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Introduction

In the present industry, we often meet controlled processes. For their automation, we must know how these processes work. For this purpose we compose a model of the controlled system. This model is described by values in the input and output channels and by some parameters. Initially, we don’t know values of these parameters, we can only estimate them from the behaviour of the system. The first step of the estimation is building in prior knowledge – it means to build in information about behaviour of the system in some specific situations (unit impulse on input, unit step on input, etc.). Second one is the estimation based on a set of measured data. 

The aim of this work is to describe a solution of the addressed problem and also propose a method to verify it.

1. Conventions and Notations

A part of the real world which can be controlled can be called a controlled system. Before we start to design, the controller system is probably controlled manually. It is described only by sets of inputs and outputs. 
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Figure 1: Open loop

1.1 Closed loop variables

In case we consider closed loop control we have to add the controller and create feed-back loop.


[image: image1.png]
Figure 2: Closed loop, user and environment 

We define following variables which are used to describe the controller design.

y
output channel of the system (this value we want to control)

u
input channel of the controlled system (also output of the controller)


unmeasurable disturbance (describes the influence of unmeasurable values)

v
measurable disturbance

q
difference between values of output channel which we measure out and the real signal (to omit this value means to consider exact measurement instruments)

w
demand of the user

yc
controlled output 

ya
auxiliary output ( y'=( yc', ya') )

y0 
reference value of y; the part corresponding to yc is called command signal (if time-varying) or set-point (if time-invariant)

u0 
reference value of input

yx' = (y', u0', y0', v') 
extended output 

d' = (u', yx') = (u', yc', ya' , u0', y0', v') 
data item

1.2 Time conventions

Ts
sampling period; input is generated at time points t Ts + T0 for some T0 and t = 1, 2, 3. .. (t is called discrete time) 

Tc 
the time needed to compute a particular value of u 
x(t) 
a variable related to, i.e. measured within or computed for, the t-th time interval 
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x(t | τ) 
a variable computed for the t-th interval using information available before the time point 
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x(t .. τ) 
= (x(t), x(t + 1), ..., x(τ)) for 
τ > t
= x(t)
τ = t
= empty list
τ < t

1.3 Probability

p(a(t) | t –1; b(s)) … conditional probability function, abbreviated as c.p.f. (discrete case), or conditional probability density function c.p.d.f. (continuous case) of the random variable a(t) conditioned on d(1 ... t – 1) and on another item b(s); conditional probability reduces to the unconditional one when the list in condition part is empty 

[a(t) | t –1; b(s)] = ∫ a(t) p(a(t) | t –1; b(s)) da(t) … expected value of random variable conditioned on d(1 ... t – 1) and b(s) 

1.4 Example: electrical oven

Following example describes these variables better:
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Figure 3: Closed loop, signal description

Example: Let’s consider electrical oven as the system. Temperature in some specific place inside the oven is the output value y(t) which we want to control. The temperature depends on the input electrical current and on the outside temperature. So the current is the input u(t) which is also output of the controller. In case we don’t scale the outside temperature, we use it as the unmeasurable disturbance ε(t). There is one more quantity that influence the input supply, it is input voltage. We don’t scale it but we can intend it very well and than we use this estimation to compensate the disturbance caused by it. We call this disturbance measurable and it is presented by the signal v(t) on the scheme. User’s demanded temperature in the oven is presented by signal w(t).

2. Linear quadratic controller design

For the purpose of design of the controller we need these three things:

· to choose a model of the system

· to compose a criterion

· to choose an appropriate optimisation procedure

We consider discrete time, which is limited only on the knowledge of the signals in the sampling instants. The choice of the sampling period is very important because it influences also the choice of the model of the system. 

2.1 Data sampling

Measured variables have to be usually sampled. In most cases, the sampling, as well as system input computation, is periodic. It is the most simple (from the implementation point of view) and it mostly gives sufficient control quality. The input u(t) is fed into the system at the time instant  T0 + tTs , where t = 1, 2, 3 ... is a discrete time, T0 relates discrete time to real time and  Ts  is a sampling period. Naturally, Ts has to be greater than the period Tc necessary to compute the particular u. The latest quantities which are available for computation of u(t), and not available for u(t+1) sampled in the range 
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Time indexing convention is described in the Figure 4.

[image: image6.png]
Figure 4: Sampling and time relations

2.2 Model of the system

In many cases the properties (transmission properties) of the system are not known or they are known only partially or the real system is so complicated that we have to use some suitable approximation for the design. For a purpose of the design we use a model instead of the real system. Model structure and values of its parameters we determine from

· information about the system (prior knowledge) 

· data measured on the system during experiments. 

There are two questions arising before using the controller: its adaptability and robustness. The adaptability means the ability of the controller to compensate disturbances and changes of the features of the system. The robustness is the ability to guarantee sufficient quality of the regulation process even in case of extensive difference between the model and the system. 

However both of these problems are usually understood antagonistically, from the practical point of view, it is necessary to consider them parallel. The modelling of the controlled process is everytime limited by complexity of the model and ability to obtain the information about the model parameters from measured data. The better model accordance with the real system induces better adaptability. Otherwise the robustness will be decisive for the controller. It is evident that, if the adaptability dominates, we obtain better regulation process.

The important role in the adaptability plays the identification of the system – process of recognising properties of the system from the data which is commonly denoted as random process. In the adaptive case of control we must joint the system identification and the synthesis of the control laws. 

Generally, there are two kinds of the system description. The first is convenient in case of known inner state of the system. We can write it in the linear form

(1)
x(k) = F x(k–1) + G u(k–1)

y(k) = C x(k) + D u(k)

where x(k), u(k) and y(k) are vectors of states, input and output channels and matrices F, G, C, D are state, input, output matrix and the matrix of the direct relation between input and output. We will discuss the control synthesis for this case later in chapter 5.

The second possibility is the transfer function of the system. We use it in case when the state is not known or its gain is technologically difficult or expensive. It is also handy for the non-linear systems.

(2)
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Where  b0r , ... , b01  and  a0s , ... , a01  are zeros and poles of the system.

2.3 Choice of the criterion

One possible way to design the controller is to minimise so-called linear quadratic (LQ) criterion. This criterion is composed of quadratic forms x' (k)Qk x(k), where x(k) is a list of penalised quantities sampled or counted at time k and Qk is penalisation matrix. The list of quantities is gradually updated in every step of the minimisation. We suppose the positive semidefinite penalisation matrix. The numerical choice of penalisation matrix Qk expresses user's preferential ordering among closed loop behaviour.
2.4 Control strategies

A particular control strategy is described by the mapping

(3)
L  :  t, d(1 .. t – 1)  →  u(t)
[image: image8.wmf]Î

U(t | t – 1), t = 1, 2, ..., N ,

where  U(t | t – 1)  is defined by the equation (8). Introducing common symbol ω for all unmeasured influences and unknown factors, the value of data is uniquely determined by L(·) and ω, i.e. d(1..N) = d(1..N, ω, L(·)). The set of all possible ω will be denoted by ω. Then

(4)
J(1, N) = J(d(1..N, ω, L(·))) = j(ω, L(·))

The function j(·) in (4) exemplifies dependency of the loss on ω which collects all stochastic constituents related to the system.

We shall define the following partial ordering among the admissible strategies: The strategy L1(·) dominates the strategy L2(·) if

(5)
j(ω, L1) ≤ j(ω, L2)   for every   
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and there exists some 
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 for which this inequality is strict. Even it there is a lot of strategies for which no such relation is valid on  ω , the ordering clearly indicates dominated strategies are to be excluded by any reasonable design method.

The non–dominated strategies can be characterised by the following optimisation procedure. Let  p(ω)  be any positive function on  ω  and let

(6)
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Such an  L*(·)  can be directly verified (by contradiction) not to be dominated. Returning from  ω  to  d(1 ..N), the functional reduces, up to a normalising factor, to expected value. Thus the strategy minimising the criterion

(7)
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for any (!) positive p(d(1 .. N)) is not dominated. This criterion makes all strategies a priori comparable. However, this prior ordering depends heavily on the weight p(·) chosen. To obtain a strategy near the “ideal” one that minimises the loss, the weight should reflect the degree at which different possible outcomes are expected to occur. 

Notes. 

(i) The lesser is the uncertainty about possible ω, the greater is the chance to choose a proper p(ω) and consequently a proper strategy. 

(ii) The function p(ω) in (6) has to be strategy–independent to guarantee that the dominated strategies be removed. 

(iii) Limitations given by safety technology, economy etc. specify admissible action range. Numerical values of u(t) have to belong to some prespecified set U(t | t – 1). For a wide class of problems the sets U(t | t – 1) take the form

(8)
U(t | t – 1) = {u : ul(t | t – 1) ≤ u ≤ uu(t | t – 1)}

where the lower and upper bounds ul, uu are given functions of information available up to and including time t – 1. A typical example is the restriction on the speed of the input changes, when for the given vector δu and sampling period Ts

– δu ≤ (u(t) – u(t – 1)) / Ts ≤ δu ,  i.e.

ul(t | t – 1) = u(t – 1) – δuTs ,   uu(t | t – 1) = u(t – 1) + δuTs.

3. Minimisation of LQ criterion

3.1 Quantification of the desired closed loop behaviour

An algorithmic control design requires to quantify user's idea of the desired closed-loop behaviour. The most direct way, in terms of measurable signals, will be chosen here. Within a planning period determined by some horizon N, the “ideal” input-output values u0(1 .. N), y0(1 .. N) are specified by the user. Then he has to assign to any possible  u(1 .. N), y(1 .. N)  a scalar loss J(1 .. N) measuring the distance of these signals from the ideal values. The input-output behaviour is to be felt the better the lesser is the corresponding loss. As usual, the differences between actual and reference values of input and output are introduced and the distance of such a global error vector eg from zero is measured. The introduced output difference

(9)
ey(t) = y(t) – y0(t)   t = 1, 2, 3, ... , N , 
is called control error and the input difference 

(10)
eu(t)= u(t) – u0(t)   t = 1,2,3, ... , N , 

control effort. The following arrangement is advantageous for algorithmisation

(11)
eg' = (ey' (N), eu' (N), ... , ey' (1), eu' (1)). 
A sensible loss function J(·), defined by assigning to any eg the loss J(1,N) = 
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(d(1 .. N)) has to achieve its minimum for eg = 0. Any sufficiently smooth loss function J(·) can be approximated (near this minimum) by a quadratic form

(12)
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with a positive semidefinite kernel (penalisation matrix) 
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In spite of the fact that the approximation (12) is local in nature, telling nothing about the true loss function when some entry of eg is very large, we shall restrict ourselves to quadratic loss functions. The decisive reason for this is an acceptable complexity of the resulting adaptive controller. The same reason leads us to assume only block diagonal quadratic forms with the kernel

(13)
Qg = block-diag [Qy(N), Qu(N), ... , Qy(1), Qu(1)] . 
This is not too restrictive assumption because any 
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 ≥ 0 can be dominated by a block-diagonal Qg in the sense

(14)
eg'
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eg ≤ eg'Qg eg  (abbreviated as 
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For suboptimal control strategies presented later, it is useful to scale the data in such a way that the blocks in Qg (14) are time-invariant except of a few initial entries, i.e. the most general assumed form of Qg will be

(15)
Qg = block-diag [Qy + Qsy, Qu, + Qsu, ... , Qy, Qu] 

where penalties Qsy(Qsu) are added to  Qy(Qu)  at most  ly(lu + tu)  times. Integers ly(lu + tu) are fixed even for horizon N growing to infinity. Additional penalties Qsy, Qsu reflect the requirement for closed loop stability (see 4.3). The quadratic loss (12) with the kernel (15) can be rewritten in the more usual form

(16)
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with the stabilising part

(17)
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and partial quadratic losses

(18) 
qy(t) = ey'(t) Qy ey(t) , qu(t) = eu'(t) Qu eu(t) , 

qsy(t) = ey'(t) Qsy ey(t) , qsu(t) = eu'(t) Qsu eu(t) .
The multi-stage quadratic loss (16), (17) which has been related to sufficiently smooth loss is used in our adaptive controller and its characteristics form fundamental user's “adjustment knobs”.

3.2 Horizon length

Controlled systems are usually dynamic, the current input influences the whole future behaviour of the system. Therefore the activity of the controller has to be planned, its strategy has to optimise a multistage criterion.

The following example demonstrates what happens when dynamic character of the controlled system is neglected. The class of first order systems will be examined described by 


y(t) = 0.9 y(t – 1) + b0 u(t) + b1 u(t – 1) + e(t)

where {e(t)} is a sequence of unmeasurable disturbances for which 
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The values b0, b1 are chosen so that the static gain of the system is equal to unity and different systems are distinguished by the value λ. = – b1 / b0,. Notice that this parameterisation (by the system zero) makes sense for λ ≠ 1. The stationary values of 


Jx(1, N) = (1/N) 
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can be seen in the Figure 6 for 

· the optimal strategy minimising  Jy(1, ∞) + 0.5 Jx(l, ∞),

· the one-stage-ahead strategy (still often recommended in current literature) minimising separately  Jy(t, t) + 0.5 Jx(t, t)  for each t = 1, 2, 3, ..., (i.e. the strategy with receding planning interval, cf. Figure 5, reduced to one stage only).



Figure 5: Planning horizon

Results presented in the Figure 6 illustrate generally valid observations concerning one-stage-ahead and related strategies.



Figure 6: One stage ahead and optimal strategy.

For the given loss function stabilisable systems always exist for which closed loop is unstable. Typically, when inputs are not penalised, every non-minimum phase system (having an unstable zero) controlled by one-stage-ahead strategy becomes unstable. Non-zero input penalty makes the set of unstabilised systems smaller but does not make it empty (in the our case, this set is given by 
[image: image26.wmf])
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3.3 Stabilising term

The whole control loop is required to be stable: each of the signals in the closed loop has to be bounded. The role of Qsy and Qsu is to reflect this requirement, positively penalising any directly or indirectly manipulated variable which is not penalised by Qy and Qu (ya and unpenalised inputs).

For a small (finite) horizon, the rules of preceding paragraphs apply to choosing numerical values of Qsy, Qsu. For a large (infinite) horizon particular values of Qsy, Qsu are not theoretically important: when the chosen strategy keeps bounded ya and inputs unpenalised by Qu, the stabilising term falls to zero because of finiteness of  ly, lu + tu  (the factor 1/N goes to zero). In the opposite case unstable modes grow so quickly that the mere positivity of penalties is sufficient for detecting instability.

This informal discussion demonstrates that the strategy minimising the assumed loss (for N → ∞) stabilises the closed loop. Rigorous proof of this fact is given in [2] where it is also shown that  ly, lu + tu  (related to the structure of regression model) are generically smallest possible integers to guarantee stability. Stabilising property of the optimal strategy is guaranteed for N → ∞ only. Available computing time forces us to use finite N. The value of N for which the closed loop stability is achieved depends on the controlled system. The stability is guaranteed the sooner the higher numerical values of penalties Qsy, Qsu are.
4. Methods derived from the state-space description

The standard method how to minimise the quadratic criterion (LQ control) is based on the state-space description of the system. The state-space description lets us apply the dynamic programming ([2], [6]) and make the minimisation of the criterion from the end to the start of the interval. The gradual minimisation leads, in case of the linear state-space model, to evolution of a quadratic form matrix. The evolution can be expressed by so-called (discrete) Riccati equation.

4.1 Standard formulation

The problem of the linear quadratic control is usually presented in the following form:

The system is described by the discrete state-space model: (1).

The main goal is to find a sequence of control laws Li which minimise the criterion

(19)
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It also means that the control law sequence optimises the progression of the specific state x(0) to the zero-state. Let’s assume the following matrix constrains Qx ≥ 0, Qu > 0. 

4.2 Solving the Riccati equation

The Riccati equation, to which the minimisation leads, has this form:

(20)
Si = F'Si–1 F – F'Si–1 G(G'Si–1 G + Qu)–1G'Si–1 F + Qx. ,

where the index  i  is an iteration index,  i 
[image: image29.wmf]Î

[1, N], and  S0 = 0. The matrix sequence Si defines the control law sequence

(21)
Li = (G'Si–1 G + Qu)–1G'Si–1 F
These control laws are applied in reverse order


LN, LN–1, ..., L2, L1.

The final form of the criterion in the assumed interval [1, N] is 
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The Riccati equation (20) can be rewritten, using (21) to the following forms:

(22)
Si = F'Si–1 (F  – G Li) + Qx.
(23)
Si = (F  – G Li)' Si–1 (F  – G Li) + Qx + Li' Qu Li
Extraordinary important in the control theory is the case when N → ∞. Actually, the LQ control is mostly presented as in this special case. The importance of this case is in the fact that the infinite–horizon minimisation leads to a stationary control law L∞ which is time independent and mostly stabilising. The conditions, when this law is stabilising, relate to the stabilisability of [F, G] and observability of [F, Qx½]. Let’s note that if the Riccati equation has more solutions, it is necessary to choose a symmetric positive-definite one with the maximal rank.

This stationary solution has many interesting aspects which are more discussed in [3]. The most important one is the stabilisability of the system, for which the law was designed, and moreover for a class of similar systems. This “class of similarity” is described more exactly as a range around the nominal amplitude and phase characteristics. We can say that this solution is robust in its stability. The problem is that this solution demands availability of the inner state of the system.

The state availability is in technological processes rare. Hence, in LQ case, we formulate the optimal control to be based on the availability of the system output. The qualities of this control can strongly differ from the state-space control. When the state is not available, the guaranty of the robustness and other features disappears. 

Without the direct knowledge of the state we have to restore it from delayed inputs and outputs. Note: It is not a measurable state although it consists of all measurable signals. We need to touch the delayed values and, moreover, to update the list of them in every period. So-called shift register is a convenient solution of this cyclic storage. The delayed values create so-called observer


x (k – 1) = [u (k – 1), u (k – 2), ... , u (k – n), y (k – 1), y (k – 2), ... , y (k – n)].
In this case, the regressor of the used model is composed of the instant input and the state vector


x (k) = [u (k), x (k – 1)].
The detail description of the minimisation can be found in [2]. The computed stationary control law contains coefficients of controller’s polynomials  R, S. So there is one question arising: is it necessary to use the state-space formulation of the LQ problem when we start from and return to the transfer function description It is not necessary, but it allows some conveniences: 

· The state-space formulation enables to design and realise a tentative strategy (in the adaptive case).

· The state-space formulation enables to formulate strategy which has data-independent, varying penalisation.

· The alternative possibility – the polynomial formulation – enables a solution only for the infinite horizon. In the adaptive case, it is advisable to have an impression of the stationary solution as a limit of finite horizon criterion, especially when computation speed does not allow to compute the stationary solution.

Note: We can leave the state-space formulation. It is possible to minimise a criterion which uses a list of variables which contribute to the loss. This list is gradually actualised in every period. However, the actualisation can be more difficult than the actualisation of the state. Then we can work with models whose structures vary during the horizon, or use an unsynchronised sampling frequency for some variables. 

5. Main properties of LQ controller

5.1 User’s wishes

In the previous text, we have met the basic attributes of controller designed by minimisation of quadratic criterion. We know that we must choose the criterion, then penalisations of these quantities which we subsume into the criterion, and furthermore appoint the model which describes the behaviour of the system. The model can be presented by transfer functions of the system, disturbance and occasionally transmissions of auxiliary measured variables. 

If we pass these two steps we will use the computer. It will generate an appropriate control law. Now nothing remains but to apply the law and watch the obtained control process. To improve the control process we can tune the model parameters and the penalisations.

The convenience of LQ controller is its optimality depended on the chosen criterion, naturally, just from the mathematical point of view. Even in the ideal constellation (the model and the system are consistent and linear), the processes have not to be “user-optimal”. The better regulation process mostly involves input signal which is energetically more demanding. It has grater amplitude and contains higher frequencies, that might be unacceptable for the user. The user expresses the compromise between quality and requirements on the input signal by the value of input penalisation (more exactly by the ratio Qu/Qy). This value becomes basic tuning element. 

5.2 Tuning of the criterion

Another tuning instrument is, beside sampling period and penalisation of inputs, penalisation of increments of input Q∆u (∆u(t) = u(t) – u(t–1)). Practical experience shows that it is not satisfactory for all variable processes. It is not possible to set demanded response without overshoots only by penalisation Qu. In examples in [5] can be seen that is necessary to extend the criterion also by element 


(y (t) – y (t–1))' Q∆y (y (t) – y (t–1)).

With a convenient choice of  Q∆y , is possible to reach non-oscillating step-response of the system. 

It is susceptible to remind that the classical state-space formulation of LQ controller, described in chapter 5, enables to reach an arbitrary placement of closed-loop poles, naturally with granting of the conditions of controllability. The formulation based on input-output model could imply that we have lost this quality. In case of input-output penalisation, the roots of closed-loop lie on a specific one-parameter curve, which is parameterised by rate Qu/Qy. A choice of the roots of this set has not to present the requisite behaviour of the loop. However it is very simple to fix it. 

5.2.1 Generalised penalisation

A pseudo-state solution of minimisation of the quadratic criterion enables to generalise a basic penalisation to a common penalisation of the pseudo-state. In the previous text, the penalisation of the input and output was realised by the penalisation matrix
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whereas on its place we can also imagine a more common matrix.
To find a common matrix which would lead to the required correction of the regulation process is very difficult. More convenient is to realise the matrix as a sum of several penalisations with more simple matrix. We also use the convenience to express every square symmetric matrix as a sum of matrices with rank 1. These matrices accrued from a product of a vector and its transposition. Thus one element of the penalisation has the following form


Qi = i fi' fi
where  i  is a weight of this penalisation and  fi  is a vector. Thus one element of the criterion has this form


z(k)' fi'i fi z(k)  resp.  z(k)' Qi z(k)

It is possible to choose such vectors  fi  which have non-zero elements only where there are inputs and outputs in the vector z(k). We can define 
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Now we can understand this kind of penalisation as a penalisation of filtered quantities where the filter has character of so-called FIR filter. The criterion does not have to contain only one kind of the filtration. We can use any linear combination of these filters without any problem. Let’s consider z(k) is our pseudo-state composed of delayed inputs and outputs. Than we can use criterion
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The design of the elementary filters seems to be more simple than the choice of whole matrix. In some examples in [5], we can see how the penalisation of the output increments influences the oscillation of the response. 

The choice of the matrix is shown in the following example:

Example: We use a simple filter f(z) = [1 – z–1]; thus we derive the vector f1 = [0 ... 0 1 –1 ... 0]. The final matrix of the criterion has the following form.
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Qu, Qy and  Q∆y  are parameters for the criterion modification. The implementation of this modification can be seen in function lqexuni.m in the Matlab LQ-toolbox. 

5.2.2 Open-loop transmission correction 

Previous dynamic penalisations extend the space to tune the regulation process, nevertheless it does not guarantee satisfaction of any need. The typical example is the requirement of permanent zero aberrance of the controller on a step of the controlled value. One method how to reach the correction is to add an integration factor to the open-loop. This method can be taken more generally. We can append any transfer function to the open-loop. The synthesis of the controller is done for the new system composed of the original system and joined transmission. In case we append the integration factor, we follow these steps:

1. Before the optimisation, we create a new denominator of the system
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(in Matlab: a=conv([1 -1],a);)

By this step, we express the appending of the integrator to the system.

2. After the optimisation, we similarly extend the denominator polynom of the controller. Only this step really adds the integrator to the system.
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Figure 7: Series connection of the integration factor

In case we append a common transmission, it is also necessary to adjust the numerator of the system and consequently the numerator of the controller
.

5.3 Stability

The primary question is the stability of the regulation process. If we obtain a non-stable behaviour, we would not have to study the other properties. The classical kind of controllers respects the demand of stability and the design is often derived from it. A very important factor here is the gain of the open-loop and its gain of various frequencies (frequency characteristics). However, the problem to guarantee the stability of LQ controller is very different. The convenience of the LQ design is, to some extent, a subsumption of the demand into the design. The “to some extent” means that the stability is ensured only in case of exact congruency between the used model and the reality. This will be discussed in 6.4.

The minimisation of the quadratic criterion leads to a solution of the Riccati equation (20). It can be seen that we can study the stability on features of the solution. Naturally, the stability is guaranteed only in case of infinite horizon N → ∞, when the solution is described by so-called Algebraic Riccati Equation (ARE)

(24)
S = F'SF – F'SG(G'SG + Qu)–1G'SF + Qx.

Lemma: Let's consider (24) which corresponds to the minimisation of the quadratic criterion with N → ∞, where

· [F, G] is stabilisable,

· [F, Qx1/2] has not any indistinguishable mode on unitary circle

· Qx ≥ 0, Qu > 0

then

· there exists unique, maximal, non-negative definite symmetrical solution 
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· 
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 is the only one stabilising solution and the closed-loop matrix  F – G(G' 
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G + Qu)–1G' 
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F  has its eigenvalues inside the unite circle.

In case of finite horizon, we can simply solve the problem of stability by its devolution to the case of the infinite horizon by the following trick. 

Let’s consider SN, as a the solution of Riccati equation with finite horizon N. This solution is also a solution of ARE (24) for some specific penalisation 
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Q

. We can write

(25)
SN = F'SN F – F'SN G(G'SN G + Qu)–1G'SN F + 
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Q

.

where 
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Q

 = Qx – (SN+1 – SN). The equation (25) is called Fake Algebraic Riccati Equation (FARE).

The stability of the finite criterion minimisation solves the following lemma.

Lemma: We consider (25), which defines the  
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. If 
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 ≥ 0, Qu > 0, [F, G] is stabilisable, [F, Qx1/2] is observable, then SN is stabilising and matrix  F – G(G' SN G + Qu)–1G' SN F  has its eigenvalues inside the unite circle.

From the definition of 
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 is known that if the sequence SN  is descending, the stability condition will be solved, because (SN+1 – SN) will be negative semi-definite. 

The relationship between the stability and monotony of the Riccati equation is very strong. Base on this, we can formulate the conditions which guarantee that the solution of the Riccati equation is stabilising starting from an iteration k < N. Some of the conclusions can be found in [5].

To guarantee the LQ controller stability, it is necessary:

· in case of one-shot calculation, to choose a sufficient length of the horizon and eventually check some of the appropriate stability conditions.

· in the adaptive case, to use the IST strategy. We can asymptotically reach the infinite horizon when using it.

5.4 Robustness

The robustness is a necessary attribute for practical usage of any controller. The reason is very simple. We cannot guarantee an absolute accordance of the assumed model with the real system in practice, however, it is presented in controller designs. The methods how to design so-called robust controller are known. They produce such adjustment of the controller which causes some amount of quality for a set of systems. These systems differ in frequency characteristic about a defined distance from the assumed system. The reached quality is, however, poor. We fix the insufficient knowledge of the system by the adaptability. Nevertheless, we have to watch the features influencing the robustness because the adaptation realised by parameter identification does not guarantee the absolute accordance.

For the expertise of the robustness, we use the test with stability of the closed-loop when the controller works with a different system than the one for which it was designed. The extent of the admissible changes, which still does not disturb the stability, can be determined from the lowest distance between the frequency characteristic curve and point [-1, 0]. 

The quality and stability is, in the case of system and model inaccordance, determined by an accordance of the frequency characteristics in the higher frequencies. The robustness is also influenced by the penalisation Qu (directly and through the controller denominator R). Finally, the frequency characteristic curve is also influenced by the sampling period Ts. 

6. Practical aspects of the finite computation speed

The control strategy is evaluated on a computer with finite computational speed and finite memory within finite sampling period. Application of LQ synthesis in an adaptive controller has some specific aspects. It is due to a repetition of the synthesis of the controller caused by continual changing of the parameters. More generally, in one sampling period, there runs an actualisation of parameter estimation. The limitation of the computation speed plays important role here. The speed depends on the sampling period and computation speed of the computer and, on the other hand, on the complexity of the calculations. For the adaptive control, it is effective to use such an algorithm which needs a constant and, if possible, short time. It is not possible to ensure that the optimal control strategy was computed in one period. This is caused by infinite horizon of the optimal strategy computation, which is an iteration process depending on many factors. It is necessary to choose one of the following cases.

1. In every period we minimise the criterion with finite horizon. The length of the horizon must correspond with the limited time. We can append this procedure with a test of convergence speed and, in case there is only slow advance, we can terminate the iterations. If we choose only short horizon, the initial conditions will play an important role for the stability and also the quality of the closed-loop. This strategy in which the finite horizon is moving is called “sliding horizon strategy”.

2. If we want to reach the control correspondent to the infinite horizon, it is necessary to spread the iterations in time. It means to realise only a fixed number of the iterations. It is important that we start the iterations from the last reached state, not from the initial conditions. This method improves the minimisation in every period by elongating of the horizon by the fixed number of steps. After some time the steady control law is nearly reached. This works only if we use the same parameters of the model in every period. Unfortunately it is not satisfied in the adaptive case. However, with changing parameters, we cannot say anything about the control law, the experience shows us that this strategy, called Iteration spread in time (IST), proves itself also in case of only one iteration in the period (it is the shortest possible time of calculation). 

The strategy IST brings one more positive effect. It is one-step (or “few-steps”) nevertheless stabilising strategy. In case of the one-step strategy, it is possible to assign a future values of input and output and to compare it with the user’s requirements and constrains and to modify the penalisation instantly to solve the constrains. This algorithm is called Modified iteration spread in time (MIST).

7. Connection of the controller to the regulation loop

The synthesis of the controller is a sufficiently reliable process. It represents a deterministic transformation of the model parameters into the parameters of the controller. This transformation is based on the chosen criterion. The only one undecided quantity is the length of the horizon, which leads to a stabilising control. 

The reasons, why the adaptive controller could fail, are:

· the chosen model structure is wrong

· the identification gives parameters, which do not fit well the controlled process, then because of the insufficient robustness, we obtain an unacceptable behaviour.

The adaptive controller is usually activated in an instant when the system is controlled either by some other type of controller or manually. At the switch time, it is necessary to ensure conditions without shocks. It gives the possibility to fill in the registers by the right values of the chosen signals. It is possible to let the controller to observe the signals for a time period. It can identify the system and also process the synthesis, but its result is not used. In a moment, when the process is as quiet as possible, the system input is connected to the output of the controller. We can split all the possible results into the three categories.

1. The response is acceptable. Then it is all right and we can only tune it up by a revision of the penalisations.

2. The switch causes a big unwanted increase of the signals, but the process gradually calms down. Finally, the regulation process turns out well. This is a typical reaction on a wrong initial parameter estimation. This can be fixed by using the better estimations (for example obtained from a previous running which was successful, from extended identification experiment, or from available prior knowledge. The fact that the process has settled down and works well indicates that the model structure is adequate and the identification leads to the parameter estimations which represents well the system.

3. The worst situation arises when the regulation is so bad that it is necessary to disconnect the controller from the loop. It should be caused by some of these reasons.

· the wrong model structure (low order), unsusceptible to represent the real process,

· the identification process gives a shifted parameter estimations,

· the chosen criterion leads to a controller which is not robust enough, 

· the process includes such non-linearity which the model cannot represent.

When this happens, we try to increase the model order. It causes an expansion of the space for criterion modification. Thus the minimisation produces a more robust controller. The examples in [5] show how the increasing of the penalisation Qu and elongation of the sampling period improve the robustness. It is unfortunately accompanied by decreasing of the reached quality. The non-linearities in the process usually cause the impossibility to get more exact linear model.

The tuning process is not a one-shot task. Usually, it is necessary to repeat the whole cycle of connecting few times. 



Figure 8: Gradual switch to the adaptive controller

The Figure 8 shows the responds of the system while switching from a standard to an adaptive controller, using one continuous parameter. 

8. Implementation of the LQ controller

When we compare the standard and adaptive controllers, we find out that there are much more, and more difficult problems with the adaptives. On the other hand, as the result, we can obtain better control quality. There is a new possibility to satisfy some specific technological needs, for example a quick response to a step with a small (or none) overshoot. 

Hence, it is logical to try to implement the LQ control only when the standard controllers (however well set) do not give a requisite control quality. No controller can accelerate the response on a step when the system input is saturated for a long time. We also cannot expect that the continuos identification gives a good model for the optimal control synthesis when the measured data contains much noise or drifts. Here, the reason is in the disturbance. It is necessary to compensate its influence.

If we choose to implement the LQ controller, we have to make these decisions in advance:

1. to decide which model (a structure and an order) will be used.
It means to determine, beside inputs and outputs, also some other measured quantities and to determine how many delayed values we subsume into the regressor (the order of the model).

2. to choose the forgetting factor, accordingly to the character of the parameter variance

3. to verify whether the conditions of independence of the regression model parameters estimation are satisfied

4. it is necessary to decide whether we add the integration factor to the regulation loop

5. to generate the initial conditions for the continuos identification by building the prior knowledge in.

The calculation and tuning process can be quicken by a computer program which helps us to find out the problems before the application of the controller and which includes tools to fix them.

One of these instruments is system ABET [1], the Matlab toolbox. It provides the following operations:

1. collecting and filtering the data measured on the process,

2. determining the model structure, based on the data and the possibility to enter the prior knowledge in varying forms,

3. the parameter identification based on the measured data; 
It is possible to choose a form and magnitude of forgetting. The reliability of the computed parameters, and hence also the reliability of the whole model, can be estimated from the obtained covariance matrix.

4. the controller design and verification (simulation).

9. ABET98

The Adaptive Bayesian Estimation Toolbox ABET98 for MATLAB contains a selection of techniques primarily related to off-line design of adaptive controllers, but its functions are not limited to the task. The design of adaptive controllers covers the following steps:

· data preprocessing

· control period estimation

· model structure estimation

· prior knowledge processing

· forgetting estimation

· parameter estimation

· control design

· control loop performance estimation

· controller code generation

· control verification

For each processing step a MATLAB function exist. 

9.1 Controlled systems

The signals are recorded and enter ABET98 processing as a MATLAB matrix referred to as signals. The signal recorded on a channel is stored as the i-th row of the matrix; the number i is referred to a channel. The signals are usually recorded with the same sampling frequency, but this is not a rule (this toolbox has also functions for data handling).

By signal description we refer to a character string expressing that corresponding signal is:

‘o’
output channel

‘i’
input channel

Example: possible signal description for single input, single output system (SISO) and multiple input, multiple output (MIMO) system:

des = ’oi’;
% SISO

des = ’oioi’;
% MIMO - 2 input, 2 output channels

9.2 Models

A model is description of relationships between inputs and outputs. ABET98 works with autoregressive model with exogenous variables (ARX), Markov and multiple ARX models. 

9.2.1 General description

They refer to SO models - the case of MO models is handled as a set of models for individual outputs.

The description that model provides is a pdf of an output at the time t conditioned by delayed (older) inputs and outputs and the current inputs at time t. The pdf is parameterised by unknown model parameters.

In ABET98 the model is understood as a structure with fields described below. A model can be used for different purposes

initial model
model before parameter estimation is done;

prior model
model that comprises a processed prior knowledge;

identified model
model obtained by parameter estimation

default model 
default initial model used by functions

The model fields are:

output channel ychn
says which output is described by the model;

model structure str
specifies which delayed outputs and inputs enters the model;

The model structure (in SISO case) we fill as matrix with two rows, where in the first row are numbers of channels referring to a model channel description des. In the second row are delays of these channels how are they used in regressor. A little bit more complicated situation is in case of model with offset. 

Example: the model structure used in following experiments:

str = [1 1  2 2; 1 2  0 1];        %SISO case
str = [1 1  2 2  0; 1 2  0 1  1];  %SISO with offset
9.2.2 ARX model

The most elaborated model used for identification and control is an autoregression with exogenous (external) variables (ARX). The model definition is outlined in section and found in standard textbooks. 

The ARX model with output y and input u can be 


yt = a(1)*yt-1 + a(2)*yt-2 + b(0)*ut-td + b(1)*ut-td-1 + o + et
where:

a, b
are model coefficients

yt-1, yt-2, ut, ut-1
are inputs and outputs delayed with respect to the time t

o
is model offset

td
is transport delay

et
is the output noise with normal pdf, 0 mean, variance 2 (N(0, 2))

The model parameters are the model coefficients and .

10. Experimental verification of ABET98

10.1 System used for testing

The system used for testing has following parameters.


Bs = 
0 
-1.0882e+00s3 
8.1473e+01s2 
-3.3780e+03s 
5.8647e+04 

As = 
1.0000e+00s4 
2.2388e+00s3 
9.4188e+02s2 
5.9897e+02s 
5.4517e+04 

in the continues form and transformed to the discrete form:


B = 
0 
0 
0 
1.0280e-01z 
1.8120e-01 

A = 
1.0000e+00z4 
-1.9919e+00z3 
2.2026e+00z2 
-1.8408e+00z 
8.9410e-01 

with the sampling period  Ts=.05s .

The system features are demonstrated here. First the BODE plot of the system shows its frequency characteristics in Figure 9. 

[image: image48.png]
Figure 9: Frequency characteristic of the system obtained by BODE plot
Then the step and impulse response obtained by the SIMULINK, Matlab extension.

Note: green line = output of the system, blue = input.


[image: image49.png]
Figure 10: Step response of the system obtained by SIMULINK 

 


[image: image50.png]
Figure 11: Impulse response of the system obtained by SIMULINK

10.2 Generated data

The data are generated also in the SIMULINK. For this purpose, we use the open-loop. We put a white noise generator (with a discrete transfer function model with denominator same as the denominator of the system) as the input channel of the system. The input and output vectors are stored in one matrix in a Matlab data file for the future use. The only thing, we can do is to play with the noise power in the noise generator. 
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Figure 12: SIMULINK scheme for the data generation

10.3 System noise

There are two noises used in ABET: system noise and measurement noise. The dependency of the control quality on the system noise is presented here. The system noise covy (in the newest version ssig) represents covariance of the system noise. covy is computed by module shum.m. It is based on the measured data. Let see following experiments which show how covy influences the control quality. In every experiment, there are 100 data items used for the identification. Prior knowledge is not used. 

All the experiment in this chapter have these features same:

   des    = 'oi';                       % signal description

   maxper = 3;                          % maximal prior control period

   maxstr = rgrord(des , 10);           % maximal prior model structure

% design constraints

   cons   = cellvect('u', [-1 0 1],'y',[-0.5 0 0.5],'du',[-.5 .5],'dy',[-0.1 .1] );

There are 6 data-files used for the experiments. They are generated by the SIMULINK scheme (see Figure 12) of open loop. The input signal is a white noise with noise power 1. 

In the following table shows filename, covy and Noise power from the scheme. 

Noise power
Filename
covy


0
data_p1_e_0.mat
1.4108·10-8


10-5
data_p1_e_5.mat
1.9772·10-4


10-4
data_p1_e_4.mat
0.0020


10-3
data_p1_e_3.mat
0.0198


10-2
data_p1_e_2.mat
0.1986


10-1
data_p1_e_1.mat
1.9956

Every file contains the data and corresponding covy.

All of the experiments are described by a plot of signals. The controlled output is the output channel of the closed-loop. The “uncontrolled” output is output of the open loop. This signal shows us how the controller can compensate the disturbances. 

– solid line, – – dashed line, – · – dash-dotted line
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File: 

data_p1_e_0.mat 

covy = 1.4108e-008

Results: 

Control period: 1

Structure estimation:

     1     1     1     1     2     2     2     2

     1     2     4     6     3     4     5     6

Parameter estimation:

0.5015  0.0422  0.2549  -0.6472  0.1032  0.3356  0.3457  0.1316

controller penalization: input: 1.00e-030 input increment: 1.00e-030

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -0.015      0.013

  means                     -0.000      0.000

  standard deviations        0.005      0.011

input  increments .....     -0.028      0.028

  means                      0.000      0.000

  standard deviations        0.009      0.022

outputs ...............     -0.001      0.001

  means                     -0.000      0.000

  standard deviations        0.001      0.001

output increments .....     -0.001      0.001

-------------------------------------

frg = 0.7625
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File: 

data_p1_e_5.mat 

covy = 1.980e-4

Results: 

Control period: 1

Structure estimation:

     1     1     1     1     1     2     2

     1     2     3     4     5     3     4

Parameter estimation:

1.9913  -2.2023  1.8412  -0.8939  -0.0011  0.1027  0.1814

controller penalization: input: 1.00e-030 input increment: 2.24e-004

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -0.187      0.188

  means                     -0.008      0.009

  standard deviations        0.063      0.130

input  increments .....     -0.327      0.318

  means                      0.000      0.000

  standard deviations        0.103      0.243

outputs ...............     -0.059      0.071

  means                     -0.014      0.019

  standard deviations        0.022      0.043

output increments .....     -0.038      0.038

-------------------------------------

frg = 0.7625
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Noise power 10-4
File: 

data_p1_e_4.mat 

covy = 0.002

Results: 

Control period: 1

Structure estimation:

     1     1     1     1     1     2     2

     1     2     3     4     5     3     4

Parameter estimation:

1.9905 -2.2024 1.8428 -0.8939 -0.0034 0.1015 0.1802

controller penalization: input: 2.22e-004 input increment: 2.47e-003

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -0.299      0.315

  means                     -0.020      0.029

  standard deviations        0.139      0.230

input  increments .....     -0.478      0.475

  means                      0.001      0.002

  standard deviations        0.185      0.395

outputs ...............     -0.186      0.227

  means                     -0.048      0.072

  standard deviations        0.070      0.143

output increments .....     -0.116      0.105

-------------------------------------

frg = 0.7625
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Noise power 10-3
File: 

data_p1_e_3.mat 

covy = 0.0198

Results: 

Control period: 1

Structure estimation:

     1     1     1     1     1     2     2

     1     2     3     4     5     3     4

Parameter estimation:

1.9906 -2.2091 1.8538 -0.8975 -0.0084 0.0973 0.1754

controller penalization: input: 1.90e-003 input increment: 1.07e-001

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -0.413      0.521

  means                     -0.048      0.117

  standard deviations        0.197      0.300

input  increments .....     -0.461      0.459

  means                      0.005      0.015

  standard deviations        0.209      0.314

outputs ...............     -0.543      0.816

  means                     -0.150      0.274

  standard deviations        0.218      0.437

output increments .....     -0.397      0.334

-------------------------------------

frg = 0.7625
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Note: see the step response output The controller needs about 20 steps to reach the requisite value. 

Noise power 10-2
File: 

data_p1_e_2.mat 

covy = 0.1986

Results: 

Control period: 1

Structure estimation:

     1     1     1     1     1     2     2

     1     2     3     4     5     3     4

Parameter estimation:

2.0140 -2.2749 1.9259 -0.9340 -0.0051 0.0810 0.1524 

controller penalization: input: 9.69e-001 input increment: 2.70e-001

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -0.804      1.121

  means                     -0.127      0.272

  standard deviations        0.317      0.583

input  increments .....     -0.573      0.563

  means                      0.055      0.134

  standard deviations        0.206      0.376

outputs ...............     -2.065      2.775

  means                     -0.412      0.655

  standard deviations        0.817      1.760

output increments .....     -1.431      1.276

-------------------------------------

frg = 0.7625
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Note: the controller does not compensate the disturbances well and completely fails in case of the change of the demanded value. The data with covy = 0.1986 are, for the design purpose, unusable. In the table in 11.3 we can see that the noise power is just 102 times smaller than the noise power of the input of the system. We can try to improve the process using the prior knowledge.

Wrong prior knowledge

The previous text implies that the prior knowledge influences the design result only when it wins through the data. Let us build in a wrong prior knowledge. We build a static gain 101. In the first example presents that the controlled system step response does not reach the demanded value. The second example gives us an advice how to fix it.

In both following examples we use 30 data items from file data_p1_e_4. We use also following prior conditions for the design:

des    = 'oi';                       % signal description

maxper = 3;                          % prior control period

maxstr = rgrord(des , 10);           % prior model structure

With penalisation of input

The wrong prior knowledge:

pri    = cellvect('gain',[100.0999 100.10]);  

Design constraints:

cons   = cellvect('u', [-1 0 1],'y',[-0.5 0 0.5],'du',[-.5 .5],'dy',[-0.5 .5] ); 

Results:

Control period: 1

Structure estimation:

     1     1     1     1     1     2     2     2

     1     2     3     4     5     3     4     5

Parameter estimation:

2.9839 -4.1822 4.0381 -2.7346 0.8947 0.1687 0.1301 -0.2942 

controller penalization: input: 7.40e-001 input increment: 3.14e-001

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -1.024      0.586

  means                     -0.746      0.286

  standard deviations        0.196      0.394

input  increments .....     -0.471      0.482

  means                      0.007      0.019

  standard deviations        0.086      0.390

outputs ...............     -1.398      1.421

  means                     -1.227      0.742

  standard deviations        0.257      0.634

output increments .....     -0.301      0.287

-------------------------------------

frg = 0.76252179017826
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Note: On the step response output we can see the steady-state aberrance of the demanded value. 

With penalisation of input

The wrong prior knowledge:

pri    = cellvect('gain',[100.0999 100.10]);  

Design constraints:

cons   = cellvect('u', [-100 0 100],'y',[-0.5 0 0.5],'du',[-.5 .5],'dy',[-0.5 .5] ); 

Results:

Control period: 1

Structure estimation:

     1     1     1     1     1     2     2     2

     1     2     3     4     5     3     4     5

Parameter estimation:

2.9839 -4.1822 4.0381 -2.7346 0.8947 0.1687 0.1301 -0.2942 

controller penalization: input: 1.00e-030 input increment: 7.40e-001

-------------------------------------

Close loop performance evaluation

-------------------------------------

 90 percent ranges of :

inputs ................     -0.846      0.608

  means                     -0.506      0.313

  standard deviations        0.191      0.392

input  increments .....     -0.482      0.494

  means                      0.008      0.023

  standard deviations        0.096      0.367

outputs ...............     -1.398      1.360

  means                     -1.250      0.769

  standard deviations        0.258      0.641

output increments .....     -0.310      0.287

-------------------------------------
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Note: On the plot of the step responds output we can see that the controller is able to reach the demanded value. It is caused by the input increments penalisation. This penalisation causes the same behaviour of the system as an integration factor on the closed-loop. It fixes the steady-state aberrance. There is a simple way how express this feature in the constrains: the range of the input is set huge. It really means no constrains on the input.

Conclusions

This work aimed the problem of automated LQ design. The theory was presented. Some of the basic principles was shown. The LQ design is convenient when our knowledge about the real system bounded. The design is based on the measured data analysis and the prior knowledge processing. From the practical point of view, the prior knowledge is very important. Every more piece of it is very helpful to identify the system. The better model can we produce, the better results we obtain. It is also important to compute the controller as well as it can be connected to the closed-loop without any big changes of the input and output signals. The design is also supposed to satisfy all the user’s wishes and constrains. Some of the features are shown in the experiment at the end. 
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Appendixes

Function test.m
Function test.m is used to all the experiments.

echo off;

% SISO control design

abetini; 

echo off;

% SISO control desing: design steps

   t0 = 200; % length of compensation

   t1 = t0 + 150;  % length of step + compensation together

% 1) inputs to design are specified

   filename='data_p1_e_4';

   load (filename);

   disp (sprintf('Filename: %s, covy=%f',filename,covy));

   data=data(:,1:28);

   KnownEth=[ 1.9919 -2.2026 1.8408 -0.8941...

        0  0  0  1.028e-1 1.812e-1];

echo on;

   des    = 'oi';                       % signal description

   maxper = 3;                          % prior control period

   maxstr = rgrord(des , 10);           % prior model structure

   priused=1;

   if (priused) 

      pri    = cellvect('gain',[10.0999 10.10]);  % prior knowledge

   end   

   % design constraints

   cons   = cellvect('u', [-1 0 1],'y',[-0.5 0 0.5],'du',[-.5 .5],'dy',[-0.5 .5] );

echo off;

   disp('Pres any key to continue ...');

pause

% 2) data are normalized

   [data_, pre] = datahand(data, des, cons);

% 3) control period is estimated, data sampled

   per = peride(data_,des,maxper,maxstr);

   disp  (sprintf('Control period: %i',per));

   if per>1

      holder     = cellvect('Hold', per);      % requirement to sample

      data_      = datahand(data_, holder); % sampled data

      pre        = cellvect(pre,holder);       % overall preprocessing

   end

% 4) prior knowledge is filtered and constrains are scaled

   if (priused)

     pri_    = scaleit(pri , des, 'pri',  pre); % prior knowledge

   end   

   cons_   = scaleit(cons, des, 'cons', pre); % design constraints

% 5) model structure is estimated

   if (priused) str    = eststr(data_, des , maxstr, pri_);

   else         str    = eststr(data_, des , maxstr);

   end   

   disp('Structure estimation:');disp (str);

% 6) model is estimated

   if (priused)

      Model = estmiso(data_, des, str, pri_);

   else       

      Model = estmiso(data_, des, str);

   end   

      Eth=getfield(Model, 'Eth');

   disp('Parameter estimation:');      

   disprow (Eth);

   disprow (KnownEth);

% 7) control is designed

   disp('Controller design:');      

   cfinal = cdesign(Model, des, cons_);

   dispreg(cfinal);

% 8) control loop performance is evalueated

   [perf] = requsat(Model, des, cfinal, pre);

   dispperf(perf);

% 9)  forgetting is estimated

% 9.1  prior model is build

   if (priused)

      Pri    = prior(des,str,pri_);  

      frg    = estfrg(data_, des, str, Pri, Model)

   else   

      frg    = estfrg(data_, des, str, Model)

   end   

%%% end of design %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 10) controller is build

   [des, str, ref] = encreg(Model,des,cfinal,frg,pre,0,Model);

% 11) controller verification

str  = [1 1 1 1 2 2 2 2 2; 1 2 3 4 0 1 2 3 4];

Eth  = KnownEth;

   uref = ref(1);          % reference values

   yref = ref(2);

   ychn = find(des=='o');  % output is ...

   uchn = find(des=='i');  % input is ...

   chns = [ychn uchn 3];   % setup

% the system:

   ssig  = covy;        % std of output

   msig = 0;            % std of measurement noise

   randn('seed', 123);  % fix random generator

% simulation system

Sys      = arxsys0(des,str,Eth,ssig,uref,yref,msig);

u        = uref;         % initial condition for input

setpoint = yref+[zeros(1,t0) ones(1,t1-t0)];

Y = [];  U = [];         % for signal recording

disp ('Wait. The closed loop works.');

for t=1:length(setpoint);

       [y, Sys]   = arxsys(Sys, u);       % generate output

       signal(chns) = [y u setpoint(t)];  % complete interface

       Y = [Y,y];   U = [U,u];            % record signal

       signal     = enccall(signal);      % controller

       u          = signal(uchn);         % get input

       if (mod (t, 10) == 0) fprintf('.');

       end;

end; 

fprintf('\n');

% control quality

   perfver = verres(Y-yref,U-uref);

   dispperf(perfver,'verification results');

echo off;

disp ('Wait. The uncontrolled output is evaluated');

% uncontrolled output

Sys      = arxsys0(des,str,Eth,ssig,uref,yref,msig);

yn = [];  % initial condition

randn('seed', 123);

for t=1:length(setpoint)

    [y, Sys] = arxsys(Sys, setpoint(t));     % generate output 

    yn = [yn,y];

    if (mod (t, 10) == 0) fprintf('.');

    end;

end;

fprintf('\n');

%%% display %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   y = Y(1:t0);u = U(1:t0);

   du = u(2:t0) - u(1:t0-1);

   dy = y(2:t0) - y(1:t0-1);

   clf; hold off

   subplot(4,1,1); plot(y); hold on; plot(setpoint(1:t0),'-.');hold on; plot(yn(1:t0),':'); 

   grid on;zoom on;

   xlabel('time');ylabel('output');

   title('disturbance compensation');

   subplot(4,1,2); plot(u);

   grid on;zoom on;

   xlabel('time');ylabel('input');

   figure(1);

%   ------------------

   t0=t0-10;

   y = Y(t0:t1); u = U(t0:t1);

   len = length(y);

   du =  [0, u(2:len) - u(1:len-1)];

   subplot(4,1,3); 

   plot(t0:t1,y); hold on; 

   plot(t0:t1,yn(t0:t1),'--'); hold on; 

   plot(t0:t1,setpoint(t0:t1),':');

   grid on;zoom on;

   xlabel('time');ylabel('output');

   title('Step response');

subplot(4,1,4); 

plot(t0:t1,du,':');hold on;plot(t0:t1,u);

   grid on;zoom on;

   xlabel('time');ylabel('input');

   figure(1);

%%%%%%%%% Increments %%%%%%%%%%%%%%%

pause

y = Y(1:t1); u = U(1:t1);

t0 = length(y);

   du = u(2:t0) - u(1:t0-1);

   dy = y(2:t0) - y(1:t0-1);

   clf; hold off

   subplot(2,1,1); plot(dy);

   grid on

   xlabel('time');

   ylabel('output');

   title('input and output increments');

   subplot(2,1,2); plot(du);

   grid on

   xlabel('time');

   ylabel('input');

   figure(1);

Function shum.m
Function shum was used for covy estimation

%abetini;

% SISO control desing: design steps

% signals

load data_p1_e_1

des    = 'oi';                       % signal description

maxper = 3;                          % prior control period

maxstr = rgrord(des , 4);            % prior model structure

% data normalization

uref = 0; yref = 0;

%  control period estimation

str    = eststr(data, des , maxstr)   % model structure estimation

% data processing steps

% not used % frg    = estfrg(data, des, str)    % forgetting

frg=1;

Model  = estpar(data, des , str, frg); % parameter estimation

Eth=getfield(Model,'Eth')

covy=getfield(Model,'covy')
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