβ(1) = 10001.
The number β thus satisfies relations

β3 = β + 1 and β5 = β4 + 1 .

The minimal forbidden strings are 2, 11, 101, 1001, and 10001. Their transcription
according to Property T is the following:

2 = β2 + β−5

β + 1 = β3

β2 + 1 = β3 + β−3

β3 + 1 = β4 + β−5

β4 + 1 = β5

The digit sum in every transcription is smaller or equal to the digit sum of the cor-
responding minimal forbidden string. Therefore Fin(β) is according to Theorem 3.1.3
closed under addition of positive numbers. Since dβ(1) is finite, by Proposition 3.1.1
Fin(β) is a ring. This was shown already in [2].

In the assumptions of Theorem 3.1.3 the condition of non-increasing digit sum can
be replaced by another requirement.We state it in the following theorem. Its proof uses
the idea and notation of the proof of Theorem 3.1.3.

Theorem 3.1.5. Let β > 1 be an algebraic integer satisfying Property T, and let at
least one of its conjugates, say β ′, belong to (0, 1). Then Fin(β) is closed under addition
of positive elements. Moreover, for every positive x, y ∈ Fin(β), the β-expansion of x+y
can be obtained from any β-representation of x + y using finitely many transcriptions.

Proof. If it was possible to apply a transcription on the β-representation of x + y
infinitely many times, then we obtain the sequence of β-representations

x + y =
M∑

i=`k

c
(k)
i βi ,
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where the smallest indices of the non-zero digits `k satisfy limk→∞ `k = −∞. Here we
have used the notation of the proof of Theorem 3.1.3. Now we use the isomorphism
between algebraic fields Q[β] and Q[β ′] to obtain

(x + y)′ = x′ + y′ =
M∑

i=`k

c
(k)
i (β ′)i ≥ (β ′)`k .

The last inequality follows from the fact that β ′ > 0 and c
(k)
i ≥ 0 for all k and i. Since

β ′ < 1 we have limk→∞(β ′)`k = +∞, which is a contradiction.

Remark. Let us point out that an algebraic integer β with at least one conjugate
in the interval (0, 1) must have an infinite Rényi development of 1 (see remarks to
Theorem 4.1.1). Such β has necessarily infinitely many minimal forbidden strings. The
only examples known to the author of β satisfying Property T and having a conjugate
β ′ ∈ (0, 1) have been treated in [6], namely those which have eventually periodic dβ(1)
with period of length 1,

dβ(1) = t1t2 . . . tm−1tmtmtm . . . , with t1 ≥ t2 ≥ · · · ≥ tm ≥ 1 . (3.4)

In such a case every minimal forbidden string has a transcription with digit sum strictly
smaller than its own digit sum. Thus closure of Fin(β) under addition of positive
elements follows already by Theorem 3.1.3. This means that we don’t know any β for
which Theorem 3.1.5 would be necessary.

From the above remark one could expect that closure of Fin(β) under addition
forces that digit sum of the transcriptions of minimal forbidden strings is smaller or
equal than the digit sum of the corresponding forbidden string. It is not so. For
example let β be the solution of x3 = 2x2 + 1. Then dβ(1) = 201 and the minimal
forbidden string 3 has the β-expansion

3 = β +
1

β
+

1

β2
+

1

β3
+

1

β4
.

The digit sum of this transcription of 3 is equal to 5. If there exists another transcription
of 3 with digit sum ≤ 3, it must be lexicographically strictly larger than 03 and
strictly smaller than 101111, because β-expansion is lexicographically greatest among
all representations of a number. It can be shown easily that a string with the above
properties does not exist.

In the same time Fin(β) is closed under addition. This follows from the results of
Akiyama who shows that for a cubic Pisot unit β the set Fin(β) is a ring if and only
if dβ(1) is finite, see [2].

On the other hand, Property T is not sufficient for Fin(β) to be closed under
addition of positive elements. As an example we can mention β with the Rényi de-
velopment of 1 being dβ(1) = 100001. Such β satisfies β6 = β5 + 1. Among the
conjugates of β there is a pair of complex conjugates, say β ′, β ′′ = β ′, with absolute
value |β ′| = |β ′′|

.
= 1.0328. Thus β is not a Pisot number and according to the result
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of [6], Fin(β) cannot be closed under addition of positive elements. However, Property
T is satisfied for β. All minimal forbidden string can be transcribed as follows:

2 = β + β−6 + β−7 + β−8 + β−9 + β−10

β + 1 = β2 + β−6 + β−7 + β−8 + β−9

β2 + 1 = β3 + β−6 + β−7 + β−8

β3 + 1 = β4 + β−6 + β−7

β4 + 1 = β5 + β−6

β5 + 1 = β6

Note that the transcriptions are finite, lexicographically strictly greater.

3.2 Program BetaArithmetic

As a part if this diploma thesis program performing arithmetic operations in some Pisot
numeration systems was written. Actually there are three versions of the program – the
workstation version for Win32 system, command line version performing batch tasks
and also CGI version prepared for running on a web server.

All these three version differ one each other only by the (graphical) user inter-
face, the underlaying arithmetic library is always the same. Therefore to avoid any
troublesome changes of the code when transferring the library from one platform to
another, the program was written in the object-oriented language C++ – standard-
ized since 19982 and nowadays the most wide spread general-purpose programming
language with compilers available for any platform.

Remark (C++ language tools). The fundamental principle of the object oriented pro-
gramming – encapsulation of the data – was very suitable to this special arithmetic
library as well as the possibility of overloading of the operators, which enables very
intuitive use of the finished library. Finally the existence of standard template library
(especially the template for a dynamical bidirectional list) made the creation of this
library much more easier.

3.2.1 Class CBetaExp

Any number in a β-expansion is represented as an instance of the class CBetaExp. This
class contains all the data items necessary for description of the expanded number.
There are also defined member functions which perform manipulations with data –
mainly overloaded versions of arithmetic operators.

Here is the complete declaration of the class CBetaExp:

class CBetaExp

{

private:

static const int maxExpLen = 100;

2ISO ITTF published the standard ISO/IEC 14882:1998 on September 1, 1998
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list<int> exp;

int length;

int sgn;

void step1();

void arrange1 (list<int>::iterator __i);

int test1 (list<int>::iterator __i);

int step2();

void arrange2 (list<int>::iterator __i,int eqLen);

int test2 (list<int>::iterator __i);

public:

static int lengthRenyi;

static int *intRenyi;

int getFpLen();

string getExp();

CBetaExp();

CBetaExp(const CBetaExp& R);

CBetaExp(int elementsNumber);

CBetaExp(string expStr);

~CBetaExp();

CBetaExp operator+ (CBetaExp& R);

CBetaExp operator- (CBetaExp& R);

CBetaExp operator* (CBetaExp& R);

friend ostream& operator<< (ostream& Str, CBetaExp& R);

friend istream& operator>> (istream& Str, CBetaExp& R);

};

A single digit of an expansion is stored as a member of the dynamical bidirectional
list of integers named exp; the template

template <class T, class Allocator = allocator<T> > class list;

from the Standard Template Library was used for this purpose. Although the use of
this dynamical structure has an impact on the speed of the computation, it eliminates
the need of limits on the length of either the fractional part or the whole expansion.

The other attributes store the overall length of the expansion (int length) and
the sign of the expansion (int sgn). Furthermore we have to represent the numeration
system somehow, as it is necessary for performing the arithmetic operations correctly.
There are two public static attributes for this purpose – int lengthRenyi stores the

26



length (the number of digits) of the Rényi development of unit, whereas the integer
array int *intRenyi contains its actual digits.

The member functions can be imaginarily divided into several categories: two
groups of private functions for performing single steps of the algorithm for addition,
auxiliary functions accessing the attributes, the constructors and the destructor and
overloaded arithmetic operators. There are also defined two friendly functions – over-
loaded operators operator>> and operator<< – to enable easier input and output of
the expansion.

X Y X + Y X − Y
<0 <0 |X| > |Y| −(|X| + |Y|) −(|X| − |Y|)
<0 <0 |X| > |Y| −(|X| + |Y|) |Y| − |X|
<0 >0 |X| > |Y| −(|X| − Y) −(|X| + Y)
<0 >0 |X| > |Y| Y − |X| −(|X| + Y)
>0 <0 |X| > |Y| X − |Y| X + |Y|
>0 <0 |X| > |Y| −(|Y| − X) X + |Y|
>0 >0 |X| > |Y| X + Y X − Y
>0 >0 |X| > |Y| X + Y −(Y − X)

Table 3.1: Addition and subtraction of two numbers X and Y in β-expansion

All the arithmetic operators does not change any of their parameters, they just
create the copy of the expansion represented by their class instance (using the copy
constructor CBetaExp(const CBetaExp& R)) and then add to it (subtract from or
multiply by) the number represented by their parameter.

All the operators take care of the sign and absolute value of their parameters (how-
ever this is very simple in case of the multiplication) and if necessary they change
addition to subtraction or vice versa (see Table 3.1).

3.2.2 Operator CBetaExp::operator+ (CBetaExp&)

The algorithm of addition can be divided into three parts

1. The inspection of the signs of the expansions and possible change of the addition
to the subtraction or vice versa, according to the Table 3.1.

2. Stepwise addition of respective digits of the expansions, the result is a represen-
tation of the sum of expansions.

3. The normalization of the representation (i.e. the transformation to the expan-
sion).

The first step is demonstrated in the Table 3.1, the second step is very easy to imagine
as well as to perform, whereas the third part is the most important one. It is performed
almost exactly as described in the Proposition 3.1.2. Here is respective piece of the
code of the function
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CBetaExp CBetaExp::operator+ (CBetaExp& R) {

...

// copy of this expansion to store the result

CBetaExp newR(*this);

// the difference between the greatest powers in the expnasions

int maxPowerDiff = newR.length - 1 - ( R.length - 1 );

// if newR has smaller power by the greatest non-zero coefficient

// refill it with zeros

if ( maxPowerDiff < 0 ) {

newR.exp.insert(newR.exp.begin(),abs(maxPowerDiff),0);

newR.length += abs(maxPowerDiff);

}

// refill with zeros also the tail of newR if it is shorter

if ( (newR.exp.size()-newR.length) < (R.exp.size()-R.length) )

newR.exp.insert(newR.exp.end(),

R.exp.size()-R.length-newR.exp.size()+newR.length,0);

list<int>::const_iterator iR = R.exp.begin();

list<int>::iterator inewR = newR.exp.begin();

// set up the iterators to the same powers

if ( maxPowerDiff > 0 )

while (maxPowerDiff > 0) {

inewR++;

maxPowerDiff--;

}

// the digitwise addition

while ( iR != R.exp.end() ) {

*inewR += *iR;

inewR++;

iR++;

}

// the normalization

int chngCtrl;

do {

newR.step1();

chngCtrl = newR.step2();

} while (chngCtrl != 0 );
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return newR;

}

The normalization is performed in the last do loop. The function step1() firstly
replaces all the occurrences of the Rényi development of unit by relevant power of β,
afterwards the function step2() finds the most left occurrence of a minimal forbidden
string and replaces it with the respective string according the Proposition 3.1.2. The
function returns zero if no replacement was done and therefore the representation has
already been transformed into the admissible β-expansion of the result.

3.3 The generation of the β-integers

In order to find bottom bounds on the constants L⊕ and L⊗ we have to let the program
perform respective operation on the appropriately large set of different numbers (β-
expansions).

The most suitable method is to pre-generate the numbers (for example all β-
expansions of the length between 1 and 20) and afterwards let the program add/multiply
everyone with/by each other. Therefore the problem of finding good lower bounds is
reduced to the generation of the sufficiently large set of β-expansions (and obviously
to the problem of required computational time).

We show the method how to cope with this task in the case β is n-generalized
golden mean. The general result is formulated at the end of this section.

Let β be the base of the numeration system of n-generalized golden mean, i.e. β is
the root of the equation

xn = xn−1 + xn−2 + . . . + x + 1

hence
βn = βn−1 + βn−2 + . . . + β + 1 (3.5)

or
βn+1 = βn + βn−1 + . . . + β2 + β . (3.6)

If we use (3.5) instead of βn in (3.6), we get

βn+1 = 2βn−1 + 2βn−1 + 2β + 1 .

Using the same technique we can express an arbitrary power of β in the form

βk = F
(n−1)
k βn−1 + F

(n−2)
k βn−2 + . . . + F

(1)
k β + F

(0)
k (3.7)

where (F
(n−1)
k )∞k=0, . . . , (F

(0)
k )∞k=0 are sequences of non-negative integers.

By multiplying the equation (3.7) with the number β or by shifting the coefficients
we obtain equations

βk+1 = F
(n−1)
k (βn−1 + βn−2 + . . . + β + 1

︸ ︷︷ ︸

βn

) + F
(n−2)
k βn−1 + . . . + F

(0)
k β (3.8a)

29



or
βk+1 = F

(n−1)
k+1 βn−1 + F

(n−2)
k+1 βn−2 + . . . + F

(1)
k+1β + F

(0)
k+1 (3.8b)

which will help us in search for the recurrent formula for elements of the sequence
(F

(n−1)
k )∞k=0.

Comparing the coefficients in (3.8) at the same powers of β we obtain following
equations

F
(n−1)
k+1 = F

(n−1)
k + F

(n−2)
k

F
(n−2)
k+1 = F

(n−1)
k + F

(n−3)
k

...

F
(1)
k+1 = F

(n−1)
k + F

(0)
k

F
(0)
k+1 = F

(n−1)
k

by consecutive substitutions from bottom to above, we get sought recurrent formula

F
(n−1)
k+1 = F

(n−1)
k + F

(n−1)
k−1 + . . . + F

(n−1)
k−n+1

where F
(n−1)
0 = F

(n−1)
1 = . . . = F

(n−1)
n−2 = 0 and F

(n−1)
n−1 = 1.

Definition 3.3.1. The sequence (Fk)
∞
k=0 of non-negative integers, such that F0 = F1 =

. . . = Fn−2 = 0 and Fn−1 = 1 and for ∀k ∈ N, k ≥ n − 1

Fk+1 = Fk + Fk−1 + . . . + Fk−n+1 , (3.9)

is called called n-generalized Fibonacci sequence.

Proposition 3.3.1. For any positive integer x there exist N ∈ Z, N ≤ n and non-
negative coefficients αN , αN−1, . . . , αn ∈ Z such that

x =

N∑

k=n

αkFk (3.10)

where Fk are the elements of n-generalized Fibonacci sequence.

Proof. We describe the algorithm, which finds this form for a given x ∈ N: at first we
find the greatest l1 ∈ N, such that Fl1 ≤ x, we put αl1 = 1 and then we continue in
the same way for the rest of the number – we search for the greatest l2 ∈ N, such that
Fl2 ≤ (x − Fl1), we put αl2 = 1 and so on, until we express the whole number x.

Coefficients obtained by this algorithm will be called the representation of the
number x in n-generalized Fibonacci sequence; we denote it

(x)F := (αlαl−1 . . . αn)

Proposition 3.3.2. Let (αlαl−1 . . . αn) be a representation of an natural number x x
in n-generalized Fibonacci sequence. Then αlαl−1 . . . αn• is an admissible β-expansion
in the numeration system of corresponding n-generalized golden mean.
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Proof. 1. In the representation (x)F of any x there cannot emerge the forbidden
factor (1)n, as it is equal to the factor 1(0)n (vide (3.9)), which starts one position
higher. This implies there will be the factor 1(0)n on the output of the “greedy
algorithm” proceeding from the top to the bottom.

2. In similar way (using the equation (3.9)) we can show, that there will be no 2 (or
even greater coefficient) in the representation (x)F of arbitrary x:

2Fk = Fk + Fk−1 + Fk−2 + . . . + Fk−n

= Fk+1 + Fk−n

hence
2Fk ≥ Fk+1

and the algorithm again selects the expression starting on the higher position.

Corollary 3.3.3. Let p ∈ N. The representations of first p natural numbers in a
n-generalized Fibonacci sequence, i.e. the words (1)F , (2)F , . . . , (p)F , coincide with the
β-expansions of first p numbers from the set Zβ.

Consider β different from n-generalized golden mean, we can use the results from [4].
Let β be a Pisot number with finite Rényi development of unit dβ(1) = t1 . . . tm.

Then
P (X) = Xm − t1X

m−1 − . . . − tm

is the characteristic polynomial of β. To P is associated a linear recurrent sequence of
integers Uβ, defined by

un+m = t1un+m−1 + . . . + tmun

u0 = 1, ui = t1ui−1 + . . . + tiu0 + 1, 1 ≤ i ≤ m − 1.

Note that the characteristic polynomial is a multiple in Z[X] of the minimal poly-
nomial of β.

The increasing sequence Uβ defines the numeration system associated with β. In a
correspondence with the case of a representation in a n-generalized Fibonacci sequence,
we will denote the greedy Uβ-representation of a positive integer x by the symbol (x)Uβ

.
We then have the following result [4].

Proposition 3.3.4. Let p ∈ N. The greedy Uβ-representations of first p natural num-
bers, i.e. the words (1)Uβ

, (2)Uβ
, . . . , (p)Uβ

, coincide with the β-expansions of first p
numbers from the set Zβ.

3.4 Lower bounds on L⊕ and L⊗

In order to determine the lower bounds on L⊕ and L⊗ we have used computer program
BetaArithmetic to perform additions and multiplications on a large set of β-expansions
generated by menas of the method described in the last section.

All the pre-generated β-expansions as well as the results of computations are stored
on the companion CD-ROM (see Appendix C).
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3.4.1 Tribonacci number, β solution of x3 = x2 + x + 1

As a result for Tribonacci number numeration system, we obtained examples of a sum
with 5 and product with 4 fractional digits, namely:

1001011010 + 1001011011 = 10100100100 • 10101

110100100101101× 110100100101101 = 110010001000100001001001011011 • 0011

These were the first obtained while performing the addition or multiplication on all
β-integers progressively from 1 + 1 = 10.001 or 1 × 1 = 1. Hence it was necessary to
perform 251 001 additions and 112 487 236 multiplications to find these examples.

3.4.2 Minimal Pisot number, β solution of x3 = x + 1

As a result for minimal Pisot number numeration system, we obtained examples of a
sum with 13 and product with 8 fractional digits, namely:

10000100001 + 10000000100001 = 100001000000010 • 0001000000001

100001 × 100001 = 100000010000 • 01000001

This time 2 607 additions and 49 multiplications were enough to find these examples.
This lower bound on the coefficient L⊕ will enable us to find exact value of this co-
efficient. On the other hand for the coefficient L⊗ there is still quite large interval
of possible values. Unfortunately we were not able find an example of multiplication
giving higher number of fractional digits, however hard we had tried.

3.4.3 Pisot number β solution of x3 = 25x2 + 15x + 2

In this numeration system the obtained lower bounds are 5 for addition and 7 for
multiplication. The found examples are very simple:

(25)(0)(25) + (25)(0)(25) = (1)(24)(12)(11) • (23)(0)(14)(13)(2)

(25) × (25) = (24)(10) • (21)(24)(16)(7)(16)(13)(2)
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Chapter 4

Upper bounds on L⊕ and L⊗

In this chapter we explain two methods for determining upper bounds on the number
of fraction digits that arise under addition and multiplication of β-integers.

In the first section we show the H-K method, which stems from the theorem that
we cite from [7]. In following two sections we use this method to find the upper bounds
in the Tribonacci numeration system and Minimal pisot numeration system.

Unfortunately there are algebraic numbers β, such that the first method cannot be
applied in associated numeration systems. We explain second method, which can be
used in some of these “bad” cases. Nevertheless also this method has a limitation in
use – it is applicable only to β being a Pisot number.

In the last section there is the demonstration of use of the second method for 25-15-2
Pisot number.

4.1 One-conjugate method

Theorem 4.1.1. Let β be an algebraic number, β > 1, with at least one conjugate β ′

satisfying

H := sup{|z′| | z ∈ Zβ} < +∞

K := inf{|z′| | z ∈ Zβ \ βZβ} > 0

Then (
1

|β ′|

)L⊕

<
2H

K
and

(
1

|β ′|

)L⊗

<
H2

K
. (4.1)

Remark. • Since H ≥ sup{|β ′k| | k ∈ N}, the condition H < +∞ implies that
|β ′| < 1. In this case

H ≤
∞∑

i=0

bβc|β ′|i =
bβc

1 − |β ′|
.

• If β ′ ∈ (0, 1), then K = 1. Obviously, for z =
∑n

i=0 ziβ
i, z0 6= 0 we have

z′ =

n∑

i=0

zi(β
′)i ≥ z0 ≥ 1.
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• If dβ(1) is finite, then β ′ /∈ (0, 1). Let β > 1 be an algebraic number with finite
Rényi development of unit

dβ(1) = t1t2 . . . tm

such that tm 6= 0. Then

1 =
t1
β

+
t2
β2

+ · · · +
tm
βm

. (4.2)

Suppose by a contradiction that β ′ ∈ (0, 1). Then β ′ > (β ′)2 > · · · > (β ′)m.
Hence conjugating the equation (4.2) we get

1 =
t1
β ′ +

t2
(β ′)2

+ . . . +
tm

(β ′)m
>

tm
(β ′)m

≥
1

(β ′)m
(4.3)

which implies (β ′)m > 1. Hence β ′ > 1, which is a contradiction.

If the considered algebraic conjugate β ′ of β is negative or complex, it is complicated
to determine the value of K and H. However, for obtaining bounds on L⊕, L⊗ it
suffices to have a “reasonable” estimates on K and H. In order to determine good
approximation of K and H we introduce some notation. For n ∈ N we shall consider
the set

En := {z ∈ Zβ | 0 ≤ z < βn} .

In fact this is the set of all a0 +a1β+ · · ·+an−1β
n−1 where an−1 . . . a1a0 is an admissible

β-expansion. We denote

minn := min{|z′| | z ∈ En, z /∈ βZβ} ,

maxn := max{|z′| | z ∈ En} .

Lemma 4.1.2. Let β > 1 be an algebraic number with at least one conjugate β ′ in
modulus less than 1. Then

(i) For all n ∈ N we have K ≥ Kn := minn − |β ′|nH.

(ii) K > 0 if and only if there exists n ∈ N such that Kn > 0.

Proof. (i) Let z ∈ Zβ \ βZβ. Then z =
∑N

i=0 biβ
i, b1 6= 0. The triangle inequality gives

|z′| ≥

∣
∣
∣
∣
∣

n−1∑

i=0

biβ
′i
∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

N∑

i=n

biβ
′i
∣
∣
∣
∣
∣
≥ minn − |β ′|n

∣
∣
∣
∣
∣

N∑

i=n

biβ
′i−n

∣
∣
∣
∣
∣
> minn − |β ′|nH = Kn .

Hence taking the infimum on both sides we obtain K ≥ Kn.
(ii) From the definition of minn it follows that minn is a decreasing sequence with

limn→∞ minn = K. If there exists n ∈ N such that minn − |β ′|nH > 0 we have K > 0
from (i). The opposite implication follows easily from the fact that limn→∞ Kn =
K.

For a fixed β, the determination of minn for small n is relatively easy. It suffices to
find the minimum of a finite set with small number of elements. If for such n we have
Kn = minn − |β ′|nH > 0, we obtain using (4.1) bounds on L⊕ and L⊗. We illustrate
this procedure on β – the Tribonacci number.
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4.2 L⊕, L⊗ for the Tribonacci number

Let β be the real root of x3 = x2 +x+1. The arithmetics on β-expansions was already
studied in [9]. Messaoudi [9] finds the upper bound on the number of β-fractional digits
for the Tribonacci multiplication as 9. Arnoux, see [9], conjectures that L⊗ = 3. We
refute the conjecture of Arnoux and find a better bound on L⊗ than 9. Moreover, we
find the bound for L⊕, as well.

It turns out that the best estimates on L⊕, L⊗ are obtained by Theorem 4.1.1 with
approximation of K by Kn for n = 9. By inspection of the set E9 we obtain

min9 = |1 + β ′2 + β ′4 + β ′7|
.
= 0.5465

and
max9 = |1 + β ′3 + β ′6|

.
= 1.5444 .

Consider y ∈ Zβ, y =
∑N

k=0 akβ
k. Then from the triangle inequality

|y′| ≤

∣
∣
∣
∣
∣

8∑

k=0

akβ
′k
∣
∣
∣
∣
∣
+ |β ′|9

∣
∣
∣
∣
∣

17∑

k=9

akβ
′k−9

∣
∣
∣
∣
∣
+ |β ′|18

∣
∣
∣
∣
∣

26∑

k=18

akβ
′k−18

∣
∣
∣
∣
∣
+ · · ·

< max9

(
1 + |β ′|9 + |β ′|18 + · · ·

)
=

max9

1 − |β ′|9
.

In this way we have obtained an upper estimate on H, i.e. H ≤ max9

1−|β′|9 . This implies

K9 = min9 − |β ′|9H ≥ min9 − |β ′|9
max9

1 − |β ′|9
.

Hence

(
1

|β ′|

)L⊕

<
2H

K
≤ 2

max9

1 − |β ′|9

(

min9 − |β ′|9
max9

1 − |β ′|9

)−1
.
= 7.5003

(
1

|β ′|

)L⊗

<
H2

K
≤

(
max9

1 − |β ′|9

)2 (

min9 − |β ′|9
max9

1 − |β ′|9

)−1
.
= 6.1908

Since (
1

|β ′|

)5
.
= 4.5880 ,

(
1

|β ′|

)6
.
= 6.2222 ,

(
1

|β ′|

)7
.
= 8.4386 ,

we conclude that L⊕ ≤ 6, L⊗ ≤ 5.

Considering the lower bounds on these coefficients for Tribonacci number, we ob-
tained experimentally by the use of program BetaArithmetic (see Section 3.4, Ap-
pendix C), we can sum up our results in the following corollary.

Corollary 4.2.1. Let β be the Tribonacci number, then

5 ≤ L⊕(β) ≤ 6 and 4 ≤ L⊗(β) ≤ 5 .
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4.3 L⊕, L⊗ for the minimal Pisot number

In the case of minimal Pisot number, finding suitable approximation of K took a little
bit more steps and computation. The best estimates were found for n = 37 (for the
coefficient L⊕) and n = 35 (for the coefficient L⊗).

By inspection of the set E35 or E37 we obtained

min35 = |1 + β9 + β14 + β22 + β27 + β32|
.
= 0.5202

max35 = |1 + β5 + β10 + β18 + β23 + β28 + β33|
.
= 1.8135

or
min37 = |1 + β9 + β14 + β22 + β27 + β32|

.
= 0.5202

max37 = |1 + β5 + β10 + β18 + β23 + β28 + β36|
.
= 1.8148

the whole convergency to these values is listed in Appendix A.

Using the same technique as in the last section, we obtain

(
1

|β ′|

)L⊕

=
2H

K
.
= 7.1540

(
1

|β ′|

)L⊗

=
H2

K
.
= 6.5843 .

Since (
1

|β ′|

)12
.
= 5.4043

(
1

|β ′|

)13
.
= 6.2201

(
1

|β ′|

)14
.
= 7.1592

we conclude that L⊕ ≤ 13, L⊗ ≤ 13.

When we put these upper bounds together with the lower ones obtained by means
of the programm BetaArithmetic, we have following corollary.

Corollary 4.3.1. Let β be the minimal Pisot number, then

L⊕(β) = 13 and 8 ≤ L⊗(β) ≤ 13 .

4.4 Case K = 0

The one-conjugate method mentioned in the Section 4.1 cannot be used in the case
that K = 0. It is however difficult to prove K = 0 for a given algebraic β and its
conjugate β ′. Particular situation is solved by the following proposition.

Proposition 4.4.1. Let β > 1 be an algebraic number and β ′ ∈ (−1, 0) its conjugate
such that 1

β′2
< bβc. Then K = 0.

Proof. Set γ := β ′−2. Digits in the γ-expansion take values in the set {0, 1, . . . , bγc}.
Since bγc ≤ bβc − 1 and the Rényi development of unit dβ(1) is of the form

dβ(1) = bβct2t3 . . .
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every sequence of digits in {0, 1, . . . , bγc} is lexicographically smaller than dβ(1) and
thus is an admissible β-expansion.

Since 1 < −β ′−1 < γ, the γ-expansion of −β ′−1 has the form

−β ′−1
= c0 + c1γ

−1 + c2γ
−2 + c3γ

−3 + · · · (4.4)

where all coefficients ci ≤ bβc − 1.
Let us define the sequence

zn := 1 + c0β + c1β
3 + c2β

5 + · · · + cnβ2n+1.

Clearly, zn ∈ Zβ \ βZβ and

z′n := 1 + β ′(c0 + c1β
′2 + c2β

′4 + · · ·+ cnβ ′2n
).

According to (4.4) we have limn→∞ z′n = 1 + β ′(−β ′−1) = 0 = limn→∞ |z′n|. Finally,
this implies K = 0.

Example. As an example of an algebraic number satisfying assumptions of Propo-
sition 4.4.1 is β > 1 solution of the equation x3 = 25x2 + 15x + 2. The algebraic
conjugates of β

.
= 25.5892 are β ′ .

= −0.38758 and β ′′ .
= −0.20165, and so K = 0 for

both of them. Hence Theorem 4.1.1 cannot be used for determining the bounds on L⊕,
L⊗. We thus present another method for finding these bounds and illustrate it further
on the mentioned example.

Note that similar situation happens infinitely many times, for example for a class of
totally real cubic numbers, solutions to x3 = p6x2 + p4x + p, for p ≥ 3. Theorem 4.1.1
cannot be applied to any of them which justifies utility of a new method.

4.5 Upper bounds on L⊕, L⊗ for β Pisot number

The second method of determining upper bounds on L⊕, L⊗ studied in this paper is
applicable to β being a Pisot number. This method is based on the so-called cut-and-
project scheme.

Let β > 1 be an algebraic integer of degree d, let β(2), . . . , β(s) be its real conjugates
and let β(s+1), β(s+2) = β(s+1), . . . , β(d−1), β(d) = β(d−1) be its non-real conjugates.

Then there exists a basis ~y(1),~y(2), . . . , ~y(d) of the space Rd such that every ~x =
(a0, a1, . . . , ad−1) ∈ Zd has in this basis the form

~x = α1~y
(1) + α2~y

(2) + · · ·+ αd~y
(d),

where
α1 = a0 + a1β + a2β

2 + · · ·+ ad−1β
d−1 =: z ∈ Q[β]

and
αi = z(i) for i = 2, 3, . . . , s,
αj = <(z(j)) for s < j ≤ d, j odd,
αj = =(z(j)) for s < j ≤ d, j even.

(4.5)
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The details of the construction of the basis ~y(1),~y(2), . . . , ~y(d) can be found in [1, 7]:
At first we find (possibly) complex vectors

(x(1))T = (x
(1)
0 , x

(1)
1 , . . . , x

(1)
d−1), . . . , (x(d))T = (x

(d)
0 , x

(d)
1 , . . . , x

(d)
d−1),

such that for any ~x = (a0, a1, . . . , ad−1) ∈ Zd we have

~x = α(1)~x(1) + α(2)~x(2) + · · · + α(d)~x(d) , (4.6)

where

α(i) = a0 + a1β
(i) + a2(β

(i))2 + · · · + ad−1(β
(i))d−1, ∀i ∈ {1, . . . , d}.

If we denote by X the d × d matrix with (X)ij = x
(i)
j and if we expand the equa-

tion (4.6) into system of equations for coefficients a0, a1, . . . , ad−1

a0 = a0

(

(β(1))0x
(1)
0 + . . . + (β(d))0x

(d)
0

)

+ a1

(

(β(1))1x
(1)
0 + . . . + (β(d))1x

(d)
0

)

+ . . .

. . . + ad−1

(

(β(1))d−1x
(1)
0 + . . . + (β(d))d−1x

(d)
0

)

...

ad−1 = a0

(

(β(1))0x
(1)
d−1 + . . . + (β(d))0x

(d)
d−1

)

+ a1

(

(β(1))1x
(1)
d−1 + . . . + (β(d))1x

(d)
d−1

)

+ . . .

. . . + ad−1

(

(β(1))d−1x
(1)
d−1 + . . . + (β(d))d−1x

(d)
d−1

)

it is easy to see that (4.6) holds for each ~x if and only if

Id = V(β(1), . . . , β(d)) · X

where V(β(1), . . . , β(d)) is the Vandermonde matrix in variables β(1), . . . , β(d),

V(β(1), . . . , β(d)) :=








1 1 · · · 1
β(1) β(2) · · · β(d)

...
...

. . .
...

(β(1))d−1 (β(2))d−1 · · · (β(d))d−1








.

The determinant of V(β(1), . . . , β(d)) is equal to
∏

d≥i>j≥1(β
(i) − β(j)). Since all conju-

gates are distinct, the determinant is non-zero.
Using the Cramer rule to compute x

(i)
j , we obtain that ~x(i) is real if β(i) is real, and

if β(j) and β(j+1) are mutually complex conjugated roots, then ~x(j) = ~x(j+1).

Thus we can define a real basis ~y(1), . . . , ~y(d) of Rd in a such way that

~y(i) = ~x(i) if ~x(i) is a real vector

~y(j) = ~x(j) + ~x(j)

~y(j+1) = i(~x(j) − ~x(j))

}

if ~x(j) and ~x(j+1) are mutually complex conjugated
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Note that really the coordinates of a vector ~x = (a0, a1, . . . , ad−1) ∈ Zd with a
respect to the basis ~y(1),~y(2), . . . , ~y(d) are these written out in (4.5).

Let us denote

Z[β] := {a0 + a1β + a2β
2 + · · ·+ ad−1β

d−1 | ai ∈ Z} .

i.e. the ring of polynomials in β with integer coefficients.
For β an algebraic integer, the set Z[β] is a ring, moreover if we put V1 = R~y(1) and

V2 = R~y(2) + R~y(3) + · · · + R~y(d), the set Z[β] is the projection of the lattice Zd on V1

along V2. The correspondence

(a0, a1, . . . , ad−1) 7→ a0 + a1β + · · · + ad−1β
d−1

is a bijection of the lattice Zd on the ring Z[β].

In the following, we shall consider β an irrational Pisot number. Important property
that will be used is the inclusion

Zβ ⊂ Z[β] . (4.7)

Let us recall that Zβ is a proper subset of Z[β], since Z[β] is dense in R as a projection
of the lattice Zd, whereas Zβ has no accumulation points. Since Z[β] is a ring,

Zβ + Zβ ⊂ Z[β] and Zβ · Zβ ⊂ Z[β] .

Consider an x ∈ Zβ with the β-expansion x =
∑n

k=0 akβ
k. Then

|x(i)| =

∣
∣
∣
∣
∣

n∑

k=0

ak(β
(i))k

∣
∣
∣
∣
∣
<

∞∑

k=0

bβc
∣
∣β(i)

∣
∣
k

=
bβc

1 − |β(i)|
,

for every i = 2, 3, . . . , d. Therefore we can define

Hi := sup{|x(i)| | x ∈ Zβ} . (4.8)

To the inclusion (4.7) thus can be given precision

Zβ ⊂ {x ∈ Z[β] | |x(i)| < Hi, i = 2, 3, . . . , d} .

Another important property needed for determination of bounds on L⊕, L⊗ is
finiteness of the set

C(l1, l2, . . . , ld) := {x ∈ Z[β] | |x| < l1, |x
(i)| < li, i = 2, 3, . . . , d} ,

for every choice of positive l1, l2, . . . , ld. A point a0 + a1β + · · · + ad−1β
d−1 belongs to

C(l1, l2, . . . , ld) only if the point (a0, a1, . . . , ad−1) of the lattice Zd has all coordinates
in the basis ~y1, . . . , ~yd in a bounded interval (−li, li), i.e. (a0, a1, . . . , ad−1) belongs to
a centrally symmetric parallelepiped. Every parallelepiped contains only finitely many
lattice points.

Let us mention that notation C(l1, l2, . . . , ld) is kept in accordance with [1], where
Akiyama finds some conditions for Fin(β) to be a ring according to the properties of
C(l1, l2, . . . , ld). Our aim here is to use the set for determining the bounds on the length
of the β-fractional part of the results of additions and multiplications in Zβ.
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Theorem 4.5.1. Let β be a Pisot number of degree d, and let H2, H3, . . . , Hd be
defined by (4.8). Then

L⊕ ≤ max{fp(r) | r ∈ Fin(β) ∩ C(1, 3H2, 3H3, . . . , 3Hd)},

L⊗ ≤ max{fp(r) | r ∈ Fin(β) ∩ C(1, H2
2 + H2, . . . , H

2
d + Hd)}.

Proof. Consider x, y ∈ Zβ such that x + y > 0, x + y ∈ Fin(β). If we set

z := max{w ∈ Zβ | w ≤ x + y},

then r := x + y − z is the β-fractional of x + y and thus

1. r ∈ Fin(β)

2. fp(r) = fp(x + y)

3. 0 ≤ r < 1.

The numbers x, y, z belong to the ring Z[β] and hence also r ∈ Z[β]. From the triangle
inequality

|r(i)| = |x(i) + y(i) − z(i)| ≤ 3Hi

for all i = 2, 3, . . . , d. Therefore r belongs to the finite set C(1, 3H2, 3H3, . . . , 3Hd),
which together with the definition of L⊕ gives the statement of the theorem for addition.

The upper bound on L⊗ is obtained analogically, with one change – because r is
defined as r := x · y − z the triangular inequality gives us

|r(i)| = |x(i) · y(i) − z(i)| ≤ H2
i + Hi.

4.6 Application to β solution of x3 = 25x2 + 15x + 2

We apply the above Theorem 4.5.1 on β > 1 solution of the equation

x3 = 25x2 + 15x + 2.

Recall that such β satisfies the conditions of Proposition 4.4.1 for both conjugates β ′,
β ′′ and thus Theorem 4.1.1 cannot be used for determining the bounds on L⊕, L⊗.

The Rényi development of 1 is dβ(1) = (25)(15)(2). Since the minimal polynomial
of β satisfies the assumptions of Theorem 3.1.3, the set Fin(β) is a ring.

In case that some of the algebraic conjugates of β is a real number, the bounds from
Theorem 4.5.1 can be refined. In our case β is totally real. Let x ∈ Zβ, x =

∑n

i=0 aiβ
i.

Since β ′ < 0, we have

x′ =
n∑

i=0

ai(β
′)i ≤

n∑

i=0,i even
ai(β

′)i <
∞∑

i=0

(25)(β ′)2i =
25

1 − β ′2 =: H1 .
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The lower bound on x′ is

x′ =

n∑

i=0

ai(β
′)i ≥

n∑

i=0,i odd

ai(β
′)i > β ′H1 .

Similarly for x′′ we obtain

β ′′H2 < x′′ <
25

1 − β ′′2 =: H2 .

Consider x, y ∈ Zβ such that x + y > 0. Again, the β-fractional part of x + y has the
form r = x + y − z for some z ∈ Zβ. Thus

(2β ′ − 1)H1 = β ′H1 + β ′H1 − H1 < r′ = x′ + y′ − z′ < H1 + H1 − β ′H1 = (2 − β ′)H1

(2β ′′ − 1)H2 < r′′ = x′′ + y′′ − z′′ < (2 − β ′′)H2

We have used a computer to calculate explicitly the set of remainders r = A+Bβ+Cβ2,
A, B, C ∈ Z, satisfying

0 < A + Bβ + Cβ2 < 1

(2β ′ − 1)H1 < A + Bβ ′ + Cβ ′2 < (2 − β ′)H1

(2β ′′ − 1)H2 < A + Bβ ′′ + Cβ ′′2 < (2 − β ′′)H2

where for β ′, β ′′ we use numerical values (see Example in Section 4.4). The set has 93
elements, which we shall not list here (see Appendix C). For every element of the set
we have found the corresponding β-expansion. The maximal length of the β-fractional
part is 5. Thus L⊕ ≤ 5.

On the other hand, using the algorithm described in Section 3.1 we have found a
concrete example of addition of numbers

(x)β = (25)(0)(25)

(y)β = (25)(0)(25)

so that x + y has the β-expansion

(x + y)β = (1)(24)(12)(11) • (23)(0)(14)(13)(2).

Thus we have found the value
L⊕ = 5 .

In order to obtain bounds on L⊗, we have computed the list of all r = A+Bβ+Cβ2,
A, B, C ∈ Z, satisfying the inequalities

0 < A + Bβ + Cβ2 < 1

β ′H2
1 − H1 < A + Bβ ′ + Cβ ′2 < H2

1 − β ′H1

β ′′H2
2 − H2 < A + Bβ ′′ + Cβ ′′2 < H2

2 − β ′′H2
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In this case we have obtained 8451 candidates on the β-fractional part of multiplication.
The longest one among them has 7 digits. On the other hand for numbers (x)β = (25)
and (y)β = (25) we have

(x · y)β = (24)(10) • (21)(24)(16)(7)(16)(13)(2).

Therefore
L⊗ = 7 .

Let us mention that the above method can be applied also to the case of Tribonacci
number, but the bounds obtained in this way are not better than those from Theo-
rem 4.1.1. We get L⊕ ≤ 6, L⊗ ≤ 6.
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Chapter 5

Conclusion

The main aim of this work was to find methods for making estimates on the maximum
of fractional digits that can arise under arithmetic operations with integers in systems
with irrational base, i.e. the estimates on the values of coefficients L⊕ and L⊗.

Very important role in the searching of values of those coefficients plays the question
whether or not the set Fin(β) – the set of all integers in a given numeration system –
is a ring. So that was our first task – to find some conditions for Fin(β) being a ring.

The first proposition proved was an auxiliary one, which facilitated our work, as-
serting that it is enough study only the question of addition of positive numbers in
order to decide about closure of Fin(β).

Under this simplification we found and proved a necessary condition for this clo-
sure of the set Fin(β) – called Property T. Further, we found one more condition for
the number β satisfying Property T, which is sufficient to Fin(β) being closed under
addition of positive elements.

While proving the theorem about sufficient condition, we gave an algorithm for
performing arithmetic operations in systems fulfilling the assumptions of this theorem.
This algorithm was afterwards used to write an computer program BetaArithmetic –
very useful for finding the lower bounds on L⊕ and L⊗. One of results of this search for
lower bounds on these coefficients was an example of multiplication in the Tribonacci
numeration system giving four fractional digits. Hence we refute the conjecture of
Arnoux, see [9], that L⊗ = 3 for Tribonacci multiplication.

In the second part of this work – the estimation of L⊕ and L⊗ itself – we showed
two methods suitable for coping with this task. The first one is applicable to algebraic
numbers β > 1 with at least one conjugate β ′ satisfying

sup{|z′| | z ∈ Zβ} < +∞

inf{|z′| | z ∈ Zβ \ βZβ} > 0

where Zβ is the set of all integers in a given numeration system, whereas the second
methods needs β to be a Pisot number.

We used these two methods to find upper bounds on L⊕ and L⊗ for minimal
Pisot numeration system, Tribonacci numeration system and 22-15-2 Pisot numeration
system. In the case of Tribonacci multiplication we found better bound on L⊗ than 9
– the value formerly found by Messaoudi [9].
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Nevertheless there are still open problems to be solved, some new ones also appeared
while we were writing this work. As some of the most obvious we can point out following
three:

1. It is clear from the second method of estimate that for β a Pisot number L⊕, L⊗ are
finite numbers. Does there exist a β non Pisot such that L⊕ = +∞ or L⊗ = +∞?

2. Whenever β satisfies Property T, it is possible to apply repeatedly the transcription
on the β-representation of x + y, x, y ∈ Fin(β), x, y > 0. If the transcription can be
applied infinitely many times, what is the order of choice of forbidden strings so that
the sequence of β-representations converges rapidly to the β-expansion of x + y?

3. It is known [12] that for β a Pisot number every x ∈ Q[β] has a finite or eventually
periodic β-expansion. It would be interesting to have algorithms working with periodic
expansions.
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Appendix A

Minn and Maxn for minimal Pisot
number

In the following tables one can find complete list of consecutive search for the constants
minn and maxn in the minimal Pisot number numeration system.

They were used to obtain the upper bounds of the coefficients L⊕ and L⊗ (see
Section 4.3). The coefficients for n = 37 was good enough to find the exact value of
L⊕. For finding the estimate of the coefficient L⊗ ≤ 13 is was enough to consider
n = 35, at the same time the lower bound is only L⊗ ≥ 8. We tried to find better
upper estimate by increasing n. For n = 36, . . . , 60 the estimate remained the same,
unfortunately it takes huge amount of computations as well as disk space to further
increase n.
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constant value β-expansion

min20 0.557061 10000100001000000001
min21 0.557061 10000100001000000001
min22 0.557061 10000100001000000001
min23 0.550579 10000000100001000000001
min24 0.550579 10000000100001000000001
min25 0.550579 10000000100001000000001
min26 0.542378 10000010000100001000000001
min27 0.542378 10000010000100001000000001
min28 0.528962 1000010000000100001000000001
min29 0.528962 1000010000000100001000000001
min30 0.528962 1000010000000100001000000001
min31 0.528962 1000010000000100001000000001
min32 0.528962 1000010000000100001000000001
min33 0.520206 100001000010000000100001000000001
min34 0.520206 100001000010000000100001000000001
min35 0.520206 100001000010000000100001000000001
min36 0.520206 100001000010000000100001000000001
min37 0.520206 100001000010000000100001000000001

Table A.1: minn for minimal Pisot number numeration system

constant value β-expansion

max20 1.75490 1000000010000100001
max21 1.77188 100001000010000100001
max22 1.77188 100001000010000100001
max23 1.77188 100001000010000100001
max24 1.79286 100001000000010000100001
max25 1.79286 100001000000010000100001
max26 1.79286 100001000000010000100001
max27 1.79286 100001000000010000100001
max28 1.79286 100001000000010000100001
max29 1.80847 10000100001000000010000100001
max30 1.80847 10000100001000000010000100001
max31 1.80847 10000100001000000010000100001
max32 1.80847 10000100001000000010000100001
max33 1.80847 10000100001000000010000100001
max34 1.81356 1000010000100001000000010000100001
max35 1.81356 1000010000100001000000010000100001
max36 1.81356 1000010000100001000000010000100001
max37 1.81481 1000000010000100001000000010000100001

Table A.2: maxn for minimal Pisot number numeration system
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Appendix B

User’s guide to program
BetaArithmetic

In this appendix, we present a brief user’s guide to the program BetaArithmetic. This
program performs arithmetic operations in Pisot numeration systems with base β,
where β is a greatest root of the equation xm = am−1x

m−1 + · · · + a1x + a0, where
am−1 ≥ · · · ≥ a1 ≥ a0 ≥ 1 and m ≤ 8.

There are three different implementation of this program, available on the compan-
ion CD-ROM. The first one is a workstation version for Win32 systems accompanied
with GUI1. The second version is a CGI2 version prepared to run on a web server to be
accessible over the internet. The window of the workstation version for Win32 system
is very similar to the HTML page generated by the CGI version, hence the description
of the functionality is the same for both of these versions. The third version is a com-
mand line version prepared to perform bath tasks and can be compiled on any system
having ANSI C++ compiler.

B.1 Command line version

The syntax for running the command line has the following form

BetaArithmetic {+,*} [options]

options: -i1 ’filename’

-i2 ’filename’

-o ’filename’

-d ’n’

-v

The first parameter on the command line has to be either + or * to determine the
arithmetic operation. Additional (optional) parameters are

-i1 ’filename’ ’filename’ is a name of the first input file
-i2 ’filename’ ’filename’ is a name of the second input file

1Graphical user interface
2Common gateway interface
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these two parameters complement each other, therefore there are only two possibilities:
one can use either none of them or both of them.

-o ’filename’ ’filename’ is a name of the output file
-d ’n’ ’n’ is a number of fractional digits a result has to have to be

printed on the output
-v output is printed in the simplified form

the simplified form of the output means, that only the resultant number is printed, but
nothing else.

B.2 GUI version

The version of the program accompanied with the GUI (as well as the CGI version) do
not perform any batch tasks, it is prepared to perform the computations one by one
as the user inputs data.

Figure B.1: The window of the program BetaArithmetic
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All the computation are controlled within the main window (Figure B.2). The
parameters a user has to input to get an result are divided into two parts.

In the first part (denoted Polynomial M(x)) there are boxes for assignment of
the coefficients of the minimal polynomial of the base β. If the coefficients are non-
increasing, the Renyi development of unit is in respective box, otherwise there is only
red exclamation mark.

The second part (denoted Input numbers) there are boxes of numbers the users
wants to add (subtract or multiply). Because there are numeration systems where
coefficients in β-expansion can be greater than nine, it is required to separate the
coefficients with a gap, the fractional mark and possible minus mark has to be separated
by a gap too.

Example: the input string

- 25 0 25 . 0 3

stands for the number −(25β2 + 25 + 3β−2).
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Appendix C

Content of the CD-ROM disc

This appendix contains the description of the directory structure on the companion
CD-ROM.

directory description

\Programs
\Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . compiled binaries of all programs
\Src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . source files of all programs
\BetaArtihmetic.ANSI . . . . . . . . . . . . . . . . . . . command-line version performing

batch tasks
\BetaArtihmetic.CGI . . . . . . . . . . . . . . . . . . . . CGI version for a web-server
\BetaArtihmetic.Win32 . . . . . . . . . . . . . . . . . . workstation version with GUI for

Win32 systems
\HKFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tool for using the H-K method
\MaxFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tool for the analysis of output

files in batch tasks

\Data
\Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input files
\Minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β-expansions in minimal Pisot

number numeration system
\Tribonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β-expansions in Tribonacci

number numeration system
\Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . results of computations
\Minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H-K method for minimal Pisot

number numeration system
\25-15-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2nd method for 25-15-2 Pisot

number numeration system
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