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1 Introduction

Let 7 be the golden mean, i.e. an algebraic integer with minimal polynomial 22 —x—1, and let 7’ be
its algebraic conjugate. We consider eventually periodic T-adic expansions of real numbers, that is,
left infinite eventually periodic representations of real numbers in the positional numeration system
with the base {(7')"}, whose coefficients form sequences admissible in the usual 7-numeration
system. Let Fep(7') denote the set of all real numbers which have their tau-adic expansions
eventually periodic to the left. It has been proved [2] that for a, a conjugate of a Pisot number /3,
a number z is an element of Fep () if and only if it is an element of Q(«). The golden mean is a
Pisot number, hence Fep(7') is a ring. In this paper we give algorithms to perform ring arithmetic
operations in Fe,(7'). More precisely, we construct a transducer with a countable number of states
to perform addition, subtraction is reduced to two additions, and for multiplication, we give an
algorithm which uses additions and subtractions.

2 Representation of numbers

Tau-expansions. A representation in base 7 (or simply 7-representation) of a real number z €
R is an infinite sequence (z;)x>i, ; € Z such that

k k—1 -1
T =27 +Tp—17 T+ F+TiT+HTo+T T T+

It is denoted by (z); = xgxk—1 - T1ToeT_1T_2 - -, MOst significant digit first.

Let TxTk_1...T1T0eT_1T—2 ... be a T-representation. The T-value is the function 7, : ZN — R
defined by T, (zpTp_1 ) =D ps; TiT'

Among all T-representations of z there is one particular, called 7-ezpansion, for which the
coefficients x; are non-negative integers and Zfi_m ;7 < 7™Vt for all —oco < N < k. Every
x € Ry has a unique 7-expansion which is found by the greedy algorithm [6]. The digits x; obtained
by the greedy algorithm are elements of the alphabet A, = {0, 1}, called the canonical alphabet.
The 7-expansion of a number x is denoted by ().

Let C be a finite alphabet of integers. The normalization function on CV is the function
ve : ON — AY that maps a word w of CM to (z),, where * = 7, (w). It is known that the
normalization is computable by a finite state automaton when the base is a Pisot number [4].
Recall that a Pisot number is an algebraic integer 5 > 1 whose algebraic conjugates are in modulus
less than one.

A sequence of coefficients which corresponds to some T-expansion is usually called admissible
in the 7-numeration system. A general condition was given by Parry [5] for the characterization
of admissible sequences of coefficients in a numeration system with base § > 1. The reformulation
of this condition in our simple case is as follows. Admissible 7-expansions are sequences over the
alphabet A, not containing the word 11 as a factor.
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Tau-adic expansions. A 7-adic representation of a real number x € R is a left-infinite sequence
(%;)i>—k, such that z; € Z and
= +a(T)V +mr Fro+ (7)) 4 a gy (7)7F

It is denoted ;/(x) := - - x1xpex_1 - - - x_. If all finite factors of the sequence (x;);>_j are admis-
sible in the 7-numeration system, the sequence (x;);>_y is said to be the 7-adic ezpansion of the
number z, and it is denoted . (z).

Analogous to the case of T-expansions we define for T-adic expansions the 7/-value function
7+ ZN — R and the normalization function v : CN — Alf .

Ezxzample. Number —1 has two 7-adic expansions
“(10)0.1 = -/ (—1) and “(01)0e = 7/ (—1).

Basic properties of the 7-adic expansions of integers and rational numbers were given by the
author in [1]. Let us denote by Fep(7') the set of all real numbers z whose 7-adic expansion is
a left-infinite eventually periodic word. It follows from a more general result in [2] that the set
Fep(7') is a ring. The subject of this paper is the study of addition, subtraction and multiplication
in Fep(7').

3 Addition

General principle. All three algorithms (i.e. the algorithm for addition, subtraction and mul-
tiplication) are composed of two parts: the first one consist in obtaining of a 7-adic representation
of the result (usually non-admissible and not over the canonical alphabet), the second one consists
in normalization of such a representation.

The heart of the process used during the first step lies in following two facts.

Fact 3.1. Let“ (Um+p - - - Um42Um+41)Um - - - UgeU_1 - - - U}, De a T-adic representation of a real num-
ber u. Then “ (Umt1Um+p -+ Um+2)Um+1Um - - - Ugel—1 - - U_g 1S also a T-adic representation of u.

Fact 3.2. Let “(Umtp - Um41)Um - - UgeU_1 - - - U_k be a T-adic representation of a real number
u. Then “((Ump - AUpyg1) ) -+ - UgeU_1 ... u_y, i also a T-adic representation of the number u,
for any positive integer | € N.

Let 2,y € Fep(7'). We want to find a representation of z = x + y. First we shift period of =
or of y so that they start with a coefficient belonging to the same power of 7. Then we stretch
the periods to the length equal to the least common multiple of their original lengths. Finally the
result is obtained by a simple digit-wise addition.

Normalization. We describe a transducer 7 — a finite non-deterministic transducer performing
right to left normalization on alphabet {0, 1,2} in the 7-numeration system (hence also in T-adic
numeration system), with the additional condition on the input word that every coefficient 2 is
surrounded by at least one 0 from each side. This condition is equivalent to the input word being
a digit wise sum of two expansions in the T-numeration system.

It is known that the sum of two tau-integers in the 7-numeration system is a number with at
most two fractional digits in its 7-expansion [3]. Hence if zj is the rightmost non-zero coefficient
in the 7-adic representation of z, obtained in the previous step, the process of normalization will
affect at most coefficients with indices greater than or equal to £ — 2. To avoid technical difficulties
we, without loss of generality, request that the input words for 7 begin with 00 (once more we
recall that the transducer is working from right to left, hence the factor 00 is supposed to be



on the right end of the representation of z). In what follows coefficients of the input word will
be denoted ...axag—_1...a1a0 (hence ag = a1 = 0) and coefficients of the output word will be
o bgbg—1 ... b1bo.

We denote the initial state of 7 by go. Then we have a starting part of the transducer

00|e
qgo — q1
q1 0‘1—09 11 T 0‘0—09 00(q) q1 1‘1—09 00(a)
q1 0‘0—09 00() q1 1‘0—09 11(,1) T 1&)1 12
q1 0‘0—19 ]_Q q1 Z‘L)Ol Ol(d) q1 2‘1—09 ]_i(c) .

We now describe the synchronous part of the transducer. Its states are denoted by words of
length two, with d;dy representing the polynomial di7+ dy and the signed digit —1 being denoted

ag|b

by 1. Transitions are of the form didy —— djd}, if ax + (do + d17) = by + (dy7 + dy72).
All the states of the transducer are final. The synchronous part of the transducer 7 is drawn
in Figure 1. Following proposition easily follows.

0[0

Figure 1: The synchronous part of the transducer 7.

Proposition 3.3. Apart from the starting part the rest of T is a letter-to-letter transducer with zero
delay (i.e. when the transducer reads the input letter ay, it writes the output letter by ). Moreover, if
dy dj, is the state reached after the k-th step (i.e. after writing the coefficient by, of the output word)

we have
k k

Z ai ()" = (di(r")? +dyr') (7)F + Z bi(T')".

i=0 i=0
Remark. Should the transducer 7 be used to to normalize finite words, for simplicity we would
suppose that the input and output word are of the same length, i.e. there is enough zeros in the
front (recall that we are working from right to left) of each input word for the automaton arrive
into the state 00(,), this state would be the only one final state.

Now let us assume that we would like to really use the transducer 7 to perform the normaliza-
tion (that is to say to implement the adding machine). A non-deterministic transducer over infinite
words does not seem to be the best suitable machine for this task. Unfortunately the usual subset



construction used to determinize transducers requires the input automaton to be subsequential,
this is not true in our case.

Let us for a while forget that our function is not sequential and apply the determinization
algorithm to transducer 7. We obtain a transducer, say 7get, with an infinite (but countable)
number of states. However, while performing the algorithm it is easy to see that the resulting
transducer 7get is virtually composed of two parts: “non-repeating part” (counting 11 states) and
the “repeating part” (the rest of the transducer).

The “non-repeating” part of the transducer Zq¢¢ is in Figure 2.1. The states Pl(é) to Pfj) are the
first states of the repeating part, the state J is the only one initial state and the triangle-marked
states Py, Pr and Py are the states where edges returning from the repeating part reenter the
non-repeating part (see below).

T Ole

2|e

1le
2.1: Non-repeating part of Tget 2.2: Repeating part of Tgey

Figure 2: Parts of the transducer 7get

The states of the repeating part of the transducer 7je; are denoted by symbols Pj(l). The
subscript indicates the type of the state, i.e. the set of states of transducer 7 “contained” in state
P;, whereas the superscript indicates the length of memorized words, i = |wy| for all pairs (gx, wx)
in P,

We can organize the repeating part of 7j.; into the levels according to the superscripts of the
states within, all the transitions between the states inside the repeating part have empty output
word. The first four levels of the repeating part are drawn in Figure 2.2.

In addition to the edges inside the repeating part, there are also the so-called “return edges”,
i.e. the edges aiming back to the non-repeating part (note that for clarity reasons these are not
drawn in Figure 2.2).

Transducer 7. realizes the same function as the transducer 7. Unfortunately, since the
normalization function v¢ is not sequential, it has an infinite number of states; we have to deal
with this fact.

It turns out that if we get rid of a few particular cases, which can be treated separately, only
a finite portion of the transducer 73.; will be actually used during the normalization.

Obviously, the cases resulting in the use of the whole transducer 7t (or strictly speaking use
of an infinite number of different states of 7get) are those for which a prefix of the input word is
an input label of some path in the repeating part of 7get, which never uses any return edge (i.e.
never returns back to the non-repeating part). We will treat these cases first.



Since all the edges inside the repeating part of 73.¢ have empty output and so the input using
infinite part of 7g.¢ will cause the transducer only to read and write nothing from some coefficient
on, we will call those cases as “infinite reading” cases. They are simply characterized by the
following lemma.

Lemma 3.4. The prefiz of an eventually periodic input word triggering the infinite reading in Tet
is one of the following words “(1), “(01), “(002), “ ({01, 002}*).

There are four simple pre-processing transformations that turn any input word triggering in-
finite reading either directly into its 7-adic expansion or into a finite word, which can be simply
normalized.

In all other cases, only a finite portion of the transducer 7t is used during the normalization.
Obviously, the computation can enter the repeating part of the transducer, but since the prefix
of the input word is not any of those from Lemma 3.4, every time the computation enters the
repeating part it eventually uses some return edge to go back to the non-repeating part. Indeed,
we need only a finite portion of 74 to normalize these representations.

Therefore we, in fact, have a deterministic transducer performing normalization. Since the
result is eventually periodic, the computation done by the transducer can be stopped after a finite
number of steps.

4 Subtraction

Let z,y € Fep(7'). We want to find the 7-adic expansion of x — y. The first step is the same
as for the addition. By simple digit wise subtraction (using Facts 3.1 and 3.2) we find a 7-adic
representation of z — y, we will denote it by z = . (z —y). Obviously, the coefficients of z are from
the alphabet {—1,0,1}. Without loss of generality, we can suppose that z has no fractional part.
Normalization is then done through the use of following algorithm.

Algorithm. Let z be o T-adic representation of x — y.

1. We define a partition of z into three other representations u, voqqd and Veven, sSuch that this
partition preserves the numerical value 7w/ (2) = mr () + 7 (Vodd) + Tr' (Voven) and
e u is obtained from z by putting all the negative coefficients equal to zero

® Uoad 1S obtained from z by keeping only negative coefficients which belong to the odd
powers of 7'

® Ueven 1S oObtained from z by keeping only negative coefficients which belong to the even
powers of T

2. We modify voqq and Veyen by transformation
Todd ‘= Vodd +“(10)e1l  and  Teven := Veven + “(01)s1, (1)

which does not change numerical values of the representations, since both added sequences are
representations of zero. We have u,Uodd, Veven € {0, 1} and 7/ (u), 7o/ (Toda ); Tr' (Veven) €
Fep(T').

3. A T-adic expansion of x —y is obtained by performing two consecutive additions (u+ Uoad) +

~
Ueven -



5 Multiplication

The operation of multiplication is different from addition and subtraction. Even though the usual
naive way to perform the multiplication — a series of successive additions — seems to be an
infinite process, in the case of eventually periodic expansions it can be used, but it needs more
careful investigation.

We start with the simplest case of two purely periodic 7-adic expansions, say ,/ (z) = “(xj ... Zg)e

and 7/ (y) =“(yi - . yo)s-

At first, let us assume that there is only one non-zero coefficient in ,/(y), say yn, 0 < n < I.
In this case the multiplication will consist of successive summation of  multiplied by (7/)"+" for
i > 0 (i.e. summation of copies of ;/(x) every time shifted [ positions to the left). This process
produces a representation with a “re-occurring pattern”: after summation of %k shifted copies of
+{(x), the period of (k + 1)t copy of ,(z) is exactly aligned with the period of the 1% copy, while
in the copies in-between it appears in all other possible “shift positions”; the period of the (k4 2)7¢
copy is aligned with the period of the 2°¢ copy and so on. Therefore, the sum will be composed of
blocks of the length m, where m = lem(k, (), such that each coefficient in a block is by ¢ greater
than the coefficient at the same position one block to the right, where ¢ = xy + - - - + ¢ is the sum
of the coefficients in the period of ./ (z)

(2)

(xy) = (2m +2¢) - (21 +26) (2m +6) - (22 +6)(21 +6) Zm - 2221

37d block 2nd plock 15% block

Ezxzample. Let . (z) = “(10010) and ,/(y) = “(01). Then ¢ = 2 and the process of computing of
a block-representation (2) starts as follows.

1001010010
0101001010
0100101001
0010100101
1010010100
1001010010
0101001010
0100101001
0010100101
1010010100

10010/10010

0101001010
0100101001
0010100101
1010010100
1001010010
01010010
010010
0010

10

1001010010
01010010
010010
0010

10

6656555454

4434333232

2212111010

Boxes emphasize the alignment of periods of the 1%t and of the 6" copy of the representation.

Recall that there are two 7-adic representations of zero (obtained by adding 1 to representations
of —1), namely “(10).11 and “(01).011. Hence their digit-wise sum — as well as any multiple of
this sum by a constant integer — is also 7-adic representation of zero. Among others ,/(0) =
“(66)es(26)s.

Let us take the block-shaped representation (2) and successively subtract from it shifted rep-
resentations 0 (“(c¢)es(25)s) for i > 1. One can easily see that the fractional point of i*® sub-
tracted representation is aligned with the barrier between blocks i and ¢ + 1, for all ¢ > 1. After
first subtraction, the first block (the right most block) will be changed into (zm — ¢)(zm—1 —
26)(zm—2 — §)(2m—3) -+ (z1), the second block into z,---z221 (thus into the form of the first
block prior to the subtraction), the third block into (z, + <) - (22 + ¢)(21 + <) and so on.
The second subtraction will not affect the first block, the second block will be changed into



(zm — $)(Zm=1 — 2¢)(zm—2 — $)(2Zm—3) - - - (21), the third block into z,, - - 2221 and so on. Indeed,
after all the subtractions we will have an eventually periodic T-adic representation

w(@y) = ((zm — ) (zm-1 = 26)(zm—2 — ) (2m—-3) -+ - (22)(21)),

which obviously still does not have to be an admissible 7-adic expansion. However, such represen-
tation can be seen as a serie of finite number of successive additions and subtractions and hence it
can be done as described before.

Ezample (Continuation). Let us take the representation obtained in the previous example and
successively subtract 0™ (¥ (2).2(4)2), i > 1 from it.

6656555454(4434333232(2212111010
2222222222(2222222222|242
4434333232(2212111010[/0212111010

2222222222

242

2212111010
242

0212111010

0212111010

0212111010

0212111010

111010

0212
©0212111010)

Now suppose that there are more than one non-zero coefficient in ,/(y). Indeed, we can treat
them one by one each time pursuing the above described algorithm for the case where ,/(y) has
only one non-zero coefficient. Doing this we transform a multiplication of two elements form F,
into a sum of a finite number of elements from Fp,.

Finally, let us suppose that x or y (or both) are not purely periodic. In the case where y is
not purely periodic we just have to add a finite number of shifted copies of x (i.e. of elements of
Fep(7')) to the result, whereas in the case where x is not periodic the process will be the same
with the small exception that the representation of xy will have non-empty pre-period.
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