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Abstract

We study α-adic expansions of numbers, that is to say, left infinite representations
of numbers in the positional numeration system with the base α, where α is an
algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt,
we prove that a number belongs to Q(α) if and only if it has an eventually periodic
α-expansion. Then we consider α-adic expansions of elements of the ring Z[α−1]
when β satisfies the so-called Finiteness property (F). We give two algorithms for
computing these expansions — one for positive and one for negative numbers. In
the particular case that β is a quadratic Pisot unit satisfying (F), we inspect the
unicity and/or multiplicity of α-adic expansions of elements of Z[α−1]. We also
provide algorithms to generate α-adic expansions of rational numbers in that case.

1 Introduction

Most usually, real numbers are represented in a positional numeration sys-
tems, that is, numbers are considered in the form of finite or infinite words
over a given ordered set — an alphabet of digits, and their value is taken
following the powers of a real base β > 1. Several different types of these
systems have been studied in the past, e.g. usual representations in an inte-
ger base (and its generalizations such as p-adic numeration or systems using
signed digits), representations in an irrational base, based on the so-called
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β-expansions (introduced by Rényi [23]), or representations with respect to a
sequence of integers, like the Fibonacci numeration system. Another approach
is also canonical number systems as studied in [18]) for instance. A survey of
most of these concepts was given in [19, Chapter 7].

In this paper we study another way of representing numbers, strongly con-
nected with the above mentioned representations based on β-expansions. It is
called the α-adic representation and, roughly speaking, is a representation of
a complex (or real) number in a form of (possibly) left infinite power series in
α, where α is a complex (or real) number of modulus less than 1.

We have two sources of inspiration — the β-numeration systems on one hand
and the p-adic numbers (representations of numbers in the form of left infinite
power series in a prime p) on the other hand. However, contrary to the usual p-
adic numbers the base of the α-adic system is taken to be in modulus smaller
than one. This fact implies an important advantage over the usual p-adic
expansions, since we do not have to introduce any special valuation for the
series to converge.

In β-expansions, numbers are right infinite power series. The deployment of
left infinite power series has been used by several authors for different pur-
poses. Vershik [28] (probably the first use of the term fibadic expansion) and
Sidorov and Vershik [27] use two-sided expansions to show a connection be-
tween symbolic dynamics of toral automorphisms and arithmetic expansions
associated with their eigenvalues and for study of the Erdös measure (more
precisely two-sided generalization of Erdös measure). Two-sided beta-shifts
have been studied in full generality by Schmidt in [26]. Ito and Rao [17], and
Berthé and Siegel [7] use representations of two-sided β-shift in their study
of purely periodic expansions with Pisot unit and non-unit base. The realiza-
tion by a finite automaton of the odometer on the two-sided β-shift has been
studied by Frougny [13].

Left-sided extensions of numeration systems defined by a sequence of inte-
gers, like the Fibonacci numeration system, have been introduced by Grabner,
Liardet and Tichy [15], and studied from the point of view of the odometer
function. The use (at least implicit) of representations infinite to the left is
contained in every study of the Rauzy fractal [22], especially in a study of its
border, see e.g. Akiyama [1], Akiyama and Sadahiro [4], or Messaoudi [20]. Fi-
nally, there is a recent paper by Sadahiro [24] on multiply covered points in the
conjugated plane in the case of cubic Pisot units having complex conjugates.
Sadahiro’s approach to the left infinite expansions is among all mentioned
works the closest one to our own.

This contribution is organized as follows. First, we recall known facts about β-
numeration and we define α-adic expansions in the case where α is an algebraic
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conjugate of a Pisot number β. Recall that, by the results of Bertrand [8] and
Schmidt [25], a positive real number belongs to the extension field Q(β) if and
only if its β-expansion (which is right infinite) is eventually periodic. Thus it
is natural to try to get a similar result for the α-adic expansions where α is an
algebraic conjugate of β. We prove that a number belongs to the field Q(α) if
and only if its α-adic expansion is eventually periodic to the left with a finite
α-fractional part. Note that the fields Q(α) and Q(β) are identical (up to an
isomorphism), but our result includes also negative numbers; that means one
can represent by α-adic expansions with positive digits also negative numbers
without utilization of the sign.

Further on, we consider α-adic expansions of elements of the ring Z[α−1] in the
case when β satisfies the Finiteness property (F). We give two algorithms for
computing these expansions — one for positive and one for negative numbers.

Finally, in the case of quadratic Pisot units satisfying (F), we study the unicity
of the expansions of elements of the ring Z[α−1]. We give an algorithm for
computing an α-adic representation of a rational number and we discuss the
normalization of such a representation by means of a finite transducer.

2 Preliminaries

2.1 Words

An alphabet A is a finite ordered set. We denote by A∗ the set of all finite words
over A, i.e. the set of finite concatenation of letters from A. The empty word
(identity of the free monoid A∗) is denoted by ε. The set of (right) infinite
words on A is denoted by AN. A word u ∈ AN is said to be eventually periodic
if it is of the form u = vzω, where v, z ∈ A∗ are finite words and zω = zzz · · ·
denotes the infinite concatenation of z to itself. We consider also left infinite
words, and the set of these words on A is denoted NA. A word u ∈ NA is
eventually periodic if u = ωzv, where v, z ∈ A∗ and ωz = · · · zzz. A factor of
a (finite or infinite) word u is a finite word v such that u = v1vv2 for some
words v1, v2.

2.2 Automata and transducers

An automaton over an alphabet A, denoted A = 〈A,Q,E, I, F 〉, is a directed
graph with labels in A. The set Q is the set of its vertices, called states, I ⊂ Q
is the set of initial states, F ⊂ Q is the set of final states and E ⊂ Q×A×Q is
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the set of labeled edges, called transitions. The automaton is said to be finite
if the set of states Q is finite. If (p, a, q) ∈ E one usually writes p

a
−→ q.

A computation c in A is a finite sequence of transitions such that

c = q0
a1−→ q1

a2−→ q2
a3−→ · · ·

an−→ qn .

The label of the computation c is the finite word a1a2 · · ·an of A∗. The com-
putation c is successful if q0 ∈ I and qn ∈ F . The behavior of A, denoted
by |A|, is the subset of A∗ of labels of all successful computations of A. An
automaton A is called deterministic if for any pair (p, a) ∈ Q× A there exist
at most one state q ∈ Q such that p

a
−→ q is a transition of A, and if there is

only one initial state.

An automaton T = 〈A∗ × B∗, Q, E, I, F 〉 over a non-free monoid A∗ × B∗ is
called a transducer from A∗ to B∗. Its transitions are labeled by pairs of words
(u, v) ∈ A∗ × B∗, the word u is called input and the word v is called output.

If (p, (u, v), q) ∈ E one usually writes p
u|v
−→ q. The transducer T is finite if Q

and E are finite.

A computation c in T is a finite sequence

c = q0
u1|v1

−−−→ q1
u2|v2

−−−→ q2
u3|v3

−−−→ · · ·
un|vn
−−−→ qn .

The label of the computation c is (u, v) := (u1u2 · · ·un, v1v2 · · · vn). The be-
havior of a transducer T is a relation R ⊂ A∗ × B∗. If for any word u ∈ A∗

there exists at most one word v ∈ B∗ such that (u, v) ∈ R, the transducer is
said to compute (realize) a function. A transducer is called real-time if input
words of all its transitions are letters in A (i.e. the transitions are labeled in
A × B∗). The underlying input (respectively output) automaton of a trans-
ducer T is obtained by omitting the output (respectively input) labels of each
transition of T . A transducer is said to be sequential if it is real-time and its
underlying input automaton is deterministic. A function is called sequential if
it can be realized by a sequential transducer.

All these definitions implicitly suppose that words are processed as usual from
left to right. The same definitions can be done where words are processed from
right to left; then we speak of right automata or transducers.

2.3 Beta-expansions

Let β > 1 be a real number. A representation in base β (or simply a β-
representation) of a real number x ∈ R+ is an infinite sequence (xi)i≤k, such
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that xi ∈ Z and

x = xkβ
k + xk−1β

k−1 + · · · + x1β + x0 + x−1β
−1 + x−2β

−2 + · · ·

for a certain k ∈ Z. If a β-representation of x ends in infinitely many zeros, it
is said to be finite and the ending zeros are omitted.

A particular β-representation — called the β-expansion [23] — is computed by
the so-called greedy algorithm. Denote by byc, respectively by {y}, the integer
part, respectively the fractional part, of a number y. Let x be a non-negative
real number. Find k ∈ Z such that βk ≤ x < βk+1. Set xk := bx/βkc and
rk := {x/βk} and let for i < k, xi = bβri+1c and ri = {βri+1}. The sequence
(xi)i≤k is said to be the β-expansion of x. It is denoted

〈x〉β = xkxk−1 · · ·x0•x−1x−2 · · · ,

most significant digit first. When k is negative, we set x−1 = · · · = x−k+1 = 0.
If β is not an integer, the digits xi obtained by the greedy algorithm are ele-
ments of the alphabet A = {0, 1, . . . , bβc}, called the canonical alphabet. The
β-expansion is the greatest β-representation of a number in the lexicographic
order.

The word xkxk−1 · · ·x0 at the left of the radix point of the β-expansion of x is
called the β-integer part of x, and the infinite word x−1x−2 · · · at the right of
the radix point is called the β-fractional part of x. When the context is clear,
the symbol “β” is omitted.

Let xkxk−1 · · ·x0•x−1x−2 · · · be a β- representation. The β-value is the function
πβ : AN → R defined by πβ(xkxk−1 · · · ) :=

∑
k≥i xiβ

i.

Let C be a finite alphabet of integers. The normalization on C is the func-
tion νC : CN → AN that maps a word w = (wi)i≤k of CN onto 〈x〉β , where
x =

∑
i≤k wiβ

i, that is to say, it maps a β-representation of a number x onto
its β-expansion. A reader interested in possible technical realizations of the
normalization is referred to [14, Theorem 2], or [6, Section 3.4].

Recall that a Pisot number is an algebraic integer β > 1 whose algebraic
conjugates are in modulus less than one.

Theorem 1 ([12]) If β is a Pisot number then on any alphabet C of digits
the normalization function νC : CN → AN is computable by a finite transducer
with edges labelled by elements of C × A.

A sequence of coefficients which corresponds to some β-expansion is usually
called admissible in the β-numeration system. For the characterization of ad-
missible sequences we use Parry’s condition [21]. Let Tβ : [0, 1] → [0, 1) be the
β-transformation on the unit interval defined by Tβ(x) := {βx}. The sequence
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dβ(1) = t1t2t3 · · · such that ti = bβT i−1
β (1)c is called the Rényi expansion of

1. If dβ(1) is finite and ` is the greatest index such that t` 6= 0 in dβ(1) we set
d∗

β(1) = (t1t2 · · · t`−1(t` − 1))ω, otherwise dβ(1) has infinitely many non-zero
digits ti and we set d∗

β(1) = dβ(1).

Theorem 2 (Parry [21]) An infinite sequence (xi)i≤k is the β-expansion of
a real number x ∈ [0, 1) if and only if for all j ≤ k the sequence xjxj−1xj−2 · · ·
is strictly lexicographically smaller than the sequence d∗β(1).

Properties of β-expansions are strongly related to symbolic dynamics. The
closure of the set of admissible β-expansions is called the β-shift. It is a sym-
bolic dynamical system, that is, a closed shift-invariant subset of AN

β , see the
surveys [9] and [19, Chapter 7] for more details.

Let Q(β) be the minimal subfield of complex numbers C containing all ratio-
nals Q as well as the algebraic number β. Let α be an algebraic conjugate of
β, then the fields Q(β) and Q(α) are isomorphic and their isomorphism is in-
duced by the assignment β 7→ α. Formally, the isomorphism ′ : Q(β) → Q(α)
is defined by setting (g(β))′ = g(α), where g(X) is a polynomial in X with
rational coefficients.

There is a nice characterization of β-expansions of elements of Q(β) due in-
dependently to Bertrand [8] and Schmidt [25].

Theorem 3 Let β be a Pisot number. A positive real number x has an even-
tually periodic β-expansion if and only if x ∈ Q(β).

2.4 The Finiteness property (F)

The set of all real numbers x for which the β-expansion of |x| is finite is
denoted by Fin(β). A number β is said to satisfy Property (F) if

Fin(β) = Z[β−1] .

It has been proved [14] that Property (F) implies that β is a Pisot number
and that dβ(1) is finite. Conversely, to find a simple algebraic characterization
of Pisot numbers satisfying (F) is an open problem up to now. Let

Mβ(X) = Xd − ad−1X
d−1 − · · · − a1X − a0 (1)

be the minimal polynomial of an algebraic integer β. Several authors have
found some sufficient conditions on Mβ(X) for β to have Property (F).

Theorem 4 ([14]) If the coefficients in (1) fulfill ad−1 ≥ ad−2 ≥ · · · ≥ a1 ≥
a0 > 0, then β has Property (F).
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Theorem 5 (Hollander [16]) If the coefficients in (1) fulfill ad−1 > ad−2 +
· · ·+ a1 + a0 with ai ≥ 0, then β has Property (F).

Theorem 6 (Akiyama [2]) Let β be a cubic Pisot unit. Then β has Property
(F) if and only if the coefficients in (1) fulfill a0 = 1, a2 ≥ 0 and −1 ≤ a1 ≤
a2 + 1.

Note that in [3] is studied a weaker property, called the weak finiteness property
(W). In particular it is proved that every cubic Pisot unit satisfies Property
(W), and it is conjectured that all Pisot numbers satisfy it.

2.5 Alpha-adic expansions

From now on let β be a Pisot number with finite Rényi expansion of 1, say
dβ(1) = t1 · · · t`. Let α be one of its algebraic conjugates.

Definition 7 An α-adic representation of a number x ∈ C is a left infinite
sequence (xi)i≥−k such that xi ∈ Z and

x = · · ·+ x2α
2 + x1α + x0 + x−1α

−1 + · · ·+ x−kα
−k

for a certain k ∈ Z. It is denoted α(x) = · · ·x1x0•x−1 · · ·x−k.

Definition 8 A (finite, right infinite or left infinite) sequence is said to be
weakly admissible if all its finite factors are lexicographically less than or equal
to d∗

β(1), which is equivalent to the fact that each factor of length ` is less than
t1 · · · t` in the lexicographic order.
If an α-adic representation (xi)i≥−k of a number x is weakly admissible it is
said to be an α-adic expansion of x, denoted α〈x〉 = · · ·x1x0•x−1 · · ·x−k.

Example 9 Let β > 1 be the golden mean, that is, the Pisot number with
minimal polynomial X2 −X − 1. Then dβ(1) = 11 and d∗

β(1) = (10)ω. Hence
11 is a forbidden factor in any β-expansion or α-adic expansion. Moreover
the sequence (10)ω is a forbidden tail in any β-expansion. On the other hand,
ω(10)010•1 is weakly admissible, and is an α-adic expansion of −2.

Remark 10 Although the β-expansion of a number is unique, the α-adic ex-
pansion is not. For instance in the α-adic system associated with the golden
mean, the number −1 has two α-adic expansions

α〈−1〉 = ω(10)•

α〈−1〉 = ω(10)0•1
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If α〈x〉 = · · ·x1x0•x−1 · · ·x−k is an α-adic expansion of a number x ∈ C, the
left infinite word · · ·x1x0 at the left of the radix point is called the α-integer
part, and the word x−1 · · ·x−k at the right of the radix point is called the
α-fractional part. When the context is clear, the symbol “α” is omitted.

Analogous to the case of β-representations we define for α-adic expansions the
α-value function πα and the normalization function νC .

3 Eventually periodic α-adic expansions

In order to prove the main theorem about eventually periodic expansions, we
need two technical lemmas.

Lemma 11 Let y ∈ Q(β) ∩ (0, 1) be a real number with the purely periodic
β-expansion 〈y〉β = 0•(y−1 · · · y−p)

ω. Then its conjugate y′ satisfies

α〈−y
′〉 = ω(y−1 · · · y−p)•0.

PROOF. We have y = y−1

β
+ · · · + y−p

βp + y−1

βp+1 + · · · , which can be also

written y = y−1

β
+ · · · + y−p

βp + y
βp . Conjugating the equation we obtain y′ =

y−1

α
+ · · ·+ y−p

αp + y′

αp . Hence −y′ = y−1α
p−1 + · · ·+ y−p − y′αp that is α〈−y

′〉 =
ω(y−1 · · · y−p)•0. 2

Lemma 12 Let x ∈ Q(β) ∩ (0, 1) be a real number with finite β-expansion
〈x〉β = 0•x−1 · · ·x−p, then α〈x

′〉 is of the form

ω(t1 · · · t`−1(t` − 1))un · · ·u0•u−1 · · ·u−m.

PROOF. Let 〈x〉β = 0•x−1 · · ·x−p with x−p 6= 0. By conjugating it and
by changing the sign of its coefficients we obtain an α-adic representation
of −x′, α(−x′) = 0•x−1 · · ·x−p, where d denotes the signed digit −d. If we
subtract −1 from the last non-zero coefficient x−p and replace it by an α-adic
expansion of −1 of the form α〈−1〉 = ω(t1 · · · t`−1(t` − 1))•, we obtain another
representation, which is eventually periodic to the left with a pre-period of the
form of a finite word over the alphabet {−bβc, . . . , bβc}. Finally, to obtain an
α-adic expansion of −x′ we have to normalize the pre-period, that is to say, to
find an admissible word numerically equivalent to the pre-period. Note that
the pre-period can be seen as a difference between two finite expansions and
so the normalization will not interfere with the period. 2
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Lemma 11 and 12 allow us to derive from Theorem 3 a characterization of
numbers with eventually periodic α-adic expansions. The main difference with
Theorem 3 is that the version for α-adic expansions includes also negative
numbers, that is, one can represent by α-adic expansions with positive digits
also negative numbers without the necessity of utilization of the sign.

Theorem 13 Let α be a conjugate of a Pisot number β. A number x in C

has an eventually periodic α-adic expansion if and only if x ∈ Q(α).

PROOF. ⇐: Let x have an eventually periodic α-adic expansion, say α〈x〉 =
ω(xk+p · · ·xk+1)xk · · ·x0•x−1 · · ·x−j . Let u :=

∑k
i=−j xiα

i and v :=
∑k+p

i=k+1 xiα
i.

Then u, v ∈ Z[α−1] and

x = u+
v

1 − αp
,

which proves the implication.

⇒: Let x ∈ Q(β) ∩ [0, 1). According to Theorem 3 the β-expansion of x is
eventually periodic, say 〈x〉β = 0•x−1 · · ·x−n(x−n−1 · · ·x−n−p)

ω. In the case
where the period of 〈x〉β is empty, an eventually periodic α-adic expansion of
−x′ is obtained by Lemma 12.
Let us assume that the period of 〈x〉β is non-empty and let us denote y :=
πβ(0•(x−(n+1) · · ·x−(n+p))

ω), therefore x = x−1

β
+ · · · x−n

βn + y
βn

Conjugating the equation we obtain x′ = x−1

α
+ · · · + x−n

αn + y′

αn , hence −x′ =

− y′

αn − x−1

α
− · · ·− x−n

αn . According to Lemma 11 we know how to obtain an α-
adic expansion of −y′, hence an α-adic representation of −x′ can be obtained
by digit wise addition

ω(x−(n+1) · · ·x−(n+p))x−(n+1) · · ·x−p • x−(p+1) · · · x−(n+p)

• (−x−1) · · · (−x−n)

ω(x−(n+1) · · ·x−(n+p))x−(n+1) · · ·x−p • (x−(p+1) − x−1) · · · (x−(n+p) − x−n)

Therefore we have α〈−x
′〉 of the form ω(c1 · · · cp)u, where u is a finite word,

obtained by the normalization of the pre-period x−(n+1) · · ·x−p•(x−(p+1) −
x−1) · · · (x−(n+p) − x−n). Note that this pre-period can be seen as a differ-
ence between two finite expansions and so the normalization will not interfere
with the period.
Now let x ≥ 1, x ∈ Q(β). Indeed, there exists a positive integer N such that
x < βN . Hence t = 1 − x

βN ∈ Q(β) ∩ [0, 1). As we have proved before the

number −t′ = x′

αN − 1 has an eventually periodic α-adic expansion. Therefore
an eventually periodic α-adic expansion α〈x

′〉 is simply obtained by adding
1 to α〈

x′

αN − 1〉, followed by shifting the fractional point N positions to the
left. 2
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4 Expansions in bases satisfying Finiteness Property (F)

In the previous section we proved a general result characterizing α-adic ex-
pansions of elements of the extension field Q(α). If we add one additional
condition on β, namely that it fulfills Property (F), we are able to character-
ize the expansions of elements of the ring Z[α−1] more precisely.

Proposition 14 Let α be a conjugate of a Pisot number β satisfying Property
(F). For any x ∈ Z[β−1]+ its conjugate x′ has at least one α-adic expansion.
This expansion is finite and α〈x

′〉 = 〈x〉β.

PROOF. Since β satisfies Property (F), Fin(β) = Z[β−1] and any x ∈
Z[β−1]+ has a finite β-expansion, say x =

∑k
i=−j xiβ

i. By conjugation we

have x′ =
∑k

i=−j xiα
i. 2

The proof of Proposition 14 shows us a way how to compute an α-adic ex-
pansion of a number x′ which is a conjugate of x ∈ Z[β−1]+. The same task
is a little bit more complicated in the case where x′ is a conjugate of an
x ∈ Z[β−1]−. An α-adic expansion of such a negative number x′ is computed
by Algorithm 1 below.

Algorithm 1 Let x ∈ Z[β−1]−. An α-adic expansion of x′ is obtained as
follows.

(1) Use the greedy algorithm to find the β-expansion of −x, say 〈−x〉β =
xk · · ·x0•x−1 · · ·x−j, which is finite since β satisfies Property (F).

(2) By changing the signs xi 7→ −xi we obtain an α-adic representation of x′

in the form of a finite word over the alphabet {0,−1, . . . ,−bβc}.
(3) Subtract −1 from the rightmost non-zero coefficient x−j and replace it by

an α-adic expansion of −1, α〈−1〉 = ω(t1 · · · t`−1(t` − 1)). The represen-
tation of x′ has now a periodic part ω(t1 · · · t`−1(t` − 1)) and a pre-period,
which is a finite word over the alphabet {−bβc, . . . , bβc}.

(4) Finally, the α-adic expansion of x′ is simply obtained by the normalization
of the pre-period. Note that the pre-period can be seen as a difference
between two finite expansions and so the normalization will not interfere
with the period.

Example 15 Let β > 1 be the golden mean, α its conjugate. Recall that for
instance α〈−1〉 = ω(10)•. We compute an α-adic expansion of the number −4.
The β-expansion of 4 is 101• 01, so 1̄01̄• 01̄ is an α-adic representation of the
number −4. Now we subtract −1 from the rightmost non-zero coefficient and
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replace it by α〈−1〉 as follows

1̄ 0 1̄ • 0 1̄

• 1

ω(1 0) 1 0 1 0 • 1 0

ω(1 0) 1 1̄ 1 1̄ • 1 0

Since the normalization of the pre-period 11̄11̄•10 gives 0100•001, the expansion
of −4 is α〈−4〉 = ω(10)0100•001.

Proposition 16 Let α be a conjugate of a Pisot number β satisfying Property
(F). For any x ∈ Z[β−1]−, its conjugate x′ has at least ` different α-adic expan-
sions, which are eventually periodic to the left with the period ω(t1 · · · t`−1(t` −
1)).

PROOF. First, we show that the number −1 has ` different α-adic expan-
sions. Recall that −1 + πβ(dβ(1)) = 0, hence −α` + α`πα(dβ(1)) − 1 = −1.
Therefore we have the first expansion

α〈−1〉 = ω(t1 · · · t`−1(t` − 1)) . (2)

Now we successively use the equality −αj +αjπα(dβ(1))− 1 = −1 for j = `−
1, . . . , 1 to obtain the other `−1 representations. For a given j such that tj 6= 0
this equation is −αj+t1α

j−1+· · ·+tj−1α+(tj−1)+tj+1α
−1+· · ·+t`α

j−` = −1.
If we replace the coefficient −1 at αj by its expansion (2) we have

α〈−1〉 = ω(t1 · · · t`−1(t` − 1))t1 · · · tj−1(tj − 1)•tj+1 · · · t` . (3)

Note that periods of expansions obtained in (3) are mutually shifted, they
are situated on all possible ` positions. That is why all these expansions are
essentially distinct.
The only difficulty would arise if tj = 0 for some j and hence we would obtain
the coefficient −1 at α0 by equation (3). If this is the case we take the pre-
period and normalize it

t1 · · · tj−1(tj − 1)•tj+1 · · · t`
νC7→ u1 · · ·uj•uj+1 · · ·ui ,

where C = {−1, 0, . . . , bβc}.

An α-adic expansion of −1 then will be α〈−1〉 = ω(t1 · · · t`−1(t`−1))u1 · · ·uj•uj+1 · · ·ui.

Then we consider an x ∈ Z[β−1]−. Using the ` different expansions of −1 in
Algorithm 1 gives us ` different α-adic expansions of the number x′. 2

11



Note that, conversely, if an expansion of a number z′ is of the form ω(t1 · · · t`−1(t`−
1))u•v, then z belongs to Z[β−1]−.

Example 17 Let β of minimal polynomial x3−x2−1; such a number is Pisot
and satisfies the (F) property [2]. We have dβ(1) = 101 and d∗

β(1) = (100)ω.
Let α be one of its (complex) conjugates. The number −1 has three different
α-adic expansions

α〈−1〉 = ω(100)•

α〈−1〉 = ω(100)0•01

α〈−1〉 = ω(100)01•00001

5 Quadratic Pisot units

This final section is devoted to quadratic Pisot units satisfying Property (F),
i.e. to numbers β with minimal polynomial of the form X2 − aX − 1, a ∈ Z+.
Then α = −β−1. The Rényi expansion of 1 is dβ(1) = a1, and the canonical
alphabet is A = {0, . . . , a}.

5.1 Unicity of expansions of elements of Z[β]

We first establish a technical result.

Proposition 18 Let β > 1 satisfying the equation X2 − aX − 1, and let
α be its algebraic conjugate. Let α#(x) : R → N be the function counting the
number of different α-adic expansions of a number x in R. Then α#(x) < +∞
for any x ∈ R.

PROOF. Let x be fixed in R and let α〈x〉 = u•v be an α-adic expansion of
x, with u ∈ NA and v ∈ A∗.

Clearly

|x− πα(•v)| = |πα(u•)| <
bβc

1 − |α|
. (4)

Since β is a unit, πβ(•v) belongs to Z[β] ∩ [0, 1). So πβ(•v) is a polynomial in
β that takes bounded values as well as its conjugate (according to (4)), hence
πβ(•v) takes a finite number of values. So there is a finite number, say B, of
values πα(•v). Moreover the bound B is uniform.

12



Now suppose that there is a number y ∈ R such that y has an infinite number
of α-adic expansions. Then there exists a constant N such that α−Ny has B+1
different fractional parts, which is impossible. 2

Note that the proof does not use the fact that β is quadratic, but only that it
is a Pisot unit.

In the case that β is a cubic Pisot unit with complex conjugates satisfying
Property (F), Sadahiro has proved in [24] that the number of different α-adic
expansions of a given complex number is finite.

Proposition 19 Let β > 1 satisfying the equation X2−aX−1. Let x ∈ Z[β]+.
Then x′ has a unique α-adic expansion. This expansion is finite and such that

α〈x
′〉 = 〈x〉β.

PROOF. By Proposition 14 any number x′ ∈ Z[α]+ has an expansion α〈x
′〉 =

xk · · ·x0•x−1 · · ·x−j . Let us suppose that x′ has another α-adic expansion

α〈x
′〉 = · · ·un · · ·u0•u−1 · · ·u−m. Subtracting these two expansions of x′ and

normalizing the result we obtain an admissible expansion of zero of the form
· · ·uk+3uk+2vk+1 · · · v0•v−1 · · · v−p, with v−p 6= 0. By shifting and relabeling

0 =
∑

i≥0

αizi , (5)

where (zi)i≥0 is an admissible sequence with z0 6= 0. The admissibility condi-
tion in this case implies z1 ∈ {0, . . . , a−1}. Since α = −β−1 one can rewrite (5)
as

z0 +
z2
β2

+
z4
β4

+ · · ·
︸ ︷︷ ︸

=:LS

=
z1
β

+
z3
β3

+
z5
β5

+ · · ·
︸ ︷︷ ︸

=:RS

. (6)

The coefficients zi for i ≥ 1 belong to {0, . . . , a}, hence by summing the
geometric series on both sides of (6) we obtain LS ∈ [1, a + 1

β
] and RS ∈

[0, 1 − 1
β
] which is absurd. 2

To prove an analogue of Proposition 19 stating the unicity of α-adic expansions
for the elements of Z[β]− we first need the following lemma.

Lemma 20 If a number z has an eventually periodic α-adic expansion then
all its α-adic expansions are eventually periodic.

PROOF. From Proposition 19, if a number x has a finite α-adic expansion
then this expansion is unique.
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Let us consider a number x′ with an eventually periodic expansion

α〈x
′〉 = ω(xk+p · · ·xk+1)xk · · ·x0•x−1 · · ·x−j . (7)

For the sake of contradiction let us assume that x′ has another α-adic expan-
sion, which is infinite and non-periodic

α〈x
′〉 = · · ·u1u0•u−1 · · ·u−m . (8)

Put y′ := α−(k+1)x′ − πα(0•xk · · ·x0x−1 · · ·x−j). Hence from (7) we have

α〈y
′〉 = ω(xk+p · · ·xk+1)•0 . (9)

From (8), defining vk+1•vk · · · v0v−1 · · · v−q as the word obtained by normal-
ization of the result of digit-wise subtraction uk+1•uk · · ·u1u0u−1 · · ·u−m −
0•xk · · ·x0x−1 · · ·x−j , we have

α〈y
′〉 = · · ·uk+3uk+2vk+1•vk · · · v0v−1 · · · v−q , (10)

which is non-periodic.

Equation (9) gives us another formula for y′, y′ = α−py′ − πα(0•xk+p · · ·xk+1).
Iterating this formula on the non-periodic expansion (10) yields infinitely many
different α-adic expansions of the number y′. This is in contradiction with the
statement of Proposition 18. 2

Proposition 21 Let β > 1 satisfying the equation X2 − aX − 1. Let x ∈
Z[β]−. Then x′ has exactly two eventually periodic α-adic expansions with
period ω(a0).

PROOF. At first, we prove that the number −1 has no other α-adic expan-
sions than those from Proposition 16. Since all α-adic expansions of −1 have
to be eventually periodic, we will discuss only two cases: when the period is
ω(a0) and when it is different.

(1) Consider an α-adic expansion of −1 with period ω(a0)

α〈−1〉 = ω(a0)dk · · · d0•d−1 · · · d−j ,

−1 = −αk+1 + πα(dk · · ·d0•d−1 · · · d−j) .

The number −1 + αk+1 is the conjugate of βk+1 − 1 ∈ Z[β]+ and as such
has a unique α-adic expansion. Therefore there cannot be two different
pre-periods for a given position of the period.

(2) Suppose that −1 has an α-adic expansion with a different period

α〈−1〉 = ω(dk+p · · · dk+1)dk · · · d0•d−1 · · · d−j.

14



Let P ′ := πα(dk+p · · · dk+1). Then

−1 = αk+1 P ′

1 − αp
+ πα(dk · · · d0•d−1 · · · d−j) ,

and by taking the conjugate we obtain

−1 = βk+1 P

1 − βp
+ πβ(dk · · · d0•d−1 · · · d−j) .

Therefore

πβ(dk · · · d0•d−1 · · · d−j) + 1
︸ ︷︷ ︸

∈Z[β]+

= βk+1 P

βp − 1︸ ︷︷ ︸
/∈Z[β]+

,

which is a contradiction.

Validity of the statement for numbers x′ ∈ Z[α]−, x′ 6= −1, is then a simple
consequence of Algorithm 1. 2

5.2 Representations of rational numbers

In this subsection we inspect α-adic expansions of rational numbers for α the
conjugate of a quadratic Pisot unit satisfying (F). We give below an algorithm
for computing an α-adic representation of a rational number q ∈ Q, |q| < 1.
The algorithm for computing α〈q〉 is a sort of a right to left normalization —
it consists of successive transformations of a representation of q, and it gives
as a result a left infinite sequence on the canonical alphabet A.

Let x1, x2 and x3 be rational numbers, and define the following transformation

ψ : (x3, x2, x1) 7→ (x3 − (dx1e − x1), x2 + a(dx1e − x1), dx1e) . (11)

Note that this transformation preserves the α-value.

Algorithm 2 Input: q ∈ Q ∩ (−1, 1).
Output: a sequence s = (si)i≥0 of AN such that

∑
i≥0 siα

i = q.

begin
s0 := q;
for i ≥ 1 do si := 0;
i := 0;
repeat

(si+2, si+1, si) := ψ(si+2, si+1, si);
i := i+ 1;

end

15



Since the starting point of the whole process is a single rational number, after
each step there will be at most two non-integer coefficients — rational numbers
with the same denominator as q.

Denote s(i+1) the resulting sequence after step i; thus s(0) = ω0q and, for i ≥ 0,
s(i+1) = · · · s

(i+1)
i+4 s

(i+1)
i+3 s

(i+1)
i+2 s

(i+1)
i+1 s

(i+1)
i · · · s

(i+1)
0 where the digits s

(i+1)
0 = s0,

. . . , s
(i+1)
i = si are integer digits of the output, and the factor s

(i+1)
i+3 s

(i+1)
i+2 s

(i+1)
i+1 is

under consideration. Note that for j ≥ i+3, the coefficients s
(i+1)
j are all equal

to 0. Thus the next iteration of the algorithm gives ψ(s
(i+1)
i+3 , s

(i+1)
i+2 , s

(i+1)
i+1 ) =

(s
(i+2)
i+3 , s

(i+2)
i+2 , s

(i+2)
i+1 ).

Lemma 22 After every step i of the algorithm, the coefficients satisfy:

• s
(i+1)
0 = s0, . . . , s

(i+1)
i = si belong to A

• s
(i+1)
i+1 ∈ (−1, a)

• s
(i+1)
i+2 ∈ (−1, 0].

PROOF. We will prove the statement by induction on the number of steps of
the algorithm. The statement is valid for i = 0 due to the assumption |q| < 1.

By Transformation (11) we have ψ(s
(i+1)
i+3 , s

(i+1)
i+2 , s

(i+1)
i+1 ) = (s

(i+2)
i+3 , s

(i+2)
i+2 , s

(i+2)
i+1 ),

thus

s
(i+2)
i+1 = ds

(i+1)
i+1 e ∈ Z ∩ [0, a] ,

s
(i+2)
i+2 = s

(i+1)
i+2 + a(ds

(i+1)
i+1 e − s

(i+1)
i+1 ) ∈ (−1, a) ,

s
(i+2)
i+3 = −(ds

(i+1)
i+1 e − s

(i+1)
i+1 ) ∈ (−1, 0] .

2

Since the factor s
(i+2)
i+3 s

(i+2)
i+2 s

(i+2)
i+1 after step i + 1 is uniquely determined by

the factor s
(i+1)
i+3 s

(i+1)
i+2 s

(i+1)
i+1 , and the coefficients s

(i+1)
i+1 and s

(i+1)
i+2 are uniformly

bounded, as a corollary we get the following result.

Proposition 23 Algorithm 2 generates an α-adic representation on A of q
which is eventually periodic.

Note that in general, this representation is not admissible.

Example 24 Computation of an α-adic representation of the number 1
2

in
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the case dβ(1) = 31.
1
2

−1
2

3
2

1
2

−1
2

3
2

1

−1
2

3
2

1
2

−1
2

1 2 1

−1
2

3
2

1
2

−1
2

3
2

0 1 2 1

Because the prefix (0)(−1
2
)(3

2
) which arises after step 3 is the same as the one

which arises after step 0, the same sequence of steps (with the same results)
will follow from now on. Therefore the α-adic representation computed by the
algorithm is α〈

1
2
〉 = ω(012)1•. It happens that, in this particular case, this is

an α-adic expansion of α〈
1
2
〉.

5.3 Normalization

Unfortunately, Algorithm 2 does not give in general an admissible α-adic ex-
pansion, that is to say a representation with no factor a1. In this section we
discuss the normalization of such a non-admissible output. Since the output
word is a word on the canonical alphabet, non-admissibility can come from a
factor of the type ab with b > 0, or anb with n > 1, b 6= a, or from an infinite
prefix of the type ωa. The following result shows that the latter case will not
appear.

Proposition 25 The number of consecutive letters a’s in an output word of
Algorithm 2 is bounded for all q ∈ Q ∩ (−1, 1).

PROOF. We will prove the result by contradiction. Let us assume that from
some step on, say from step i, the output of the algorithm is composed only of
letters a’s. This means that the output is of the form · · · dV4edV3edV2edV1ev,

where v has length i+ 1, and for each k ≥ 1, dVke = a. We have V1 = s
(i+1)
i+1 ,

and V2 = s
(i+1)
i+2 + a(dV1e − V1). Iterating twice the transformation ψ, we get

Vk = −(dVk−2e − Vk−2) + a(dVk−1e − Vk−1) for k ≥ 3. (12)

From (12) and the fact that Vk > a− 1 one gets

1 −
1

a
+

1

a
(dVk−2e − Vk−2) < (dVk−1e − Vk−1) . (13)
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Then iterating (13) we obtain an explicit estimate for (dVke − Vk)

(dVke − Vk) > 1 −
1

a
+

1

a
(dVk−1e − Vk−1)

> 1 −
1

a
+

1

a

(
1 −

1

a
+

1

a
(dVk−2e − Vk−2)

)

= 1 −
1

a2
+

1

a2
(dVk−2e − Vk−2)

> 1 −
1

a3
+

1

a3
(dVk−3e − Vk−3)

> · · ·

> 1 −
1

ak−1
+

1

ak−1
(dV1e − V1)

Since s
(i+1)
i+2 ∈ (−1, 0] we can estimate a − 1 < V2 = s

(i+1)
i+2 + a(dV1e − V1) ≤

a(dV1e − V1), which gives 1 − 1
a
< (dV1e − V1). Therefore we have

−(dVke − Vk) < −1 +
1

ak−1
−

1

ak−1

(
1 −

1

a

)
=

1

ak
− 1 . (14)

Finally, by inequality (14) and the fact that a − 1 < Vk ≤ a, we obtain a
bound on Vk

Vk = −(dVk−2e − Vk−2)︸ ︷︷ ︸
< 1

ak−2
−1

+adVk−1e︸ ︷︷ ︸
=a2

−aVk−1︸ ︷︷ ︸
<a−a2

< a− 1 +
1

ak−2
. (15)

Suppose that we are computing an α-adic expansion of a rational number q
with denominator p ∈ N. Find the smallest K such that 1

p
> 1

aK−2 . Since any

Vk is a fraction with denominator p of the form VK = t
p
, by (15) we have

VK < a − 1 + 1
aK−2 , which implies VK < a − 1. This is in contradiction with

the assumption that a− 1 < Vk for all k ≥ 1. 2

Proposition 26 Let w be an output of Algorithm 2 for a number q ∈ Q ∩
(−1, 1) and let ŵ be the image of w under the normalization function, νA(w) =
ŵ. Then ŵ is left eventually periodic with no fractional part.

PROOF. First of all, let us recall that a number β such that dβ(1) = a1 is
a so-called confluent Pisot number (see [11]). For these numbers, it is known
that the normalization on the canonical alphabet does not produce a carry to
the right. This assures that ŵ will have no fractional part and that we can
perform normalization starting from the fractional point and then just read
and write from right to left.

We have shown earlier that for a given rational number q the number of
consecutive letters a’s in an output word w is bounded, moreover the proof
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of Proposition 25 gives us this upper bound. We give below a construction of
a right sequential finite transducer T performing the normalization of such a
word w.

Define A∅ := A \ {0}, and let C be the bound on the number of consecutive
letters a in a word w. Because the result of the normalization of non-admissible
factors of w depends on the parity of the length of blocks of consecutive a’s,
the transducer T has to count this parity. This is done by memorizing the
actually processed forbidden factors; the states of the transducer are labeled
by these memorized factors.

Transducer T is constructed as follows

• The initial state is labeled by the empty word ε, and there is a loop ε
0|0
−→ ε.

• There are states labeled by a single letter h ∈ A∅ connected with the initial

state by edges ε
h|ε
−→ h and h

0|0h
−−→ ε. These states are also connected one

with each other by edges i
j|i
−→ j where i, j ∈ A∅, j 6= a. Finally there is a

loop h
h|h
−−→ h on each state h ∈ A∅, h 6= a.

• For each h ∈ A∅ there is a chain of consecutive states akh, where k =

1, . . . , C − 1, linked by edges akh
a|ε
−→ ak+1h. Moreover, there are edges

akh
i|u
−→ i+1 where u = (0a)m0(h−1) for k = 2m+1 and u = (0a)m0(a−1)h

for k = 2m+ 2.

The edges akh
a|ε
−→ al+1h are these which count the number of consecutive

letters a in a forbidden factor, whereas the edges akh
i|u
−→ i+1 are these which,

depending on the parity of the length k of a run ak, replace a forbidden factor
by its normalized equivalent.

One can easily check that the transducer is input deterministic, and thus
right sequential. Clearly the output word is admissible. Since the image by
a sequential function of an eventually periodic word is eventually periodic
(see [10]), the image ŵ is eventually periodic. 2

The following is just a rephrasing.

Theorem 27 Let β be a quadratic Pisot unit satisfying (F). Any rational
number q ∈ Q ∩ (−1, 1) has an eventually periodic α-adic expansion with no
fractional part.

Remark that there exist rational numbers larger than 1 such that the α-adic
expansion has no fractional part. We have shown in Example 24 that for
dβ(1) = 31, α〈

1
2
〉 = ω(012)1•. Thus α〈

3
2
〉 = ω(012)2• has no fractional part.
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6 Conclusion

Let us stress out that the analogue of Propositions 19 and 21 has been proved
by Sadahiro for the case that β is a cubic Pisot unit with complex conjugates
satisfying Property (F). The extension of these results to other Pisot units
satisfying Property (F) is an open problem.

We have not addressed here the question of the existence of α-adic expansions
of complex numbers not in Q(α).
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Math. 2, Kluwer Acad. Publ. (1999), 7–17.

[2] S. Akiyama. Cubic Pisot units with finite beta expansions. In ’Algebraic number
theory and Diophantine analysis (Graz, 1998)’, de Gruyter (2000), 11–26.

[3] S. Akiyama, H. Rao and W. Steiner. A certain finiteness property of Pisot

number systems. J. of Number Theory 107 (2004), 135–160.

[4] S. Akiyama and T. Sadahiro. A self-similar tiling generated by the minimal Pisot

number. In ’Proceedings of the 13th Czech and Slovak International Conference
on Number Theory (Ostravice, 1997)’, Acta Math. Inform. Univ. Ostraviensis
6, 9–26, (1998).
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[6] P. Ambrož. Algebraic and combinatorial properties of non-standard numeration

systems. PhD thesis, Czech Technical University and Université Paris VII,
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