ORACLE' 1 1g

Oracle oo
SOA Suite 11g
Handbook

Implement an Enterprisewide Service-Oriented Architecture

Lucas Jellema 7P

Oracle ACE D¥ractor, Oracla Fusion Middlavware

Oyacle Press

Forewaord by Thomas Kurian, Executive Vice Prasidant,
Product Development, Oracle

ORACLE® Oracle Press”

Oracle SOA Suite
11g Handbook

About the Author

Lucas Jellema is CTO at AMIS, an Oracle, Java, and SOA specialist based in Nieuwegein, The Netherlands.
He works as a consultant, architect, and instructor in diverse areas such as SQL and PL/SQL, Java, Oracle
ADF and WebCenter, and SOA Suite. The running theme through most of his activities is the transfer of
knowledge and enthusiasm.

Lucas is an author at the AMIS Technology Blog (http://technology.amis.nl/blog), for Oracle Technology
Network, and for international magazines. He is a frequent presenter at international conferences, including
Devoxx, JavaOne, Oracle Open World, ODTUG, UKOUG, OBUG, AUSOUG, and Oracle University
Celebrity Seminars. He was nominated Oracle ACE in 2005 and ACE Director in 2006.

Before joining AMIS in 2002, Lucas worked for Oracle Consultancy in The Netherlands, where he
was a member of the Internet Development Center of Excellence—working on classic products such as
Oracle Designer and Forms and the productivity boosters Headstart, CDM RuleFrame, Echo, Repository
Object Browser, and JHeadstart.

About the Contributors

Edwin Biemond is an Oracle ACE and solution architect at Whitehorses, specializing in messaging with
Oracle SOA Suite and Oracle Service Bus as well as ADF development with Oracle JDeveloper,
Weblogic Server, and Security. His Oracle career began in 1997 when he was a database developer
and administrator. Since 2001 Edwin changed his focus to integration, security, and Java development.
Edwin was awarded with Java Developer of the Year for 2009 by Oracle Magazine and has a popular
blog called Java / Oracle SOA blog, which can be found at http://biemond.blogspot.com.

Lonneke Dikmans lives in The Netherlands with her husband and two children. She graduated with
a degree in cognitive science at the University of Nijmegen, The Netherlands. She started her career as
a usability specialist, but went back to school when she lived in California to pursue a more technical
career. She started as a J2EE developer on different platforms (Oracle, IBM) and specialized in integration.
She now works as an architect, both on projects and as an enterprise architect. She has experience in
different industries: government, financial services, and utilities. She advises companies that want to set
up or improve a service-oriented architecture, and is responsible for her company’s SOA/BPM practice.
She speaks regularly at conferences in Europe and the United States, and publishes frequently on the
Internet and in magazines. Lonneke became an Oracle ACE Director in 2006.

Ronald van Luttikhuizen is a senior consultant and information and solution architect at Approach,
a Netherlands-based ICT consultancy focusing on SOA and Business Intelligence. Ronald has an MSc in
computer science from Utrecht University. He has experience in ICT in various roles, such as coach, (lead)
architect, (lead) developer, teacher, and team lead. In the last few years, Ronald had focused on architecture
and security in BPM and SOA environments. He has in-depth knowledge of Oracle Fusion Middleware.
Ronald is a speaker at (international) conferences such as Oracle OpenWorld and regularly publishes
articles on Oracle Technology Network (OTN), Java Magazine, Optimize, and more. In 2008, Ronald was
named Oracle ACE for SOA and Middleware, and in 2010 he became an Oracle ACE Director in that area.

About the Technical Editors

Jeff Davies is a senior principal product manager at Oracle, specializing on the Oracle SOA Suite
product. He is the author of The Definitive Guide to SOA: Oracle Service Bus. Jeff has over 25 years of
experience in the software field and has developed retail applications such as Act! for the Windows
and Macintosh platforms and a number of other commercially available applications. He has worked
as an architect and developer and ran his own consulting company for some years. Now, at Oracle, Jeff
is focused on the practical application of Oracle products to create SOA solutions.

Mike van Alst is an independent architect and Oracle ACE Director. Active within the IT industry
since 1984, Mike focuses on the added value that ICT should bring to an organization. Mike has done
several successful SOA projects in The Netherlands using Oracle Fusion Middleware. He runs his own
blog on SOA at http://soamastery.blogspot.com.

ORACLE® Oracle Press”

Oracle SOA Suite
11g Handbook

Lucas Jellema

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi SanJuan Seoul Singapore Sydney Toronto

e MeGirow Wl Companies

Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-160898-5
MHID: 0-07-160898-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160897-8,
MHID: 0-07-160897-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of
any information included in this work and is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, spe-
cial, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

w» FREE SUBSCRIPTION
TO ORACLE MAGAZINE

Oracle Magazine is essential gear for today's information technology professionals.
Stay informed and increase your productivity with every issue of Oracle Magazine.
Inside each free bimonthly issue you'll get:

* Up-to-date information on Oracle Database, Oracle Application Server,
Web development, enterprise grid computing, database technology,
and business trends

* Third-party news and announcements

¢ Technical articles on Oracle and partner products, technologies,
and operating environments

\WITH ORACLE DATABASE 11g

* Development and administration tips

¢ Real-world customer stories

If there are other Oracle users at
your location who would like to r
receive their own subscription to Three easy ways to su bSC rlbe:
Oracle Magazine, please photo-

copy this form and pass it along.

@ Web
Visit our Web site at oracle.com/oraclemagazine
You'll find a subscription form there, plus much more

Complete the questionnaire on the back of this card

and fax the questionnaire side only to +1.847.763.9638
MAGAZINE

® Mail
Complete the questionnaire on the back of this card
and mail itto P.0. Box 1263, Skokie, IL 60076-8263

ORACLE"

Copyright @ 2008, Oracle andlor its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners

Want your own FREE subscription?

To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date
it (incomplete cards cannot be processed or acknowledged). You can also fax your application to
+1.847763.9638. Or subscribe at our Web site at oracle.com/oraclemagazine

O no.

Q VYes, please send me a FREE subscription Oracle Magazine.

o From time to time, Oracle Publishing allows our parthers
exclusive access to our e-mail addresses for special promo-
tions and announcements. To be included in this program,
please check this circle. If you do not wish to be included, you
will only receive notices about your subscription via a-mail.

| |

date

X

signature {(required)

name title
o Oracle Publishing allows sharing of our postal mailing list with
selected third parties. If you prefer your mailing address not to

be included in this program, please check this circle.

company e-mail address

If &t ary time you would like 1o be removed from either mailing list, please contact
Customer Service at +1B847783.9635 or send an e-mail o oracle® halldata.com.
If you opt in to the shanng of infarmation, Oracle may also provide you with
e-mail related to Oracle products, services, and events, If you want to pl ¥
unsubscnbe from any e-mail communication from Oracle, please send an e-mail to:

i arach l.com with the in the subject line: REMOVE lysur
a-mail address]. For | U on Oracle F g's privacy practices,
please visit oracle.comhimlpevacy/html

street/p.o. box

city/state/zip or postal code telephone

country fax

Would you like to receive your free subscription in digital format instead of print if it becomes available? QYes QNo

[

YOU MUST ANSWER ALL10 QUESTIONS BELOW.

() WHAT IS THE PRIMARY BUSINESS ACTIVITY

OF YOUR FIRM AT THIS LOCATION? (check
one only)

oD A and Defense M

o 02 Application Serviea Provider

03 Automotive Manufacturing

04 Chemicals

05 Media and Entertainment

06 Construction/Engineering

07 Consumer Sector/Consumer Packaged
Goods

08 Education

09 Financial Services/lnsurance

10 Health Care

11 High Technology Manufacturing, DEM

12 Industrial Manufacturing

13 Independent Software Vendor

14 Life Sciences (bintech, pharmacauticals)

15 Natoral Resources

16 Dil and Gas

17 Professional Services

18 Public Sector (government)

19 Research

20 Retail/Wholesale/ Distribution

21 Systems Integrator, VAR/VAD

2?2 Telecommunications

23 Travel and Transportation

24 Uhilities (electric, gas, sanitation, water)

98 Other Business and Services

OooDOo00o000O0O0O0O0OO0OO0O0OO0OO0 oOO0oOoOoo

@ WHICH OF THE FOLLOWING BEST DESCRIBES

YOUR PRIMARY JOB FUNCTION?
(check one only)

CORPORATE MANAGEMENT/STAFF

O 01 Executive Management (President, Chair,
CEQ, CFO, Dwmer, Partaer, Principal)

O 07 Finance/Administrative Management
(VP/Director/ Manager/Contraller,
Purchasing, Administration)

O 03 Sales/Marketing Management
(VP/Director/Manager)

o 04 Computer Systems/Dperations
Management
(CI0/VP Director/Manager MIS/ISAT, Ops)

IS/IT STAFF

o 05 Application Development/Programming
Management

o 06 Application Development/Programming
Stafl

o 07 Consulting

o 08 DBA/Systems Administrator

o 09 Education/Training

o 10 Technical Support Director/Manager

o 11 Dther Technical Management/Staff

o 98 Dther

®

®

®

WHAT IS YOUR CURRENT PRIMARY DPERATING
PLATFORM {eheck all that apply)

o 01 Digital Equipment Corp UNIX/VAX/VMS
o 02 HPUNIX

o 03 IBMAIX

o 04 |BM UNIX

05 Linux (Red Hat)

06 Linux (SUSE)

07 Linux (Oracke Enterprise)
0

0

10 MVS

11 Netware

12 Network Computing

13 SCOUNIX

14 Sun Solaris/Sun0S

15 Windows

16 Dther UNIX

98 Dther

9 2 None of the Above

goodooOooooooon

DO YOU EVALUATE, SPECIFY, RECOMMEND,
OR AUTHORIZE THE PURCHASE OF ANY OF
THE FOLLOWING? {check all that apply}

o 01 Hardware

o 02 Business Applications (ERP, CAM, etc.}
o 03 Application Development Toals

0O 04 Database Products

o 05 Internet or Intranet Products

0 06 Other Software

o 07 Middleware Products

93 0 None of the Above

IN YOUR JOB, DO YOU USE OR PLAN T0 PUR-
CHASE ANY OF THE FOLLOWING PRODUCTST
(check all that apply)

SOFTWARE

0 01 CAD/CAE/CAM

0 02 Collaboration Software
0 03 Communications

04 Database Management
05 File Management

06 Finance

07 Java

08 Multimedia Authoring
09 Networking

10° Programming

1 Project Management

12 Scientific and Engineering
13 Systems Management
14 Workflow

RDWARE

0 15 Macintosh

o 16 Mainframe

o 17 Massively Parallel Processing

o
o
o
o
o
o
o
o
o
o
o
H

=

®

©)

o 18 Minicomputer

0 19 Intel xBB{32)

o 20 Intel xBE{54)

O 21 Network Computer

O 27 Symmetric Multiprocessing
0 23 Workstation Services

2 Consulting

25 Education/ Training

26 Maintenance

27 Online Database

28 Suppart

29 Technology-Based Training
30 Other

o None of the Ahove

WHAT IS YOUR COMPANY'S SIZE?
{check one only)

o 01 More than 25,000 Employees
o 02 10,001 1o 25,000 Employees
o 03 5,001 to 10.000 Employees
o 04 1,001 to 5,000 Employees
0 05 101 to 1,000 Employees

O 06 Fewer than 100 Employees

DURING THE NEXT 12 MONTHS, HOW MUCH
00 YOU ANTICIPATE YOUR DRGANIZATION
WILL SPEND ON COMPUTER HARDWARE,
SOFTWARE, PERIPHERALS, AND SERVICES FOR
YOUR LOCATION? (check one only)

0 01 Less than $10,000

o 02 $10,000 1o $49,999
o 03 $50,000 to $99,999
o 04 $100,000 10 $499,999
o 05 $500,000 1o $999,999
o 06 $1,000,000 and Over

WHAT IS YOUR COMPANY'S YEARLY SALES
REVENUE? (check one only)

o 01 $500, 000, 000 and above

o 02 $100, 000, 000 to $500, 000, 000
o 03 $50, 000, 000 to $100, 000, 000
o 04 $5.000, 000 to $50, 000, 000
o 05 §1,000, 000 to $5. 000, 000

WHAT LANGUAGES AND FRAMEWORKS D0
YOU USE? (check all that apply)

o 0 Ajax o 13 Python
o2t o 14 Ruby/Rails
o 03 C++ o 15 Spring
o 04 C2 o 16 Struts

o n s
6 J++/08 o 18 Visual Basic
o 98 Other

WHAT ORACLE PRODUCTS ARE IN USE AT YOUR
SITE? (check all that apply}

ORACLE DATABASE
O 01 Dracle Database 11y
0 02 Oracle Database 10g
0 03 Oracle8iDatabase
O 04 Oracle Embedded Database
(Oracle Lite, Times Ten, Berkeley DB)
0 05 Other Oracle Database Release

ORACLE FUSION MIDDLEWARE

O 06 Oracle Application Server

o 07 Oracle Portal

0 08 Oracle Enterprise Manager

0 09 Oracle BPEL Procass Manager
O 10 Oracle ldentity Management
o 11 Oracle S0A Suite

0 12 Oracle Data Hubs

RACLE DEVELOPMENT TODLS

13 Oracle JDeveloper

14 Oracle Forms

15 Oracle Reports

16 Oracle Designer

17 Dracle Discoverer

18 Oracle Bl Beans

19 Dracle Warehouse Builder
20 Oracle WehCenter

o 21 Oracle Application Express

ORACLE APPLICATIDNS

0O 27 Dracle E-Business Suite
O 3 PeopleSoft Enterprise

O 24 J0 Edwards EnterpriseQne
o0 25 J0 Edwards World

O 26 Dracle Fusion

o 27 Hyperion

O 28 Siehal CAM

ORACLE SERVICES

O 28 Oracle E-Business Suite On Demand
o1 29 Oracle Technology On Demand

01 30 Siebel CAM On Demand

0 31 Oracle Consulting

0 32 Oracle Education
o3
of

=

oooooooo

3 Oracle Support
8 Other
99 2 None of the Above

RN O U1 A

11
12
13
14

PART I
Introducing SOA, St. Matthews, and the Oracle SOA Suite

A Typical Case of SOA: Introduction of St. Matthews Hospital Center 3
Introduction to Service-Oriented Architecture 15
Oracle Fusion Middleware and SOA Suite 11g 45
PART II
Developing Composite Applications
XML and Web Services Fundamentalso i, 85
First Steps with BPEL and the Database Adapter 113
Process-Oriented BPEL ittt 149
Mediator Service for Straight Talk and No Nonsense 187
Rules Rule—on Decision Servicescoiiiiiiiiiiiiniiininn.. 233
Event-Driven Architecture for Super Decoupling v oLt 271
The Missing Link: The Human Service Provider 301
Business Process Management with BPELand BPMN 341
Leveraging Java in Composite Applications i it 381
Enterprise-Level Decoupling with Oracle ServiceBus 419
Service Components and Composite Applications Accordingto SCA 461

Oracle SOA Suite 11g Handbook

15
16
17
18

19

20
21

PART 111
Administration, Security, and Governance

For YourEyesOnlyttt inenne 481
What Is Going On: Monitoring SOA Composite Applications 521
Lifecycle Management: Testing and Dealing with Environmental Change 551
Tactical Management and Governanceccoiiuiiininnenann. 587

PART IV

Beyond the Basics

From Live Data to Real-time Insight and Action Using

Complex Event Processing and Business Activity Monitoring 611
ADF as Ul Glue (and More) in FMW ..o ittt iiennnnnn 673
The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 709
Migration from SOA Suite 10gto 118o, 727

T 1 743

Foreword ..., XVi

Acknowledgments ... Xviii
INtrodUCtiON .. oo XX
PART I
Introducing SOA, St. Matthews, and the Oracle SOA Suite
A Typical Case of SOA: Introduction of St. Matthews Hospital Center 3
Introduction to St. Matthews Hospital Center 4
History . e 5
Trends in Healthcare and Hospitals — 5
The Hospital from an Architectural Pointof View 6
Business Architecture View 7
Information Architecture View 10
Technical Architecture View 12
SUMIMIAIY o et e e e 13
Introduction to Service-Oriented Architecture 15
Service-Oriented Architecture (SOA) 17
SOA from a Business Pointof View — 19
SOA from an Architectural Pointof View 23
SOA from an Implementation Point of View 38
SUMMANY .o 42
The eAppointment Pilot Project 42
Oracle Fusion Middleware and SOA Suite 11g 45
History of Middleware and SOA inOracle 46
The Mists of Time—Until 2001 i 46
Industry Standards: From 1998 until Now 48
Not Invented Here (2001-2008)\ttt e 54
Complete, Open, and Integrated—2009 and Beyond 57

Vil

Viii Oracle SOA Suite 11g Handbook

SOA Suite 11g: The Key Components
Adapters ...
Event Delivery Network
Oracle Service Bus i
Business Activity Monitoring (BAM) Server
Fusion Middleware Infrastructure and WeblLogic Server 11g
Design Time
Related Suites and Products in FMW 11g
Getting Started with SOA Suite 11g
Installation of SOA Suite T1g

Create and Run the “HelloWorld” of Service Composite Applications
Migrating from SOA Suite 10.1.3
SUMMANY

PART Il
Developing Composite Applications

4 XML and Web Services Fundamentals
Kicking the Tires on the eAppointment Project
Introduction to XML .. oot
XML Documents e
Data Design for XML—XML Schema Definitions (XSD)
The Service Contract: Introducing WSDL
Analyzing the Service Interface Accordingto WSDL
Demo: Create the Simplest Web Service Implementation
SUMMAY e e
5 First Steps with BPEL and the Database Adapter
Introducing the Business Process Execution Language (BPEL)
BPEL Ingredientst
Implementing the Composite PatientDataService
The PatientDataService BPEL Process in More Detail —..................
Essential BPEL Activitiesot
The Assign Activity and the Use of XPath in BPEL
Accessing the Database from a BPEL Process
A Simple Select Service to Retrieve the Patient Identifier
SUMMAIY e e e e e
6 Process-Oriented BPEL
The Start of the Appointment Process i ..
Scope and SeqUENCE
Flow for Parallel Execution of BPEL Activities
Invoking a Synchronous Web Service: Prepare Instructions
Invoking an Asynchronous Service: Calling the Appointment Scheduler
Implementing the (Mock) Asynchronous SchedulerService

Calling the Asynchronous SchedulerService

Contents iX

Sending Notifications from the BPEL Process, 162
Receiving Request Messages in Running BPEL Instances 163
Consuming an Asynchronous Event: Handling a Cancellation 164
Request Appointment Details from the PatientAppointmentService Instance ... 175
Dealing with and Compensating for Exceptional Circumstances 179
Handling Exceptions in BPEL Processeso, 179
Undoing BPEL Scope Results Through Compensation Handlers 184
SUMIMIAIY ot e 186
Mediator Service for Straight Talk and No Nonsense 187
The Mediator: From the Real World to the World Inside the SOA Suite 188
The Mediator Inside the SOA Suite i 189
Processing Files with Appointment Requestst 191
Introducing the Mediator and the File Adapter: Routing and Transformation ... 191
Sending the Appointment Requests to the Patient Appointment Service 205
Adding Flexibility Using Filtering and Transformation of Messages 210
Content-based Routing for External Appointment Requests 210
Moving to Canonical Messages Using Domain Value Maps 221
Value Mapping with Domain Value Maps 222
Alternative Means for Value Translation 225
Appointment Requests via a Web Application 227
Opening Up the Composite to a New Message Producer 227
Decoupling the Database Adapter Service i 229
Decoupling the PatientAppointmentService BPEL Process — 229
SUMIMIAIY oot e 231
Rules Rule—on Decision Services 233
Deriving the Type of the Appointment 235
Creating a Business Rule Service Component 235
Separating Out Business Logic Using Business Rules —.......... 248
The Rationale Behind Business Rules 248
Business Rule Architecture 249
System Parameters and Global Formulas 251
Setting Up the Central Library of System Parameters 252
Adding Formulas to the Central Library o 255
Using a Decision Table to Establish the Appointment’s Priority — 256
Introducing the Decision Table at Starbucks 256
Logic for Determining the Appointment’s Priority 257
SUMMANY o 270
Event-Driven Architecture for Super Decoupling 271
Event-Driven Architecture for Super Decoupling 272
Introducing the Event Delivery Network 274
First Round with EDN: Consuming Events 277
Synchronizing Patient Data Using the Event Delivery Network 277

Creating Picky Subscriptions Using Filter Expressions 284

X Oracle SOA Suite 11g Handbook

10

11

Publishing Patient Details Change Events 287
Publishing Database Events via Advanced Queuing 288
Publishing EDN Events from BPEL Components 289

Event Delivery Network in SCAand BPEL 293
Analyzing the SCA Configuration Around EDN and Events 293

Decoupling Two-way Services Using the Discussion Forum Approach 296
Introducing the Discussion Forum Pattern 296
A First Stab at the Decoupling from a Two-way Service

Using the Discussion Forum Approach 296
The Discussion Forums Pattern in Action 297
Extending the Event-based Patient Data Service 298
Judging the Discussion Forum Pattern 298

SUMIMIAIY o e 300

The Missing Link: The Human Service Provider 301

Introducing the Human Task Service i 302
Architecture of the Human Task Service 303
Exploring the Task Service in Detail 305

Defining the First Human Task—Approve Highest Priority 306
Steps for Implementing the Human Task ArbitrateHighPriority 306
Extend the Task ArbitrateHighPriority with Notification

and Group AsSigNMent 315

The Scheduler Service—Beyond Mere Decisions 323
Tasks with Complex Outcomes 323

Acceptance of New Patient: Complex Task Routing 330
Accepting a New Patient e 330
Integrate the Task in the PatientDataService BPEL Component 335
See Some Action: Requesting an Appointment for a New Patient 336

Advanced Features for Human Tasks 336
Business Rules for Task Allocation 337
Java and WebService APl for Human Workflow Services 337
Todo List Service Portlet in WebCenter 338
Database Views for Inspecting Task Details 338
Using Excel as an Alternative Worklist Application 339
Human Task Callbacks 339
Custom Task Allocation and Escalation Mechanisms 339

SUMIMIAIY o e e e 340

Business Process Management with BPEL and BPMN 341

Business Process Management (BPM) 343
BPM from an Architectural Pointof View 344
Design Guidelines 346
Tools to Facilitate BPM Efforts 346

Implementing Business Processes Through BPEL and Human Tasks —............... 347

“Accept New Patient” as a Multitask Process 348

12

13

Contents Xi

Introducing BPMN Service Componentsttt 353
Comparing BPMN and BPEL 353
Auxiliary Applications for BPMN Processes ...t 354
Designing the “Treatment Approval” Workflow Using BPMN 354
Simulate the Execution of the Business Process 359
Implement the Treatment Approval Process 362
Run the Business Process and Track Its Progress 371

Revising the BUsiNess ProCEss ittt 373
Online Redefinition of the BPM Process Through the Process Composer 374
Running the Revised Business Processt ... 377

SUMIMIAIY o e 378

Leveraging Java in Composite Applications 381

Java Integration in Various Ways e 382
JMS Adapter SErvices 383
EJB Service Adapter and ADF Binding 384
Socket Adapter 384
Spring Context Component 384
Java Inside ... 384
BPEL Entity Variables Bound to Service Data Objects 385
Invoking SOA Suite from Java 386

Using the JMS Adapter to Loosely Couple with Java Applications 386
Using the JMS Adapter to Integrate with the Finance

Department’s Java Application 387

Embedding Java Logic in BPEL Processest 394
Using Embedded Java in a BPEL Process i ... 397

The Spring Context Service Component for Custom Java Service Components 399
Using the Spring Context Service Component 401

Leveraging the Outbound EJB Binding 409
Create the EJBs and Configure the EJB Adapter Reference 409

Exposing SOA Composite Applicationsas EJB 414
Inbound EJB Binding 414
Inbound ADF Binding 415

SUMIMIAIY o e e 416

Enterprise-Level Decoupling with Oracle Service Bus 419

Introducing the Oracle Service Bus 420
Functions Performed by the Oracle Service Bus 421
OSB at St. Matthews 427
Oracle Service Bus Product History and Architecture 427

Sending Invoices to Patients Who Had Appointments 429
Decoupling Between Business Domains ..., 429

The PatientAppointmentService and External Parties 437

Adding a Virtualization Layer 437

Xil

Oracle SOA Suite 11g Handbook

Requesting the Appointment Status via E-mail 446
Inbound and Outbound E-mail Transportin OSB 446
Implementing the RequestAppointmentStatusPerEmail Proxy Service 450
Service Result Caching for the Retrieve Appointment

Status Business Service 452

Requesting the Appointment Status via REST 453
RESTifying OSB Servicest 455

Parallel Processing of Appointment Requests Using Split-Join 456
Parallel and Batch-wise Processingin OSB 456

Choosing Between OSB and SCA Composites (and Mediators) 457
Rules of Thumb for Choosing Between OSB and SCA Composite 457

SUMIMIAIY o e 459

14 Service Components and Composite Applications According to SCA 461

Artifacts According to the SCA Specification i 462
Service Components 463
Service COMPOSITES . . 464

The SCA Way of Designing and Developing Applications 468
Reuse of Service Components and Composites 468
Nested Service COmpositest 469

Granularity of Service COmMpoSsitesttt 471
Service Composites Are the Unit Of... 472
Splitting or Merging Service Compositest 474

SUMIMIAIY o et e e 478

PART 111
Administration, Security, and Governance
15 ForYour Eyes Only e 481

The Case for SeCUrity ... 482

T SECUNItY oottt e 483
Security and SOA ... 483
So What Exactly Is IT Security in a World of Services? 484
Best Practices for Applying IT Security 488
Transport Versus Message Security 491
Agents and Gateways Pattern 495

Security in Oracle Fusion Middleware T1g 496
Security OVeIVIEW .. 497
Oracle Web Services Manager (OWSM) 499

Case: Securing SOA CoOmPpPOSItES . . oo vttt e 504
Inspecting the SOA Compositet 504
Identity Administration 505
Authentication Using WS-Security i 507
Authorization Using WS-Security 511

Ensuring Integrity and Confidentiality Using Transport Security 514

16

17

18

Monitoring Access to the BPEL Component
Applying Security Using JDeveloper
SUMIMIAIY o e e

What Is Going On: Monitoring SOA Composite Applications
Monitoring Instances of Composite Applications
Dashboard and Aggregate Metrics
Instance INspection
Enriching the Composite Instance Audit Trail
Responding to Exceptions in Composite Execution
Policy-based Fault-Handling Framework
Rejected MeSSages . .o v v i
Managing Composite Instances
Deleting Composite InStanceso vttt
SUMMANY ot e e e e e e

Lifecycle Management: Testing and Dealing with
Environmental Change
Building and Deploying SOA Composite Applications
Pre- or Post-Deployment Operations
Compiling, Building, and Deploying from JDeveloper
Building and Deploying from the Command Line
Deploying Through the Enterprise Manager Console
Environmentally Friendly Customization Using Configuration Plans
Creating Configuration Plans
Applying a Configuration Plan During Deployment —
Automated Unit Testing for Composite Applications
Automated TeSting
Unit Testing in SOA Suite 11g
Embracing Change
Dynamically Adjusting Application Behavior —..........................
Changing Composite Applications
SUMMAIY . e e e e

Tactical Management and Governance —oiuiiinrronn..
Introducing GOVEINANCE oottt e e e e
Implementing Governance
MDS Repository for Managing and Reusing Shared Artifacts
Using MDS with SOA Suite T1g
Administration of MDS Repositories
Service Inventory for Gathering and Publishing —
DIY Service Registry
Oracle Service Registryt
Oracle Enterprise Repositoryo
SUMMANY o

XiV Oracle SOA Suite 11g Handbook

19

20

PART IV
Beyond the Basics

From Live Data to Real-time Insight and Action Using

Complex Event Processing and Business Activity Monitoring 611
Sorting Out the Real-time Data Avalanche 612
Complex Event Processingot 613
Event Processing and Monitoring in the SOA Suite 616
Analyzing Continuous Data Streams Through Complex Event Processing 617
Data-rich Business Areas, Ready for the Harvest 617
The Product Architecture of Complex Event Processor 619
Monitoring Temperature SENSOrs e 620
Getting Started with CEP 621
Creating the CEP Application TemperatureReadingsProcessor 623
Test Run: Pinpointing a Malfunctioning Sensor 625
Promotion from a Simple, Anonymous Signal to a Business Event — 627
Integrating CEP with SOA Composites 627
Oracle BAM: Real-time Business Activity Monitoring 633
Business Scenarios for BAM .. 633
The BAM Product Architecture 634
Feeding the Output from the Complex Event Processor into the
Business Activity Monitoring 636
Reporting on Temperature Sensor Readings 636
Producing an Alert upon Fierce Temperature Deviations 645
Integrating SOA Composites into Business Activity Monitoring 647
BAM Adapter: Monitoring New Patient Appointments 648
Sending Appointment Status Updates to BAM 651
Creating the St. Matthews Appointment Dashboard 653
BAM Detecting the Scheduling Non-Event 658
Fine-grained BPEL Tracking Using BAM Sensor Actions 661
Introducing the BAM Sensor Action 661
Monitoring the Service Level of the Patient Data Service 662
Tracking BPEL Process Execution Using Business Activity Monitoring
and the Monitor EXpresso 665
Applying Monitors to the PatientAppointmentService BPEL Process 666
Seeing Monitor Express in Action 670
SUMIMAIY e e e e e e e e 671
ADF as Ul Glue (and More) in FMW 673
Very-High-Level Architecture of ADF 674
Custom User Interface to Request an Appointment 677
Developing the Web Application Using ADF 677
Creating a Custom Human Task Form for ScheduleAppointment 684

Developing Custom User Interfaces for Human Tasks 684

21

Contents XV

Creating Real-time Dashboards Based on BAM in Custom ADF Applications 689
Implementing the Appointment Dashboard as a Custom ADF Application 689
ADF Business Components Feeding Events intothe EDN 692
Publishing the PatientHasMoved Event from ADF Business Components 692
Creating a SOA Composite Application to Consume
PatientHasMoved Events 697
Improving the Efficiency and Elegance of the PatientDataService Using
SDO-Bound BPEL Variables—Tighter Data Integration for BPEL Processes 698
BPEL Entity Variables Bound to Service Data Objects 699
Infusing the PatientDataService Application with SDO Interaction 701
An Entity Variable Has a Live Connection with the SDO 703
Implementing the Retrieve Patient Operation 704
SUMIMIAIY e e e e e e e e e 707
The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 709
Integration at the User Interface Level i 710
Alternative Methods for User Interface Integration 711
Software as a Service and SOA Across the Cloud 717
Concerns, Risks, and Challenges 718
Requirements for SaaS Applications 721
SUMMAY . e e e 725
Migration from SOA Suite 10gto T1g i 727
Overview of the Migration 728
Run-time Environment e 730
Software Running on OC4) 730
Web Services 730
Moving from Different Standards and Technologies to SCA 732
Historical Proliferation of ESB and BPEL Components 732
Reusability Is the Key! ... 732
Migrating ESB and BPEL 10g Projects 733
Upgrading SOA Suite 10g Projects Using JDeveloper 11g 734
Upgrading SOA Suite 10g Projects Using Ant 734
Comparing 10g and 11g Project Files 739
SUMMAY . e e e 741

Foreword

Oracle Fusion Middleware 11g is an extraordinary release in the rich history of Oracle. It
provides the foundation for Fusion Applications as well as a complete, open, and integrated
platform for the development and integration of modern as well as legacy applications by
organizations around the world. FMW provides the tools that enable Service-Oriented
Architecture (SOA), Business Process Management (BPM), and Event-Driven Architecture
(EDA), based on all the relevant industry standards. Business agility and adaptability is
the primary objective, achieved through reuse, encapsulation, interoperability, and loose
coupling. Oracle SOA Suite 11g, in conjunction with various other key products in the FMW
stack, helps organizations design and build, test and deploy, secure, administrate, and govern
composite applications according to these architectural guidelines.

This book provides a wealth of information to different types of readers interested in
Fusion Middleware and specifically the SOA Suite. Although developers are probably the
primary audience for this book, it would seem that IT management staff and business
analysts, as well as administrators and testers will find a lot of useful content from the
perspective of their respective jobs. The book provides a comprehensive background on the
business objectives and potential benefits of introducing Service-Oriented Architecture as
well as a concise historical overview of the evolution of both industry standards around
services and the Oracle technology that implements those standards, giving great insight in
the evolution of the SOA Suite and its role in Oracle’s Fusion Middleware stack. It goes into
the details of creating BPEL processes and making optimal use of the Mediator, Business
Rule, and other service components and adapters. But it also describes how to deploy,
secure, administer, and do governance for SOA composite applications. The last part goes
beyond the basics, touching on advanced topics and integration between many different
parts of Oracle FMW—including ADF and WebCenter—and concluding with a glimpse
into the future.

XVi

Foreword XVII

The publication of this book comes at a good moment—at the time when Fusion Applications,
as the biggest proof point of Fusion Middleware to date and the best example of applying SOA Suite
11g, has started its rollout. And at a time when key components such as BPM 11g, OSB 11g, OER
11g, CEP 11g, and Spring Java have all been integrated with SOA Suite 11g. The book manages to
discuss all these components—and their application to address real business challenges in an
imaginary hospital. And although this fictitious St. Matthews Hospital may not be an exact duplicate
of your own organization, it possesses many characteristics that will be similar enough as to make
the examples in this book useful sources of inspiration for your business environment.

Another aspect of this book is quite close to my heart. Back in 2004, Oracle launched the Oracle
ACE and ACE Director program, which formally recognizes Oracle advocates with strong credentials
as evangelists and educators in their communities. Since that day, some 200 Oracle ACEs have been
nominated as well as close to 100 ACE Directors, across all the various technologies and product
lines that are relevant to Oracle and its customers. It is great to see that no fewer than seven ACEs
and ACE Directors have collaborated on this book in some form, with many more of them making
smaller contributions along the way. It shows how a strong community has evolved among these
highly professional individuals and how they participate to share their collective experience and
passion for Oracle’s products with the rest of the world.

| trust this book will live up to its promise in empowering you to start taking advantage of the
full potential of Service-Oriented Architecture through the use of Oracle SOA Suite 11g. The
information, examples, and pointers should give you the knowledge, enthusiasm, and skills that
will prove invaluable when you consider, start, or continue using the product.

Thomas Kurian
Executive Vice President
Oracle Product Development

Many people have contributed to this book along the way. And undoubtedly | will not be
able to give them all the credit they are due. My heartfelt apologies for anyone | fail to
mention.

It all started with Peter Koletzke, who invited me to the Oracle Press author party and
introduced me to Lisa McClain, from McGraw-Hill. She liked what she saw—well enough
at least to sign me on as an author. Note that this was very early 2008, and to her credit she
kept faith where many might have given up on the project, as it was not a smooth ride for
the first year and a half.

I would like to thank Lonneke Dikmans, who joined me as co-author in the early
days of the project. She helped me shape it, devise the themes and chapters, the case of
St. Matthews, and the early drafts of several chapters.

The support | received at AMIS, from the management team and all my colleagues, was
simply tremendous. The interest they showed throughout the project, the patience they had
with me through some of the more challenging moments, and the encouragement they kept
giving me have been very important to me. | have especially treasured the discussions with
Peter Ebell, AMIS Expertise Lead for SOA.

Of similar importance was the support | have felt from my fellow members of the
Oracle ACE and ACE Director program. Their faith and positive expectations have been
very encouraging. | hope this final product meets with their approval.

I would like to thank the technical editors, Mike van Alst, Jeff Davies, and Ronald van
Luttikhuizen. Their feedback has helped to polish and refine the book, chuck irrelevant
content, and clarify anything | had made unclear. | would like to highlight Ronald’s
contributions: He has provided countless valuable comments and suggestions, from spelling
corrections to structural changes to chapters, and everything in between, both corrective
and constructive. He has made a huge and undoubtedly positive impact on the book.

XViii

Acknowledgments XIX

Ronald was not only a diligent technical editor, he also contributed Chapter 15 (on security)
as well as part of the appendix (on migration from SOA Suite 10g). Edwin Biemond was co-author
with Ronald on the appendix, and also made a great contribution. Lonneke, originally co-
conspirator on this book, wrote the original drafts for Chapters 1, 2, and 13 and helped in many
other ways during the early stages.

It has been a pleasure working with the team at McGraw-Hill: Lisa McClain and Meghan
Riley. They kept me on track, forced me along when needed, and kept faith throughout a
sometimes bumpy ride. | hope the final result is as satisfactory to them as it is to me.

Many thanks to Rajni Pisharody and Bart Reed, the copyediting team at Glyph International,
who turned my fairly crude texts into the book that you have in your hands right now. We
worked together in an efficient, smooth, and pleasant way.

At various stages during the creation of this book, | have been helped by several members of
various Fusion Middleware Product Management Teams. They provided insights, backgrounds,
and inside information, as well as early access to documentation and software. They also
reviewed the initial table of contents and provided useful feedback throughout the process.

I would like to thank all who have helped, with a special word of thanks to Demed I'Her, Heidi
Buelow, Clemens Utschig-Utschig, Dave Berry, and Duncan Mills.

Last and never least, of course, | want to mention the vital support from Madelon and our

boys, Tobias and Lex.

Introduction

Service-Oriented Architecture is one of the major trends of our time in enterprise and IT
architecture. The promise of business agility, lower costs, and improved quality of
operations that SOA presents to business, based on concepts such as loose coupling, reuse,
encapsulation, and interoperability, attracts many organizations. Complemented with
Business Process Management (BPM) and Event-Driven Architecture (EDA), SOA can add
real and sustained business value to enterprises.

Adopting SOA in an organization is a serious challenge that will require major efforts at
various levels, from business to IT infrastructure. Crucial to the success of SOA adoption are
sometimes intangible elements, including mindset, collaboration across departments and
lines of business, communication, process orientation, and business analysis—in terms of
interfaces and contracts, with focus on reuse and loose coupling and the implementation of
proper governance.

When it comes to the actual implementation of the services and components that have
been analyzed and designed, there is a need for an SOA platform—a run-time infrastructure
that executes the applications and processes, handles service calls, and provides facilities
around security, exception handling, and management. Enter Oracle SOA Suite 11g.

SOA Suite 11g is one of the key components in Oracle Fusion Middleware, a prominent
platform to create and run agile and intelligent business applications and to maximize IT
efficiency by exploiting modern hardware and software architectures.

This book explains what SOA Suite 11g is, how it can be installed and configured, and
how its many components can be used to develop, deploy, and manage service-oriented
artifacts. It also discusses how SOA Suite interacts with other products in Oracle FMW.

XX

Introduction XXI

About This Book

The book is primarily targeted at software developers. Ideally the reader has some knowledge of
XML, SQL, and Java and perhaps PL/SQL, but these are not required to benefit from most of the
book’s content. Readers with administrative responsibilities will find a lot of material supporting
them in these tasks. Testers and (technical) architects will also learn a lot from large sections in
this book. IT management staff and business analysts will mainly benefit from Part I; if they have a
technical background, then Parts Il and 11l will prove worthwhile as well.

The book is organized in five parts. Part | introduces the concepts that make up Service-
Oriented Architecture and describes the history of Web Services and SOA-related standards and
technology. It concludes with the installation of SOA Suite 11g and the creation and deployment
of the HelloWorld equivalent in SOA applications.

Part Il discusses the development of SOA composite applications using the core service
components—BPMN, BPEL, Mediator, Business Rule, Spring Context, and Human Task—and the
technology adapters—File System, Database, JMS, and EJB. It also introduces the Oracle Service
Bus, the platform to implement the enterprise service bus that connects departments and external
partners.

Part Il addresses administration and management activities. It focuses on security, deployment,
and lifecycle management, management of composites and composite instances, and dealing with
changes. Governance is the final large topic in this part of the book.

Part 1V is called “Beyond the Basics.” It introduces two products that are closely related to the
SOA Suite core run time, but provide functionality that is usually considered nonessential and
more advanced. These products are Oracle Complex Event Processor and Oracle Business
Activity Monitor. This part also discusses the integration between SOA Suite and the Application
Development Framework (ADF). The last chapter looks at the application of SOA concepts
to user interfaces and also presents the case of SOA in SaaS (Software as a Service)—style
applications and cloud-based infrastructures.

Part V contains a number of appendixes with background information on migration, fundamental
XML technologies, detailed configuration of the SOA Suite run-time environment, and its APls and
extension points. Note that three of these appendices are provided online rather than in the printed
book.

St. Matthews Hospital Center

Implementing SOA is meaningless without a tangible business context. Services address business
requirements, as do composite applications. To illustrate SOA and Oracle SOA Suite, this book
uses the case of a made-up hospital, called St. Matthews, that’s located in California—although it
has a surprising number of Dutch traits as well.

This hospital represents a series of business challenges that are found in organizations across
industries and countries. It has interactions with external parties (including customers and
business partners), strives to create more efficient business processes across departments that
combine automated actions and manual tasks, needs to implement security, continually faces
changing requirements with ever shorter times-to-market, and hopes to gain more real-time
insight into the current state of affairs.

Many of the solutions discussed in this book for St. Matthews set useful examples for similar
requirements in other organizations. And at the very least, St. Matthews provides a context that
most readers from many different countries will be able to relate to.

XXii Oracle SOA Suite 11g Handbook

How to Use This Book

The book you are holding is not intended as a reference manual that is easily used to look up
specific details on an operation or feature in the SOA Suite.

This book is primarily a guide that invites you to come along and explore the SOA Suite. It
introduces concepts and real-life requirements, using the imaginary St. Matthews Hospital as the
concrete example. It describes the functionality and features in particular components in the SOA
Suite and applies them to actual business challenges. Through step-by-step cases that go beyond
the archetypical Hello World and introductory order-processing examples, it demonstrates the
application of product features, provides hints and tips for using them, and suggests best
practices.

Most is gained from this book by not only browsing and reading it but by also getting your
feet wet by following along with the hands-on instructions in the book and the online chapter
complements. By having your hands do what your eyes are reading and your brain is processing,
you will have a multichannel learning experience that delivers the most thorough and lasting
results.

The main case in the book is the patient appointment process in which appointments with
doctors and other staff at St. Matthews Hospital are requested, approved by insurance companies,
scheduled, cancelled or kept, billed for, and reported on. The case is built up throughout the
book, each chapter leveraging the work done in the previous chapters. Even though you can read
individual chapters, be aware that they will often refer to decisions made in earlier chapters or
implementations created in a previous stage.

There is more to this book than meets the eye. In addition to the printed volume you are
currently holding (or reading on your electronic device), there are many online resources that
accompany this book: the book’s wiki, the online chapter complements, and the online appendices.

Wiki
An area inside the Oracle Wiki has been prepared for this book (see Figure 1). Organized per part
and per page, the wiki holds many (references to) resources, such as relevant sections in the Oracle
documentation for the SOA Suite and other components in Fusion Middleware, links to the OTN
forums and download pages, articles on blogs and websites that further illustrate or complement the
subjects discussed in the chapter, downloadable source code for the cases in the chapter, a link to
the online chapter complement, and errata. The wiki is expected to be a dynamic environment,
with new resources being added as time goes by, including news on software releases, new articles
and showcases, information on relevant events, and discussion threads.

The wiki for this book is located at
http://wiki.oracle.com/page/Oracle+11g+SOA+Suite+Handbook.

Online Chapter Complements

There is only so much detail you can include in the 800-or-so pages available in this book. | have
been struggling at times to find the right balance in the level of detail, the number of screenshots,
and the scope of the topics given the physical limits of the book. | finally found the solution via
online chapter complements: Most of the chapters in this book are accompanied by an online
complement that provides more detailed step-by-step instructions, an abundance of screenshots,
additional background information, and practical tips. Some cases are only briefly introduced in
the book and worked out in detail in the complement.

Introduction XXII

i O | T Ao R nm Ao T R R T R Lo s Serviem frs st b el = 4+ 1o norer ® H G- 'F'I

a3 I Wt

= nncie g Cllhhain *
Harchank

J +E 1L] AR IR
o S —— dAopiy b e ﬂ B
R] Nl BN
e Chapter T - Mediator Service for straight talk and no-nonsense
* Pl 1 - Dafl sl
B3 S e 1 |ine Chapler Compbemesi
+ Cusgpled d - ol Cew - B oy
By AL, il Tova - 180 pecma
mobiemicn e
GCA fareermataly
b irrces. prvd Elhore
inirnduong WL Do BRhc i Souids dad S0 raBus br o maps CLaser T - oy
& Chiapisd & - Piscso
camnise BPEL Exfra Markitia
- Ioispies T - Macksied
S bt akiagnd Blog st b bl eiaat s ol Jrva Callsde bt oy Mlobals o8 mriri)
Il arei ea Bl ol Leveragag Wik e Cobmas 1) iveet GEETW Senioes The Dancle S0k Faate 149 HiaFasbn o o) sy 6 (ol
—— BESTIg) vy e S0 Corepryiby dpyle yiry
+ Cruspis i - Rl Blog nsticl inisgraang Sping Comparss aith Mledsior iz iechs FESTIA services jarulsiing tha HepBindieg | 200 Soey 1]g - Limeg
riia i Condare b yusc Hils Brelis sl ideaale ARSI sees e
¢ Cruspelsd -
Smihing i goire Hr=ouemns
pA-LEEmIEE v S fhte Dewoper's Garade ow likeston fohepin 15

Intsacieciics ia Dormain Vsloe Kacobtis Ve coscls comiec

FIGURE 1. The wiki for SOA Suite 11g Handbook with references to online resources

You will find the online chapter complements as PDF documents organized per chapter on
the website http://groups.google.com/group/the-oracle-soa-suite-11g-handbook-/web.

Online Appendixes

In addition to the 21 chapters and one appendix in the book you have before you right now,
there are three more appendices available online. Furthermore, an extended version of the
appendix in the book has been published online as well (as Appendix A). The information in
these appendices is not considered essential to every reader, but can be useful in specific
conditions nevertheless. You will find these online appendices from this URL: http:/groups.
google.com/group/the-oracle-soa-suite-11g-handbook-/web.

Appendix A: Migration from SOA Suite 10gto 11g

Appendix A describes the aspects and approaches for migrating from SOA Suite 10g to 11g. The
online complement for this appendix discusses several detailed scenarios for specific components
and artifacts that may not be relevant in all situations. Among the topics discussed in this online
extension are:

B Domain Value Maps
B Custom XPath and XSLT functions

XXIV Oracle SOA Suite 11g Handbook

B Advanced BPEL characteristics, fault policies, unit test suites
B Oracle Web Services Manager (OWSM)
B Technology adapters (WebService, JMS, AQ, and Database)

Appendix B: XML Fundamentals

Chapter 4 contains a high-level introduction of the standards and technologies that form the
foundation of the SOA Suite: XML and XSD, WSDL, and SOAP. For many readers, that overview
will serve as a refresher for what they already have internalized. For others who may not have
had as much exposure to Web Service technologies, it may not nearly be enough to feel
comfortable around some of the discussions in the book. Appendix B provides more background
and details on the fundamentals of XML, XSD, XPath, and XSLT. Furthermore, it provides links to
more extensive resources.

Appendix C: Preparation and Configuration of the SOA Suite Infrastructure

Chapter 3 provides brief instructions on the installation and initial configuration of the SOA Suite.
The online chapter complements for this and several other chapters contain or refer to additional
instructions for configuration of the SOA Suite, the technology adapters, and some additional
components such as a local e-mail server. This appendix gives detailed instructions for the
configuration steps required on top of the default installation of the products to carry out all the
hands-on examples described in the book.

Appendix D: SOA Suite Run-time APIs, Hooks, and Extension Points

Chapter 12 discusses how Java can be used to implement functionality inside composite
applications and how SOA applications can be accessed from within Java programs. This
appendix discusses the interaction from Java as well as PL/SQL with the run-time APIs of the
SOA Suite itself—for example, for reporting on running and archived instances and performing
administrative tasks upon them, for publishing events to the Event Delivery Network, or to
leverage APIs in the workflow service and the User Messaging Service. It also describes how we
can extend the functionality of the SOA Suite run-time engine by registering custom XPath
functions that can add functionality to BPEL, Mediator, and Human Workflow actions.

PART

Introducing SOA,
St. Matthews, and the
Oracle SOA Suite

This page intentionally left blank

CHAPTER

A Typical Case of SOA:
Introduction of St. Matthews
Hospital Center

4 Oracle SOA Suite 11g Handbook

OA is BAD! So there, | have it off my chest. It had to be said. It needs to be out in
the open. It is really BAD!

Okay, what is SOA again? Service-Oriented Architecture. So clearly it is about
architecture (more on that in the next chapter) and about services (more on those
throughout the book). But what is this BAD stuff?

It is my way of drawing your attention to the fact that SOA is really about Business Agility and
not about technical tricks. SOA helps us realize Business Agility through Decoupling. There you
have it: BAD. Business agility means the ability of an organization to adapt to new circumstances,
opportunities and threats, regulations, and technological advances. IT departments that enable their
organizations to flexibly and speedily adjust to new business requirements give these companies a
competitive edge, lower costs, and higher quality in the execution of business processes.

SOA gets its significance from the objectives it helps achieve. Some of the most important of
these are defined at the business level—not in technical terms, and not directly in the context of
the IT department. Business agility is an example of these objectives—others are discussed in the
next chapter. Other benefits from SOA are achieved in the IT department; of course, these, too,
will ultimately contribute to the business results.

SOA is not primarily driven by technology—it is not the latest version of a development
framework or a faster edition of a CPU. It is first and foremost driven by business requirements
and with business objectives in mind. Having said all that, it should be equally clear that service-
oriented computing and the establishment of Service-Oriented Architecture are only possible
because of the technology available to us.

This book is about technology alright: It will show you how the Oracle SOA Suite can be used to
implement many different aspects of SOA. You will see demonstrations of all the components in the
SOA Suite, each playing a slightly different, specialized role in creating services and implementing
business processes.

However, all these demonstrations of applying tools and technology can only make sense in
the context of an organization that works to achieve business objectives. You do not do SOA stuff
just for the technological kick—you do it for business reasons.

This book uses a fictional hospital, St. Matthews Hospital Center, as the business context for
the concepts discussed in this book (Service-Oriented Architecture, events and Event-Driven
Architecture, and business process modeling) as well as the examples of using Oracle SOA Suite
11g and its components. Although we use a hospital, the issues and solutions described here
apply to other organizations as well.

This chapter introduces St. Matthews and its business challenges, and provides some of the
background that will help you understand the examples discussed later in the book. This chapter
might also help you draw parallels to your own organization, especially concerning some of the
challenges facing St. Matthews, both at the business level and from an IT perspective. The
hospital is fictional, constructed from many examples collected in dozens of organizations around
the world, many of them based in The Netherlands.

Note that you can safely skip this chapter (and the next one for that matter) if all you are
interested in right now is getting going with the SOA Suite.

Introduction to St. Matthews Hospital Center

St. Matthews is a regional hospital that primarily serves residents in its vicinity. Lately it has attracted
some patients from a wider region and even from out of state. The hospital has formulated its mission
as follows: “St. Matthews is a modern, flexible, and capable hospital for the residents in the region.

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 5

Its goal is to offer high-quality medical care that is easy to access, in an environment where patients
feel at home.”

It is important to note that both flexibility and quality are in the mission statement. Flexibility
is needed because of the ever-changing rules and regulations in healthcare, as well as new
treatments and advances in pharmacy, clinical technology, and logistical facilities. Quality is
needed because of increasing competition between hospitals, scrutiny from consumer groups and
patient platforms, and lurking personal injury lawyers. Quality is not only measured in terms of
medical success, but also in terms of patient satisfaction. Even though the mission statement does
not explicitly mention it, it goes without saying that a sound financial state of affairs is a necessary
condition.

History

St. Matthews has a long history. It was founded in 1850 as a hospital for the poor. Money to build
the hospital was raised by local members of the Catholic Church. The nurses were nuns who moved
from different cities to help out in the hospital. In 1975, the hospital merged with the hospital in the
neighboring town and was named St. Matthews. In the 1990s, government policy was to merge
small local hospitals into larger regional hospitals. St. Matthews merged with two smaller local
hospitals to form a regional hospital in 1995. Nowadays, funding for new buildings and patient
facilities still depends on the local business community: In 2000, a building was donated by local
companies to celebrate the 150th birthday of the hospital. Today, the nuns are gone and have been
replaced by trained nurses and volunteers. The board of directors is supported by managers of the
different departments, and supporting units make sure the hospital can run its day-to-day business.
The medical specialists are still there, supported by sophisticated technologies such as
electrocardiogram (ECG), laboratories that test tissue and blood samples, and imaging technology.

Trends in Healthcare and Hospitals

As mentioned previously, in the 19th century, most hospitals were built to care for poor people.
They depended on gifts from the community. Patient satisfaction was not a major concern;
fundraising and public health issues were. At the end of the 20th century, a trend toward larger
hospital organizations with professional management resulted in many mergers of small hospitals.
Cost reduction and higher quality through scaling were the main drivers for this trend. However,
this did not prevent waiting lists from growing. Nor did it reduce the cost of healthcare as it was
intended. This was partly because of developments in the field. Technological improvements in, for
example, imaging technology, as well as medical breakthroughs in treatment of diseases, led to
higher costs for healthcare per patient. Treatments have become more expensive due to advanced
equipment, and an increase in patient life expectancy has resulted in more and prolonged treatment
per patient, which in turn results in more treatments per patient.

Other trends are increased security demands and the potential worldwide spread of diseases
due to globalization. Because of the increased use of the Internet, doctors don’t have a monopoly
on medical knowledge anymore. Consumer organizations and patient platforms have become
important lobbyists. As a result, patients are given more choice: They can decide to go to another
hospital if they wish. This makes it more important for hospitals to compete with each other and
meet their patients’ demands. Government regulations dictate that hospitals report their results in
a standardized format to an electronic address. National initiatives have started to encourage
collaboration between healthcare providers.

Oracle SOA Suite 11g Handbook

The Hospital from an Architectural Point of View

Technology has become more and more important in the day-to-day operation of St. Matthews.
This applies to medical equipment such as magnetic resonance imaging (MRI), but also to the
application of Information and Communication Technology (ICT) in all sections of the hospital.
Business processes, strategy, and financial management rely on information management. This
demands a strong alignment of IT with the business. For that reason, the hospital decided to
investigate whether applying enterprise architecture would be beneficial. They have hired an
enterprise architect from a local firm to get them started. Mary Johnson has been hired for the
project. Her assignment is defined as follows: Translate the vision and strategy of St. Matthews
into an architecture plan and define the steps needed to realize this architecture.

Showing the board of directors the value of enterprise architecture at an early stage is important
to ensure she has the support from the management of the hospital. Enterprise architecture can
structure and link business information and propose IT solutions that support business goals. This
does not have to take years of thinking and documenting, because a lot of the information is usually
already available in some shape or form and can readily be (re)used.

Mary proposes to define three views—or layers—to start with:

B A business architecture view that describes the processes and functions in the hospital.
The strategy, organization, and key performance indicators (KPls) are modeled in this
view as well as the primary processes, management processes, and supporting processes.
She starts by modeling a high-level overview. Details will be added later, when she has a
better idea of the problems and strengths of St. Matthews.

B An information architecture view that describes the structure of the data and the
different applications that implement the structure. The data models within the different
applications are pretty easy to find. The more interesting part in this context is formed
by the data that is exchanged between information domains and between organizations.
The structure of this data should be application-independent because it already involves
at least two interacting applications. A common approach is to abstract the data formats
away from the applications in canonical data models.

The applications are assigned to business information domains, not to the departments
that are currently using the applications.

B A technical architecture view that describes the hardware, middleware, and network
topologies of the hospital. Mary herself will not go into the details of this physical layout
of the hospital. The information management department has diagrams describing
these details. The focus for Mary right now is on the vision, or a statement of direction.
Therefore, she will focus on logical components for this view.

Because the hospital has no tool to model the enterprise architecture, Mary decides to
introduce the Oracle BPA Suite as a modeling tool because it has support for several diagrams
that depict architectural designs.

The following sections elaborate on the three different architectural views to provide an
overview of the current situation of St. Matthews.

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 7

Business Architecture View

Mary decides to start from the top with the business architecture. She begins by identifying
strategy and business needs. She has a lot of information to work with; although the hospital has
little or no experience with enterprise architecture, it has started several initiatives that can be
used as input for the business architecture. As part of these process improvement efforts, the
hospital has already described most of the important processes. Other input for the architecture is
the annual report published by the board of supervisors. To identify the business principles, goals,
and drivers that the architecture plan needs to support, Mary will describe the following:

B The organization and its external partners This will identify the stakeholders for the
architecture in St. Matthews.

B The strategy that St. Matthews has formulated, with some critical success factors for
the goals and strategy It is important that design decisions be linked to these goals
and critical success factors to make sure the architecture actually supports the business
objectives and strategy of St. Matthews.

B The key performance indicators The KPIs will be used to measure the success of
St. Matthews in achieving the identified goals.

B The business processes in the hospital The architecture should chart the primary,
supporting, and management business processes of St. Matthews.

The Hospital Organization

The region that St. Matthews serves has 250,000 residents. St. Matthews has a capacity of 600
beds. There are 2,000 employees, 125 medical specialists, and over 100 volunteers. The hospital
has three locations to make it more accessible to patients and visitors. The hospital treats 150,000
patients per year, both outpatient and inpatient care.

The hospital board of directors is responsible for the strategy. The board of supervisors is
responsible for the governance code that is in place. The board of directors consists of both
medical staff representatives and patient representatives. Several supporting departments report to
the board of directors, including:

B Marketing and communication The marketing and communication department is
responsible for both internal and external communication. This means the department needs
to communicate with patients, their relatives, and employees. The external communication
is directed at people who live in the region, as well as family doctors and other healthcare
providers such as pharmacists and physiotherapists. One communication medium the
hospital uses is the Internet. The website of the hospital consists of several parts: general
information about the hospital, a site where patients and visitors can get information, and an
area that is only accessible for registered healthcare providers.

B Human resources management The human resources department is responsible for
recruitment of all personnel, assessments, and career planning. The human resources
department tries to minimize the number of employee sick days, decrease the number
of people who quit their job, and increase the efficiency of the departments. Career
planning, selection criteria, and assessments of personnel are all important instruments
for the HR department to increase job satisfaction, as are fringe benefits.

8 Oracle SOA Suite 11g Handbook

Information management Apart from being responsible for IT in the organization, the
information management department is also responsible for the alignment of IT with the
business. This means technical employees as well as business-oriented people work for
this department to communicate with other departments about changes, requirements
for new projects, and opportunities that new technology can offer the hospital. In the
technical architecture view of this chapter, we will look at this department in more
detail.

Quality assurance This department is responsible for quality assurance. It monitors
the quality and effectiveness of the hospital. Part of the quality system is patient safety
and compliance with rules and regulations. This department is responsible for handling
patient complaints and reporting key performance indicators to different regulatory
organizations.

Legal services This department takes care of all legal affairs of the hospital and its staff.
It deals with patients’ rights, hospital liability, legal aid for employees in liability suits,
compliance issues when new laws arise, and firing employees who don’t perform.

Accounting, planning, and control This department translates the plans of the board
of directors to the budget. This includes cost for patient care (production budget),
exploitation costs, personnel costs, education budget, planned investments, and current
and planned projects.

The primary processes in the hospital are all about patient care. Two clusters are responsible
for patient care:

Surgical care cluster This cluster is organized around specialties such as plastic surgery
and dermatology, but also contains units responsible for operating rooms, admissions,
planning, and so on.

Internal care cluster The internal care cluster has units such as cardiology and lung
diseases, as well as units for psychiatry and social services.

Two units support the day-to-day operation of the patient care units:

Supporting units This department includes groups such as laboratories and radiology.
Sophisticated medical technology is applied here by highly technically skilled people.

Facilities This unit includes hotel services, procurement, housing, technical services,
and logistics. These facilities are highly visible to both the patients and employees of the
hospital.

External Relations

In general, a hospital deals with three types of relations: other healthcare providers, insurance
companies, and patients (see Figure 1-1). The other providers can be hospitals, ambulance
services, pharmacies, family doctors, and many other types.

The hospital treats patients and cooperates with other healthcare providers to accomplish this
treatment. The patient pays the insurance company for health insurance. Depending on the
insurance policy, the hospital is paid by the insurance company or by the patient. When the latter is
true, the patient might (try to) claim the money from the insurance company, depending on the
coverage specified by the policy. The hospital sometimes reports a planned treatment in advance
to make sure it is covered by the patient’s insurance policy. With some insurance policies, patients

Chapter 1:

A Typical Case of SOA: Introduction of St. Matthews Hospital Center

9

» Insurance [¢
companies
Reimburses Reimburses
Reports treatments
Pays
A 4 v
Pays N
Patient Treats Provider ’
Cooperates with
A 4
. Ambulan .
‘ Hospital J ‘ Pharmacy ’ bu.a ce J Family doctor
services

FIGURE 1-1.

Relationships in healthcare

are required to go to the hospital designated by the insurance company. Therefore, the insurance
companies are important to St. Matthews. They determine to a significant degree how many patients
will actually come to St. Matthews for treatment instead of another hospital.

Strategy

St. Matthews has chosen the strategy shown in Figure 1-2. This strategy is centered around the
main objective of becoming the preferred hospital for patients.

Be Preferred
Hospital

Increase patient
satisfaction

Cost efficient

Increase quality
of care

Customer Process Top quality .
Integral care . } Cooperation
centered improvement medical care
FIGURE 1-2. Objectives and critical success factors

10 Oracle SOA Suite 11g Handbook

This main objective can be realized through three subobjectives:

Increased patient satisfaction Several critical success factors are associated with this
objective. First of all, the hospital needs to be “customer centered.” Not the doctor, but
the patient should be the starting point in the daily operations of the hospital. Second,
the hospital needs to provide for integral care. So rather than having specialized clinics
for different diseases, the hospital should be a one-stop shop for patients. The third

and final critical success factor to increase patient satisfaction is process improvement.
Process improvement can reduce the chance of human error and also increase patient
satisfaction because care will be more efficient. Shorter waiting lists and appointments
scheduled in accordance with patients’ needs—not driven by the doctor’s schedule
alone—are examples of this.

Quality improvement of care via innovation and process improvement New
technologies—both medical and information technology—can improve the quality
of patient care. Process improvement can reduce the number of errors and therefore
also improve the quality of medical care. Cooperation with other hospitals, insurance
companies, family doctors, and pharmacies also increases the quality of care.

Cost reduction Because of advances in medical science and technology, more
expensive treatments can—and will—be given in the future. This means that people will
live longer and need even more care. Cost reduction is important in this competitive
market, especially for insurance companies. The critical success factor for cost reduction
is process improvement.

To accomplish all this, St. Matthews will create an environment that is safe and inviting and
that stimulates entrepreneurship for its employees.

Key Performance Indicators

All hospitals need to report on specific key performance indicators (KPIs) to make a comparison
of hospitals more straightforward for patients, insurance companies, and healthcare providers that
refer patients to hospitals.

The key performance indicators that need to be reported can be divided into the following
categories: patient satisfaction, safety and quality, patient care and organization of patient care,
personnel and organization, financial organization, environment of the hospital, and research and
education.

St. Matthews has decided to use these KPIs as input for process improvements. To accomplish
this, the KPIs have been associated with one or more of the defined objectives. These objectives
should eventually lead to the main goal of St. Matthews: to become the hospital of choice for the
region, which itself is measured through the number of patients treated in St. Matthews.

Information Architecture View

St. Matthews has gone through several reorganizations and mergers. To organize the information
in the hospital, Mary decides to define functional or business domains (see Figure 1-3), rather
than departmental clusters. Every domain is characterized in that it is the owner of both the data
it uses and of the associated processing methods.

The hospital uses a number of IT systems to support the different business domains. A common
type of system in the healthcare industry is the Hospital Information System (HIS). This usually is

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 11
Encompasses Encompasses Encompasses Encompasses Encompasses
'% Patient Patient Human Finance and IAIEILE
1 -) management
g communication care resources accounting and support
%] pp

FIGURE 1-3. Business domains of St. Matthews

a commercial off-the-shelf (COTS) application from a large vendor in the field. It is designed to
manage all the hospital’s medical and administrative information in order to enable health
professionals to perform their jobs effectively and efficiently. It often consists of the following
modules: clinical information system, financial information system, laboratory information system,
nursing information system, pharmacy information system, picture-archiving communication
system, and radiology information system.

After the mergers, the department of finance and administration (F&A), as well as the human
resources department, managed to consolidate their IT: F&A migrated everything to SAP ERP
Financials, and the HR department successfully consolidated on PeopleSoft Enterprise HCM. The
consolidation of the other applications has never been finished. There is no single integrated Hospital
Information System, but instead a series of applications with overlapping functionality and data. With
the exception of the picture-archiving communication system and the radiology information system,
all modules are custom built as separate applications for almost every department. This means that
the processes that span departments are inefficient and there is an abundance of errors. Errors occur
because different departments use different definitions for the same concepts or have the same
definition for different concepts. There is no such thing as a shared canonical data model. Errors also
occur because data that is available in one department is not available in the other department.
Another source of errors involves typos and spelling errors.

A representative example is the current process of making appointments between doctors and
patients. There are more than ten applications somehow supporting this process currently in use at
St. Matthews, varying from custom-made applications to Microsoft Excel spreadsheets. Recently,
this has become an even bigger problem because of new laws and regulations. The government
demands that reports about KPIs be delivered to a central website every year. Because there are
different systems, data is duplicated all over the place. The information about the same patient in
real life can be stored in various ways with different attributes and attribute values in different
systems. This means that compiling these reports requires manual development of queries, despite
all the Business Intelligence (BI) tools at hand. Another challenge is integration and
communication with external partners.

External Partners

As mentioned in the discussion of the business view of the hospital, St. Matthews has relationships
with other healthcare providers, with patients, and with insurance companies. There is a growing
need for information exchange. The intent is to use international and national standards as much
as possible for this information exchange, both for interaction between two applications within the
hospital as well as for exchanges between St. Matthews and external partners. One such industry
standard in the health sector is HL7, which is often used in Hospital Information Systems.

12 Oracle SOA Suite 11g Handbook

Insurance Companies Currently, point-to-point integration is used by St. Matthews in batch
processes to exchange data with insurance companies. Every night, files with records of treatments
are sent to the insurance companies for processing. After some time, the results are sent back and
checked by the hospital. If a claim record is invalid, it needs to be resent with the next batch.

The files to be submitted to the insurance companies are created using several different
modules in the Hospital Information Systems. A custom application that gathers and reconciles all
the data from the different Hospital Information Systems has been built by the IT department of
St. Matthews. The results returned from the insurance companies are loaded into SAP ERP Financials.

Patients Little electronic communication exists between patients and the hospital at the moment.
There is a website with information about the location of the hospital, visiting hours, and telephone
numbers, information about the organization of the hospital, and information about disease
prevention. “St. Matthews online” is the content management system that is being used by the
hospital to facilitate this portal-like site. The marketing and communication departments would
like to extend its functionality and create more online interaction with patients—for example, to
have patients review and update their appointments and perhaps even request new appointments.

Healthcare Providers Many national and international initiatives have started to facilitate electronic
exchange of data between healthcare providers. St. Matthews is part of the following initiatives:

B Electronic Patient File A national initiative to facilitate the exchange of patient files
between healthcare providers.

B Regional information exchange Family doctors in the region and St. Matthews have
agreed to use a common system to register referrals.

B Hospital collaboration St. Matthews collaborates with several other hospitals to do
research on certain topics. Details about the research are exchanged and aggregated to
speed up the process and improve the quality of the work.

Technical Architecture View

As was described in the previous section, a lot of different systems are used in the hospital. The
hospital has a combination of commercial off-the-shelf (COTS) applications and custom-developed
applications. The COTS applications, such as SAP/R3, Planon, and PeopleSoft, are all implemented
by external companies. The projects are managed by the project managers of St. Matthews. The
custom-built systems are developed using PL/SQL and Oracle Forms by developers in the in-house
IT development unit. The Business Intelligence solutions are also implemented by their own
development department. A variety of solutions are used for this: Cognos, SQL, and PL/SQL for
“on-demand” queries, reports from SAP, and custom reports using Oracle Reports.

The information management department is responsible for the technical architecture. However,
the relationship between the other departments and the information department is deteriorating. IT
projects are almost always over budget and late, and the users don’t get what they need or what they
expect. Blame is shifted from the IT development and project management units to the business
consultancy group and the application management and support team, but that, of course, does
nothing to solve the problem.

Software and Programming Languages
The hospital runs three operating systems: Enterprise Linux for the servers, Windows Vista for the
workstations, and Windows 7 for the Microsoft Exchange Server. The company has standardized

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 13

on Oracle for the DBMS. This is true for all applications: Planon, SAP/R3, PeopleSoft HCM, “St.
Matthews online,” and the custom applications. Two web servers are currently in use: Apache
2.0 and Microsoft 1IS. The middleware installed at the hospital is Oracle Application Server 10g.
The hospital uses Microsoft Active Directory for authentication and authorization.

The programming languages used in the company are PL/SQL, Oracle Forms, Java and JEE,
ABAP for SAP, and PeopleCode for PeopleSoft.

Interfaces and Standards
At the moment it is impossible to tell exactly how many interfaces exist between applications. There
are many point-to-point interfaces. Some are part of products that were bought, such as the interface
between Planon and SAP. Others are custom-built by developers using a variety of techniques and
protocols. These range from database links to HTTP calls and file exchange through FTP. A lot of
time and effort is spent in keeping these interfaces up and running.

The hospital has not been able to standardize all the external communication, yet. However,
like most hospitals, it does use HL7 version 3.0 for communication about patient data.

Summary

St. Matthews is a fairly well-run regional hospital that strives to be the preferred hospital for
patients and insurance companies. To become the preferred hospital, St. Matthews needs to
increase patient satisfaction, become more cost-efficient, and increase the quality of care. This
has an impact on both the business and the IT sides of St. Matthews. The hospital has decided to
use enterprise architecture to trace the business drivers all the way down to the IT systems, and
even the infrastructure they run on. This will ensure that the architecture of the hospital is fully
aligned with the (business) strategy of St. Matthews. The next step is to design a suitable
architecture for St. Matthews, given the business objectives discussed in this chapter and
continued in the next.

This page intentionally left blank

CHAPTER

Introduction to Service-
Oriented Architecture

16

Oracle SOA Suite 11g Handbook

lexibility, or business agility, is an important goal for modern organizations in order
to compete in fast-changing markets, keep up with ever-evolving regulations, and
satisfy demanding customers. Globalization and the Internet have greatly influenced
the rate of change and the range of opportunities for interacting between business
partners and reaching out to consumers.

It is the challenge to IT departments the world over to meet the quickly changing requirements
from the business—and ideally to provide their organization with innovative capabilities and a
competitive edge based on new technological advances. IT needs to be flexible to cater to fast-
changing business needs and to realize short times to market—preferably at lower costs and with
higher quality. IT can add value to the business in the form of new products and services. Last but not
least, IT can improve current operations by reducing (human) errors, reducing the turnaround time of
processes, and providing real-time insight in the execution of operations and its possible bottlenecks.

Architecture strives for alignment between business and IT. This chapter introduces Service-
Oriented Architecture (SOA) and discuss how it delivers specific capabilities in the overall
alignment: SOA aims at providing the agility to quickly respond to changing requirements by
rewiring existing and assembling new functionality through the reuse of existing building blocks
(services) and providing capabilities in an interoperable, cross-platform, and cross-domain
manner; functionality is exposed through services with well-defined interfaces and encapsulated
(hidden) implementations.

Associated with SOA are various other topics that warrant our attention. One such topic is
Business Process Management (BPM)—a continuous process improvement endeavor that's
focused on designing, executing, and monitoring business processes and looking for ways to
optimize them; business processes in BPM consist of human tasks and automated operations—the
latter implemented through calls to Web Services. BPM promises more control and higher quality,
lower costs, and an intrinsic capability to rapidly change the process flow. BPM integrates with
and can build on SOA. BPM is discussed in Chapter 11.

Another topic that borders on SOA and that can be seen as an extension or specialization of SOA
is Event-Driven Architecture (EDA)—a pattern that promotes a high degree of decoupling between
systems and components through event-based, asynchronous communication via a generic mediator
from producers to consumers; EDA allows business processes to initiate service execution in
response to events without creating direct dependencies that would hamper the ability to change the
components. This chapter briefly introduces EDA; it will make reappearances in Chapters 9 and 20.

SOA, BPM, and EDA are related, as you can see in Figure 2-1.The business processes in BPM
raise events when certain business conditions occur and call services to perform automated tasks.
The services may invoke other services as well as trigger additional events. The event mediator
handles the events produced by processes and services, and propagates them to any registered
consumer—possibly a service to be initiated or a process to be triggered or updated.

The SOA Suite contains components that help to implement these architectural patterns and
also works with other products that provide some of these capabilities. In Part Il as well as in Part
IV of this book, we will use these components to implement services that provide reusable
capabilities and that can be assembled in even more complex and specific business services with
higher added value. We will also use them to develop business processes that combine human
tasks with the automated functionality from the services. Events produced by services and
processes are processed by the event delivery network that hands them to consumers.

Before we start using the SOA Suite product, let’s first further define and discuss Service-
Oriented Architecture, albeit on a very high level. We will identify some legitimate reasons for

Chapter 2: Introduction to Service-Oriented Architecture 17

EDA
_________ Business process_ ________
BPM Automated Human
step step
SOA ‘ Service ’

FIGURE 2-1. SOA, BPM, and EDA

companies to start with SOA and show why Mary, our architect from Chapter 1, is considering
applying these architectural patterns and approaches for St. Matthews as part of the proposed
architecture solution. Note that if you just want to get started with the SOA Suite product, you
can skip this chapter for now and turn to Chapter 3 for installation and quick-start guidelines.

Service-Oriented Architecture (SOA)

Service-Oriented Architecture is a way of organizing applications and processes in terms of
services. Functionality available through automated means is exposed in services that can easily
be used and reused. However, services do not need to be automated: An action performed by a
human actor can be regarded as a service, too. In fact, one of the key aspects of working with a
service is that we do not know how it is implemented or whether it is automated at all.

An important objective and benefit of working with services is decoupling—the ability to have
services interact while minimizing their interdependencies. The latter allows us to make local
changes with minimal impact on the whole environment, such as modifying the implementation of
a service, changing its physical location, or even replacing one service with another. In addition,
complex services and processes can easily be composed that offer rich, dedicated functionality by
assembling results based on multiple less complex services.

SOA is an architectural concept that has different implications for different people in an
organization.

Several important factors that drive the choice for SOA are:

B Increasing competition and changing rules and regulations leading to the need for more
frequent and more rapid changes in business processes and IT support for those processes

B A higher degree of integration throughout an organization, across business domains, and
across technology platforms

B Increased interaction with external business partners and governmental agencies
B A more process-oriented approach in the way IT supports the organization and a quest
for lower costs and higher quality through reuse of existing, proven IT assets

The cornerstone of SOA obviously is the concept of a service. SOA is all about services. And
what exactly is a service? For our purposes, we can define a service as a collection of capabilities

18 Oracle SOA Suite 11g Handbook

(sometimes referred to as operations) that are defined in a standardized interface contract and can
be invoked by external consumers. The implementation of the service is encapsulated, hidden
from the consumers. Services in the context of this book are usually Web Services that have the
additional quality of interoperability through the use of industry standards, both for specifying the
service contract and for the protocol used for making calls to and receiving responses from the
service.

We can discern several types of services:

B Business services Services that offer quite dedicated, often complex functionality
defined in business terms and supporting tasks in business processes (called business
services or task services); these services are typically exposed to consumers throughout
the business domain, the enterprise, or even to a wider audience.

B Elementary services Services with fine-grained functionality with limited scope, often
working in the context of a single business object; these services do not offer very high
value by themselves, but are good candidates to be reused in the more complex business
services. As a result, these so-called entity or elementary services are only locally
exposed.

B Technical services Services with no immediate business relevance, supporting other
services with cross-domain, technology-oriented capabilities—for example, for logging,
transforming, and exception handling. These services are also called utility services.

NOTE
“ There are many excellent and usually quite voluminous books on the
J concepts and principles of Service-Oriented Architecture (see this
book’s wiki for some references). This chapter only aims at giving a
pragmatic introduction to some terms and concepts; please refer to

one of these extensive resources for detailed discussions and thorough
definitions.

We will discuss SOA from several points of view. We will first look at SOA as seen from the
business—in terms of business considerations such as cost, risk, opportunity, time-to-market,
flexibility, and customer satisfaction in a way that makes sense to nontechnical managers. This
discussion includes IT and the IT department—not at the technical level, but in the same
business-oriented way.

Next, we discuss SOA from an architecture point of view. We try to get clear on what
architecture tries to achieve and what the key architectural principles of SOA are. This discussion
introduces a number of terms and definitions that are reused throughout the book. It provides a
high-level description of several key infrastructural elements used in an SOA—without going into
specifics concerning the components in SOA Suite 11g that play the role of those elements (that is
for later in the book).

Finally, we come to the technical and implementation level and go into some technical aspects
of adopting SOA. We also talk about some of the crucial industry standards and technologies that
make SOA happen today.

It is unavoidable to have some overlap between these three points of view. They certainly do
not make sense in isolation.

Chapter 2: Introduction to Service-Oriented Architecture 19

SOA from a Business Point of View

Why would you want to adopt SOA from a business perspective? Service orientation promises
business agility. SOA is “BAD,” as we saw in the previous chapter: Business Agility through
Decoupling. SOA should help us to adapt our business processes and the underlying IT systems
much faster, cheaper, and more reliably than we could in the past. Reuse of proven building
blocks in new composite services and reworked business processes should allow both for quicker
time to market (reuse instead of building from scratch) and higher quality (reuse of services that
have been tried and tested). The decoupled design helps to minimize the impact of changes—in
terms of effort and risk. There is, of course, a cost benefit in all this as well.

Another trigger for SOA from a business perspective is competitive pressure, demands from a
key customer or state regulations. An organization may simply need to have the capability to
interact through (Web) Services because important business partners or the government stipulate
that. Just the implementation of a Web Service interface exposed to the outside world does not
necessarily force the organization to adopt SOA across the board, of course, but it can be the
crystallization point.

What does it mean from a business point of view to describe your architecture in terms of
services? We have our working definition of a service—capabilities described by a contract and
exposed in a way that hides the implementation and allows invocation by various types of
consumers, potentially in different business domains, in other technology realms, and even in
external organizations. There are different types of services (business, elementary, and utility), but
from a business point of view, we only care about services with a clear meaning and value to the
business and in business processes—services that the business wants to use in processes and user
interfaces or offer to internal consumers in the same or in different business domains or to external
clients and partners. Examples of services with business relevance are:

B A service that returns all information about a patient to consumers inside the hospital.

B An ordering service that customers of a manufacturing company can invoke to place
their orders (and track the status of those orders).

An invoicing service for suppliers of a particular company that they can send their bills to.

B The discount calculation service that returns to internal invokers the total discount on
an order calculated based on all business logic regarding customers, loyalty programs,
order size, and current campaigns. This service is typically invoked as part of a business
process around order handling—a process that may very well be initiated by the ordering
service mentioned previously.

B Central communication services available to all departments in the organization, such as
an e-mailing service or a service for letter printing and mailing.

These business services are usually composed of one or more elementary and utility
services. Flexibility is achieved in several ways. Organizations can rapidly create new business
services through composition of existing services. In addition business processes are defined
as a sequence of human activities, logical flow elements, and calls to business services. As a
result, changing a business process, or even creating a new one, is usually a fairly simple task
because it largely means rewiring the flow and adding or modifying calls to the services. The
hard work was already done—when the services were implemented. Another benefit we get

20 Oracle SOA Suite 11g Handbook

from the layered approach with business services building on elementary services is the
adaptability it gains us. It is not just rewiring or recomposing services and processes; it is also
the fact that because of reuse, especially of elementary services, a required change (for
example, in a calculation or the structure of a database table) typically only needs to be applied
once in a single service implementation. Fine-grained, low-level functionality is ideally
implemented only once in an elementary service that is frequently reused.

Talking about products and services is not new for organizations or business people. The
great thing about SOA is that not just the business is speaking terms of services and products, so is
IT. This will make communication between IT and the business easier, both during the initial
realization as well as in maintenance. Defining business services won’t make the architecture
service-oriented, obviously. IT needs to follow through the concept of services all the way down
from the business processes and services to the elementary and utility services that do the actual
work. Reuse and decoupling need to be engrained in the IT organization.

Existing applications and business logic will have to be exposed as services. Most of the
capabilities the services will need to provide are already available, hidden away in legacy
applications, ready for reuse. We do not and should not need to throw those away and replace
them with code built from scratch. However, we need to win the hearts and minds of the IT staff
to adopt the service-oriented way of thinking and acting. This will take training, coaching, and
coaxing. As with any new acronym, SOA may be perceived as trying to change the world in a
dramatic way—and it should be clear to those involved that while things will change, it is not so
much a threat as an opportunity to hang on to many good things and improve what has been
holding them back all these years. It is with the IT staff just as it is with the applications
themselves: Wrap and reuse, do not rip and replace.

We will have to do some work to service-enable the existing applications, both for exposing
their reusable logic—as discussed earlie—as well as to make them reuse services offered to
them. We may currently have duplication of business logic in various systems—that situation is
undesirable. Ideally, any piece of logic is implemented only once, is exposed as an elementary
service, and is invoked from anywhere that logic is currently used. We should identify such code
duplication, determine which of the “duplicates” is the one to stay, service-enable that one, and
ideally call the service from all other current duplicate locations to reuse and de-duplicate.

When and why should an organization move to SOA? Basically there are three types of
motivators—although they are usually related and overlapping:

B Strategic reasons
B T needs

M Tactical reasons

Strategic Reasons
Organizations that are in fast-changing markets, or in markets with fast-changing laws and
regulations or frequent acquisitions and mergers, need to be able to react to these changes in
an effective and efficient way. The organizations have to “embrace change” as their mantra.
Every single change is usually tactical, but the structural capability of an organization to adapt
to changing circumstances is a strategic objective. An organization can decide to use SOA as a
way to achieve this strategic business goal to continuously adapt and improve.

SOA can help reduce time to market by making it possible to compose new services out of existing
services and redesign business processes in short cycles. SOA can help reduce cost by reusing existing

Chapter 2: Introduction to Service-Oriented Architecture 21

assets (such as mainframes and commercial off-the-shelf software such as ERP systems) in new online
services. Some examples of companies in such markets are telecommunication companies (fast-
changing markets because of new products and technologies and mergers), insurance companies
(fast-changing laws and regulations, mergers, and internationalization issues), and government agencies
(changing laws and regulations, cost reduction, and e-government for easier and uniform accessibility).

In the case of St. Matthews, these issues apply as well: The hospital needs to compete with
other hospitals, and changes in laws and regulations occur frequently. To the hospital, reusing
existing assets is very important. St. Matthews has invested heavily in a number of custom-made
systems in the past and is very reluctant to start all over again—because of the time it would take
and especially the costs involved. Mary decides to address the need for agility at St. Matthews
and to propose SOA as part of the envisaged architecture to the board of directors.

Tactical Considerations

Organizations often suffer from inflexible IT systems. Large monolithic applications tend to mix
business logic, user interface logic, and data; there is no clear separation of concerns, and logic is
duplicated across applications. These systems often serve multiple functions from different
domains. For example, the clinical information system that St. Matthews uses started out as a
billing system. To send a bill to a patient or the insurance company, the system needed to include
information about the treatment this patient received. There was no system available that offered
this information, so it was decided to add this capability to the billing application.

The IT department and the hospital administrators started to use the system as a patient
administration system. Soon afterward, it was further expanded with data about laboratory tests.
What started out as a lean, easy-to-maintain, single-purpose system grew to a large monolithic
system serving several purposes. When somebody requests a change for one purpose, this
strongly impacts or even breaks some area of functionality—because it is all manacled together.
Every change becomes more difficult to realize, takes more time, and becomes more risky and
expensive. The user satisfaction with the system has understandably gone down.

Introduction of more loosely coupled components will reduce the cost of individual
changes—because the modifications do not ripple out—and increase the ability to satisfy requests
from the users in a timely fashion. Of course, this flexibility comes at a price—or at least so it will
be perceived initially: Architecture needs to be thought through, middleware infrastructure is
required, and existing applications need to be service-enabled. In the very short term—the scope
of a single business requirement—this will not have a great return on investment, obviously.

In the longer run, the IT organization can once more provide the service levels required by
the business in terms of time to market, quality, and cost of new requirements as well as the
predictability of the software development process. The IT organization could, instead of being the
eternal bottleneck, step forward and even suggest business functionality based on technological
advances. We will discuss this in more detail in the implementation view.

Loosely coupled components that are autonomous and relatively independent are an example
of a more federated approach in the IT environment. Benefits of this federated approach with
clearly identifiable, stand-alone components that can be united to work together include the early
and more thorough design effort with each individual component, the standardization that is
applied, and the resulting ability to deploy these components on various servers—thus allowing
the optimal load distribution (and software license cost).

This focus on federation with loosely coupled stand-alone components leans on another
important objective: intrinsic interoperability across applications, locations, business domains,
project teams, and technology platforms. Interoperability between stand-alone components is the

22 Oracle SOA Suite 11g Handbook

essence of service orientation. Interoperability requires standardized interfaces described by
contracts along with up-front trust and acceptable service levels (for example, performance and
reliability).

Somewhere in the middle between strategic and tactical considerations is the desire to be
vendor-independent and to have the freedom to choose “best of breed” solutions for specific
areas of functionality. Instead of being forced to buy all components from a single vendor, many
organizations want to be able to shop around for the best possible deal and vyet still have all
products interact. A service-oriented approach and the underlying open standards enable that
interaction. Therefore, all software components—whether bought from commercial vendors,
acquired from open-source initiatives, or custom developed—must comply with this approach
and these standards.

Sometimes a company starts with SOA because of a specific, urgent need from a specific
department in an organization. An example can be a marketing division that wants to introduce
short-term campaigns based on popular movies: As soon as a movie hits the top-10 charts, they
want to start giving away gadgets with online orders. Those gadgets need to be sent along with
the order to keep the extra cost down.

This means that the company needs to combine existing functionality (sending out orders)
with new features (ordering and sending gadgets). Using Web Services to open up the legacy
systems, as well as creating an ordering process that includes sending gadgets, can solve this
problem. A Service-Oriented Architecture makes it possible to use the same functionality in
different processes, and thus to be able to change these processes quickly and support specific
short-term needs.

Another typical example is an organization with a very important customer that has demanded
a Web Service interface for specific interactions, replacing the current manual operations or
FTP-based data exchange. This customer needs to be satisfied urgently and, therefore, a small part
of existing applications needs to be service-enabled. This can be done in relative isolation, without
enterprise architecture dictating a service-oriented approach or SOA strategy.

Tactical—or perhaps we say “opportunistic’—implementation is different from a strategic
SOA initiative in several ways: Strategic SOA is more planned and takes into account long-term
goals. Tactical SOA solves short-term, localized problems. Strategic SOA has a bigger impact,
potentially or eventually impacting the entire organization. Tactical SOA has limited impact; it is
far less invasive. The benefit of tactical SOA is immediate and limited; that of strategic SOA can
take a little longer. Strategic SOA takes governance into account, whereas tactical SOA tries to
manage Web Services along with the traditional application. This poses a risk: If an organization
is mid-size to large, it becomes unmanageable after a while.

Tactical SOA makes sense for while, but should mature to a strategic SOA to survive the hype.
In fact, one may wonder whether “tactical” and architecture can really go together. Tactical use of
SOA principles may solve an urgent, localized problem, but does not touch upon the true meaning
and value of SOA. Even though SOA concepts are applied and service-oriented technology is used,
there is no real thrust for decoupling, reuse, and enterprise-wide business agility. When tactical
SOA-like implementations are not followed up with a strategic SOA initiative, they are hardly any
better than traditional point solutions and point-to-point architecture.

Summarizing SOA from the Business Point of View

An organization usually has some combination of reasons to start with SOA. It might start tactical
and move to strategic after the first successful projects. Or it starts with a combination of strategic
objectives and IT considerations.

Chapter 2: Introduction to Service-Oriented Architecture 23

From a business perspective, there are both strategic and IT reasons to start with Service-Oriented
Architecture for St. Matthews. In Chapter 1, the following strategic objectives were mentioned:

B The hospital needs to cooperate with other healthcare organizations to improve the
quality of care.

B The hospital needs to improve patient satisfaction by becoming a customer-centered
organization.

B The hospital needs to reduce cost.

Moving to a Service-Oriented Architecture can support these goals. Cost can be controlled by
reusing existing assets, cooperation is facilitated by the use of (Web Service) standards, and
patient satisfaction can be increased by offering new services to patients faster and ensuring that
all departments in the hospital share information about patients.

The main IT reason to move to SOA is the current inability to handle change. As just mentioned,
a simple change request from the business takes up too much time due to duplication of business
logic and data redundancy, as well as silo-style applications in which process flow, business logic,
user interface logic, and data integrity are intertwined and not available for reuse.

Mary has already defined the business services and products of the hospital. She will propose
to the board of directors to start a proof of concept with the information management department
to evaluate the suitability of the architecture choice based on SOA for St. Matthews.

SOA from an Architectural Point of View

Service-Oriented Architecture is an architectural style. But before we can investigate what this
means, let’s first define what we mean by architecture. The definition of architecture used in
ANSI/IEEE Std 1471-2000 is as follows:

“The fundamental organization of a system, embodied in its components, their relationships
to each other and the environment, and the principles governing its design and evolution.”

Components and Their Relationships

The A in SOA stands for architecture. So when we are discussing SOA, we are speaking about
architecture, and therefore we are talking about the organization of the system. For SOA this means that
the organization of the system is described in terms of services. A service itself consists of several parts:

B A service interface that defines the operations, parameters, and result of a service in a
common, standardized language.
B A service implementation that “does the actual work.”

B A service contract that defines the terms of use: who has been granted access to the
service, how often one can use it, and any fees charged for calling the service. Also
part of the contract are the service levels offered by the service provider. These specify
characteristics such as maximum service response times, availability (opening hours) of
the service, and the load the service can handle.

Figure 2-2 shows the two key roles in SOA:

B Service consumer The application, business process, or (other) service implementation
that uses the service

B Service provider The component or application that provides or implements the service

24 Oracle SOA Suite 11g Handbook

Service
registry

Find Publish

Service
provider

Service
consumer

FIGURE 2-2. Service roles and their relationships

The third role in this figure (service registry) is discussed later on: It is the intermediary that
brings consumers and providers together.

Architectural Principles around Service Orientation

As defined earlier, principles governing the design and evolution of service-oriented systems are
part of architecture. Some of these principles are briefly introduced in this section. Note that a
thorough discussion is beyond the scope of this book—see, for example, Thomas Erl’s SOA:
Principles of Service Design (2007, Prentice Hall) for such a comprehensive discussion.

Intrinsic Interoperability Service orientation and all the objectives it helps to achieve hinge on
interoperability. Functionalities implemented in different applications, technology stacks, business
domains, and/or physical locations need to work together. We need to be able to build bridges
across traditional divides. A Java-based application must be able to invoke functionality implemented
in C# running on a Windows server. And a PL/SQL application running in an Oracle database in the
data center in St Matthews’ central building needs to be able to interact with the invoice
administration in SAP.

Interoperability—Ilargely based on Web Services standards—is one of the key differentiators
between Service-Oriented Architecture today and similar concepts and initiatives in past decades.

Loose Coupling Components cannot work together without some form of coupling—either
directly on each other or through an intermediary. We need to carefully find the right level of
coupling so that the interaction can take place efficiently enough yet the coupling does not inhibit
our ability to change the implementation of components or add interactions with other components.

Coupling can exist along various axes. Examples include functional, technical, and temporal.
A certain degree of functional coupling is unavoidable: A consumer needs to know the interface
of a service in order to invoke it and process the response in a meaningful way. However, the
interface should not expose more details than necessary, especially when a consumer may come
to rely on such details. Technical coupling refers to the protocol used for communicating with a
service as well as the way the messages are constructed (XML, comma-separated, JSON, binary,
and so on). The more proprietary the requirements are that a service enforces on its consumers,
the higher the degree of coupling. The use of open standards for interaction is an important
element in reducing the level of coupling.

Chapter 2: Introduction to Service-Oriented Architecture 25

Synchronous interactions are pretty common. Yet compared to asynchronous communication,
they have additional coupling: They require the service provider to be available when the request
is made and to respond in a timely fashion. Asynchronous communication with service providers
supplies additional decoupling. The effect the voice mail has on our ability to communicate by
telephone is an example of decoupling synchronous interaction through the introduction of an
asynchronous mediator.

In general, a higher degree of coupling means less flexibility because it becomes harder to allow
components to evolve independently without ripple-down effects on their consumers. Loose coupling
makes it easier to modify or replace a component without affecting other components. Loose coupling
also makes the reordering of services in business processes more achievable—the service should not
depend on the order in which they are invoked, only on the input passed into them.

Encapsulation, Abstraction, and Need-to-Know Basis Consumers cannot form dependencies
on what they do not know about the services they are invoking. That in itself is an argument for
strict encapsulation. Anything that a service keeps to itself can be changed without impact on
others. Security considerations are another reason for encapsulating the inner workings of services.
Examples of information that should typically be hidden from public view include details about
the implementation, both the structure of algorithms and names of private operations, as well as
anything about the tools and technology used for creating the implementation. The physical
whereabouts of a service is another example of information that should largely remain undisclosed.

Autonomy of Components The more autonomy a service has, the better it can perform its
responsibilities and the easier it can evolve in a flexible manner. Autonomy exists both at run time
and design time. Run-time autonomy refers to the degree of control a service has over its processing
logic and its environment at run time. Greater autonomy—fewer dependencies on entities that are
not controlled—means more freedom for run-time optimizations by administrators, thus leading to
consistent, acceptable, and predictable behavior. Such optimizations can include changing the
hardware configuration, relocating services, and utilizing hardware appliances to improve run-time
performance or attain the required auditing or security levels.

Design-time autonomy refers to the level of freedom service owners and developers have to
make changes to a service over its lifetime. When the service is used by few consumers and it is
based on its own data model, it has a lot of room for maneuvering. When it is heavily reused and
relies on a shared data model, that freedom is limited, depending on how loosely coupled the
consumers are and how abstract the service’s interface is.

The challenge is to balance our desire for reuse with the freedom to improve services. Loose
coupling is obviously important to achieve autonomy (and vice versa), as are encapsulation and
abstraction. A service that is not reused by anyone is quite autonomous, but fairly irrelevant as well.

Standardized Service Interface and Contract In order to facilitate the process of discovering,
understanding, and selecting services to reuse, and to automate the creation of interactions with
services, it is important that all services be described in a similar way—preferably according to
industry standards. The contract for a service consists of various elements, usually at least the
following:

B A technical interface description with operations and parameters (input, output, and faults)

B A supporting data definition document that describes the structure of the parameters in
detail

26

Oracle SOA Suite 11g Handbook

B A document specifying Quality of Service aspects of a service—for example, regarding
security and reliable messaging

B A service-level agreement (SLA) that describes service characteristics such as response
times, availability, and costs involved with invoking the service

B Additional metadata about the service that provides, for example, more elaborate
descriptions of the functionality of the service, plans for its immediate future, and
information on who is using the service, for what purpose, and what the user satisfaction
ratings are

The standard service contract specifies the documents that should be provided in the contract
and details the design standards that these documents should adhere to. WSDL (Web Service
Definition Language) and XSD (XML Schema Definition) are often used as the underlying standards
for the first two documents. Quality of Service aspects can be laid down in a structured document
using WS-Policy and more specific standards such as WS-Security Policy and WS-ReliableMessaging.
There is no industry standard for SLAs. It would make sense for an organization to design its own SLA
template to use for all the service-level agreements it will publish for its services.

Reuse of Existing Assets One of the important means of achieving agility is the reuse of
existing assets when composing new applications and services. St. Matthews can reuse its existing
Clinical Information System (CIS) by exposing its functionality through Web Services. This makes
it possible to quickly implement composite services and business processes that rely on CIS
functionality.

Services must be designed with reuse in mind: The functionality offered by a service should
not be determined with a single project, process, or application in mind. Instead, a broader view
should be taken, and the place of the service within the business domain or even the enterprise at
large should be considered. The interface should not be too specific, tied to a single consumer’s
purpose. The services need to have the right granularity to invite reuse. More on this aspect a
little bit later.

Reuse should be fostered—it typically does not happen overnight, nor does it happen on its
own accord. Initially a lot of work may be required on the part of the architects to convince
project teams to reuse instead of build from scratch. Management may have to offer some form of
reward to get reuse going.

Of course, the infrastructure needs to support reuse: The reused components need to be
accessible, available, and scalable. Furthermore, services must allow for concurrent access by
various consumers.

Service Discoverability Reuse can only happen when it is known which assets are available
for reuse. Services need to be discoverable. The services need to have metadata associated with
them to ensure that service consumers know the purpose of the services and the conditions that
apply when invoking them. To facilitate the discovery of services, a third entity frequently joins
the party of the service providers and consumers seen in Figure 2-2: an intermediary that helps to
bring the other two together. This intermediary is usually called a “service registry,” and provides
a standardized method for dynamic lookups and/or design-time discovery of services. The service
provider can publish its services in the registry, so potential service consumers can find the
services they need, with enough information about the functional interface and contract, the
service-level agreement, and the current usage of and the longer-term plans for the service, to
make a decision on reusing it and how to go about it.

Chapter 2: Introduction to Service-Oriented Architecture 27

Intrinsic Characteristics of Services Services should satisfy some general requirements in
order to optimally contribute to the service-oriented computing infrastructure:

B Granularity One of the endless debates in service design involves the granularity
of the service. Should it be fine-grained, offering functionality that is quite generic,
extremely reusable, and with very limited added value? Or should it be coarse-grained,
offering tremendous value to very few consumers, with functionality that’s very specific
and hardly reusable? Services designers must strike a balance, which can be quite a
challenge.

Note that different forms of granularity exist: at the service level (the width of the
functional scope of the service), at the level of individual capabilities, applied to data

(do we exchange entire object graphs based on the canonical data model or just exchange
specialized parameters for capabilities?), and applied to data constraints (how far do we
go in defining constraints on the data flowing to and from the services?).

You will find granularity discussions in the real world too—for example, department
stores vs. specialty boutiques, or specialty rosary pliers vs. all-purpose pliers.

B Atomicity A service should execute an atomic operation or transaction in its entirety.
If not, an atomic operation would be split over multiple services (and we all know what
happens when you split atoms). It would be nonsensical to make it the responsibility of a
service consumer to have to invoke all providers of the subatomic parts of an operation.
Note that a service may encompass more than one atomic operation, although typically
several or all actions executed by the service are still part of a single transaction.

B Idempotency Services should not produce unwanted side effects, especially when a
request is submitted multiple times. The background for this capability is that sometimes
a request sent to a service does not result in the expected response message. There can
be several causes, including a failure to deliver or process the request or a problem
with delivering the response. When the response does not arrive, the service may be
invoked again. However, because the reason for the absence of the response could be a
problem on the return trip of the response message, it may very well be that the service is
executed for a second time.

Ideally, we can prevent this situation from ever occurring by using reliable transports
with guaranteed message delivery. However, that may not always be possible, and

to cater to such situations the service should be idempotent. This can be achieved

by recognizing duplicates of already processed request messages. Alternatively, the
capabilities (operations) of a service can be designed not to produce unforeseen side
effects. A very fine-grained example could be to design a capability used for raising
salary not as raiseSalaryByX but as setSalaryAtX. The effect of invoking the latter service
capability is very consistent and clear to the service consumer.

B Statelessness Services should minimize their resource consumption by holding on to as
little state information as possible. A successful service is ideally reused and composed
many times over. Typically such successful services are invoked very frequently and
simultaneously. To not overtax the shared infrastructure and resources—primarily
memory—it is important that a service not hang on to large volumes of data. If necessary,
especially for a longer-running service, to collect and construct data structures and
have those available in later stages of service execution, this state can be transferred to

28 Oracle SOA Suite 11g Handbook

infrastructure components that are optimized for handling state. Examples are a database
such as the BPEL Dehydration store and a data grid such as Oracle Coherence. The load
on the infrastructure can also be reduced by making a distinction between data that a
service needs to process and data that it only needs to pass on; the latter does not need
to be handled as state, nor does it need to be deserialized by the service. It could be
shipped around as an attachment—or even less intrusive and burdensome as nothing
more than a reference or claim check to a bunch of data. Only when the message flow
has reached a component that actually requires the data does it have to be retrieved
across the infrastructure.

Note that another way to reduce a service’s burden on the infrastructure is to offload
CPU or other resource-intensive operations to specialized engines such as hardware-
accelerated XML parsers or transforming engines.

B Composability Many services have their primary role as a component in composite
services. It is therefore important that these services can play their part well. A focus
on composability will influence the discussion of the granularity of services and their
capabilities. Frequently it will prove beneficial to have a service offer a similar capability
at different levels of granularity. For example, the capability to retrieve patient records is
ideally available in various forms: get a list of a small subset of attributes for all patients
that satisfy certain search conditions; get a full patient record based on a primary key;
and more importantly, out of efficiency and composability considerations, get a set of
patient records based on a collection of primary keys.

Execution efficiency is very important, especially for fine-grained services that are
candidates for frequent inclusion (and frequent invocation) in composites.

B Event awareness Event-Driven Architecture (EDA) will be introduced later in this
chapter to complement service orientation with an even more decoupled means of
interaction: Subscribers that are unknown to producers get notified of events that make
business sense to them. EDA can only work when any component—application, service,
or business process—that comes across occurrences of one of the business events that
have been identified as relevant to the business publishes that event to the world—or
at least to the event mediation infrastructure (the Event Delivery Network in Oracle
SOA Suite 11g). A requirement on all services therefore is that they, too, take on this
responsibility of publishing events whenever they encounter or initiate them.

Layering the Enterprise Architecture

When we are describing an enterprise, we often organize the architecture in the layers shown in
Figure 2-3. Each layer has specific characteristics, responsibilities, and dependencies, and therefore
has different requirements for standardization.

Application Service Components Layer The application (service) components layer consists
of the service implementations. For example, if we have an appointment service, the application
component that creates the appointment in our clinical information service is the service
implementation.

Services and Events Layer The services and events layer describes the contracts and the
interfaces of the service. The contract of our appointment service could state that it is available
during office hours and can be used by authorized personnel only. The interface can be defined

Chapter 2: Introduction to Service-Oriented Architecture 29

GUI (mash-up & portal)

Business processes

ESB

Services and events

Application service components

FIGURE 2-3. Layering the enterprise architecture

through operations, inputs, and outputs, as well as the events consumed by the service and
published by it. The appointment service, for example, has the following operations: create
appointment, cancel appointment, and reschedule appointment. The input parameters for the
create appointment operation are patient, date, and doctor; the output parameters are the
appointment details. The service publishes the “appointment was cancelled” event and
consumes the events with regard to the death of a patient.

Within the services layer, we usually apply a taxonomy—a classification scheme to organize
the potentially large number of services. This is useful, because it helps keep track of what services
exist in the organization. This is an important precondition for reuse: You can only reuse something
if you know that it exists and are able to quickly find it. Even more important: Services with specific
classifications have different rules applied with regard to granularity, behavior, security, and more.

Mary creates the taxonomy by defining the following service types for St. Matthews: business
services, elementary services, technical services (e-mail, notification service), and enterprise
services (the latter are business services exposed outside their business domain).

A service inventory (or service repository) is a collection of services under some form of
governance that assists the organization in finding services, defining and maintaining taxonomies,
and recording metadata about the services published in an enterprise. Various tools exist that
provide an implementation of a service inventory.

The service layers represent different levels of abstraction. Elementary services are specific to a
domain. When we use business domains (sometimes called information domains) to organize our
applications, we can assign the elementary services to these business domains. Elementary services
often offer CRUD-type operations on an entity (CRUD stands for create, update, delete). An example
can be an elementary patient service that offers the operation “addPatient.” Business services are
usually composed of one or more elementary services and perform an atomic operation or task
defined in the business domain. An example of a business service is a medication service that has
the operation “prescribemedication.” This service can use the patient service to look up address
information about the patient, and a “MedicalRecord” service can be used to get the prescription
needed.

Enterprise services are business services that the organization as a whole offers to consumers
throughout the enterprise—across business domains—and sometimes even outside of it, to
customers and business partners. A special type of enterprise services in the context of St.
Matthews includes services offered to the hospital by its external partners, such as insurance

30 Oracle SOA Suite 11g Handbook

companies, other hospitals, government agencies, and third parties in the cloud. St. Matthews
keeps a list of these as well. It is important for the hospital to keep track of all the dependencies
on services, including these external services.

Business events are published by services and business processes to a generic event-handling
framework. These events carry a (usually small) payload with specifics about the events.
Interested consumers—services, business processes, or application components—register their
interest in events of specific types with the framework through subscriptions. When an event
occurs that they have subscribed to, the framework sends it to them. Thus, events establish a
decoupled link between producers and consumers of events. Note that events, too, exist at
various levels: business, elementary, and technical. Complex event processing can be used to
deal with the finer-grained and more frequently occurring elementary events, as we discuss in
Chapter 19.

Business Processes Layer This layer contains the business processes. Simply put: A business
process consists by and large of calls to services for automated operations and human tasks for
manual actions—with some flow logic in between. Business Process Management (BPM) is
concerned with the management of business processes in an organization. The cycle of Business
Process Management consists of the following stages: business process analysis, business process
execution, and business process monitoring. BPM is discussed in more detail in Chapter 11.

There are different types of processes. One category is formed by human-centric processes,
where most of the work is done by humans and the most important challenge is to assign
workloads evenly and to monitor the progress of tasks. This is what is traditionally known as
workflow. Another category includes document-centric processes. These are processes that
evolve around documents, such as contracts or a press release for a website. Typically, you will
see this in document management and content management systems. There will be processes for
scanning, editing, approving, and publishing the documents. The third category of processes is
system-centric processes. This is what is traditionally called orchestration. One of the biggest
improvements in system-centric processes in recent years has been the shift from batch
processing to straight-through processing of one item. The last category of processes is called
rule-centric processes. A rule-centric process is one that has many alternative paths, depending
on existing business rules.

Apart from having different types of processes, we usually define different levels of processes
in the process layer (see Chapter 1). Mary decides to use three levels: The first level contains
value-added chains that may string several business processes together. We saw an example in
Chapter 1. The second level contains the end-to-end processes. This was described for the
appointment process in Figure 1-10.

The lowest level is the level that is relevant for developers and end users: This is the process
that will actually be implemented and run. It contains implementation details about the types of
activities (automated, human step, and so on), and describes in detail the flow logic with loops
and parallel flows that can be left out of the model at the second level.

Here are two design patterns that St. Matthews has decided to apply for business processes:

B Processes should not be too generic. Designing business services is different from
designing a process. In software, you are looking for reuse, whereas in processes you
are looking for efficiency and possibilities for improvement—goals that are at odds with
generic, all-purpose designs.

B Use parallel execution flows whenever possible. One of the ways to speed up a process is
to have activities not wait for unrelated events.

Chapter 2: Introduction to Service-Oriented Architecture 31

Oracle BPM Suite and Oracle SOA Suite 11g offer several options for BPM. The components
are discussed in detail in the next chapter. To design processes you can use either Oracle BPA
Suite or the lighter-weight Oracle BPM Studio, if you don’t need the full architecture features and
the many dozens of diagram types that BPA Suite offers.

GUI Layer This layer contains the interface that interacts with end users. Components in this
layer, such as back-office applications or customer-facing portlets and mash-ups, use the business
processes and services layer to retrieve data and perform actions. For example, St. Matthews
could create a portal for all patients. Information about the hospital visiting hours can be
displayed there—retrieved from a service that wraps a content management system. Patients
could also be offered an entry form to request appointments. This part of the application could
use the appointment service we discussed earlier to show free slots and then present the end
result: the scheduled appointment itself.

The GUI layer at St. Matthews also contains user interfaces for business partners such as
general practitioners and employees at insurance companies. A last, very important group of users
of the GUI layer is the staff of St. Matthews itself. Some of these user interfaces may provide the
front end of human tasks that are part of the business processes.

Rethinking the Notion of an Application

Not too long ago, many organizations and development teams tended to consider an
application to be the combination of the user interface, the business logic, and the database
that worked together to provide a specific set of functionality to a group of users. The key
applications in organizations typically had (or still have) nicknames or abbreviations that
are used with something like “loving frustration.” The application may be implemented in
Oracle Forms, Visual Basic, Delphi, Oracle Portal & Web/PLSQL, or some other application
development tool and technology. Usually, the application and the underlying database go
by the same name, are developed by the same team, and are monogamous: They were not
designed to interact with other systems.

The data in the database under the application is a valuable enterprise asset that may be
needed in other business domains. Frequently and increasingly, the data and business logic
in these core applications are also required for other user groups—such as business partners
or customers—and through channels Aoolicat

pplication
other than the current channels, such as EEE -
self-service web applications or Web
Service APIs. Perhaps as a first step on
the road to (near) future developments,
the mental picture of these archetypical
applications should be changed from a
single black box containing the database,
business logic, and (user interface)
application into two logically separate
components: database and business logic
on the one hand and the application on
the other, as shown here:

Application
(user interface)

I/

0P g

Data

(Continued)

32 Oracle SOA Suite 11g Handbook

The application is usually quite specific for the group of end users it services, the
processes it supports, and the channel that is used—often client/server- or browser applet-
based. The application may be complemented by other applications, created using different
technologies, and intended for other user groups and offered through different channels, but
using the same business logic and database. It is clear, then, that the database has a wider
audience and purpose than its original narrow focus on the one application it was used
with. There is no exclusive ownership of the database by the application or by the team
developing the application. The data(base) is owned by the organizational unit that owns
the data (or the domain that the data is part of). That last part can be quite a cultural change
in some IT departments—one that needs to be implemented.

The notion of an application is changing. The most tangible manifestation of computer-
based processing logic probably still is the user interface, although the Web Services are a
similar tip-of-the-iceberg front end for potentially very complex constellations of programs,
database components, and other modules. However, a user interface will increasingly be
regarded as the front end for a human task at some point in a business process. The
workflow engine and to-do list play an important role in dictating when the Ul should be
presented to the user—not just the user herself browsing through some global menu.

These user interfaces will present data and support operations that are increasingly no
longer one-on-one linked to a single database but instead connected to various data
sources and other services. This brings us to the next level of architecture where the front
end (the user interface or Web Service) is founded upon an amalgamation of services—
provided through some form of enterprise service bus, as shown here:

User interface Application

Chapter 2: Introduction to Service-Oriented Architecture 33

Service Service Service Service

Service Service
consumer consumer

FIGURE 2-4. Point-to-point interfaces

Enterprise Service Bus One of the challenges when considering integration between systems is
managing all the connections. If we have point-to-point interfaces (see Figure 2-4) and something
changes in a service, all service consumers need to be modified. The service consumer has to be

aware of the protocol the invoked service uses, as well as the message format and the location of
the service. This tightly couples the consumers to the service providers.

The concept of an enterprise service bus (ESB) has been introduced to help address these
challenges. An ESB sits between service consumers and the services they invoke (see Figure 2-5).
It typically has a number of features that facilitate the interaction and help decouple consumers
from providers:

B Endpoint virtualization When service consumers call a service through the ESB instead
of calling the provider directly, location transparency is achieved in the architecture.
A service provider can be replaced by another service provider, without the need to
change every service consumer to reflect the new address. Only the ESB knows which
service provider is invoked exactly; all the consumers leave it to the ESB. This is called
virtualization of services.

B Routing of services Sometimes the routing is more specific: Based on the content of the
request message from the consumer, the service is selected to forward the request to; this
is called content-based routing.

Service
consumer

Service Service

Enterprise service bus

Service
consumer

Service Service

FIGURE 2-5. Enterprise service bus

34 Oracle SOA Suite 11g Handbook

Transformation Providers and consumers don’t always speak the same language: They
frequently do not use the same protocols or message formats. The enterprise service bus
can transform a request to the format and/or protocol supported by the service and does
the inverse to the response before handing it back to the consumer. Messages inside

the ESB are based on the canonical data model (CDM); messages are transformed to the
CDM upon entering the ESB and may need to transform to application-specific formats
when traveling out of the ESB.

A special element in transformation can be message enrichment: The result of the
transformation is not just the same data in a different message structure but an
enriched message with additional information that has been looked up (for example,
an appointment request that has been enriched with the recent medical history for the
patient).

Validation The ESB can validate requests before they are delivered to the service
provider as well as the responses coming out of the provider.

Auditing The ESB can log requests and responses for auditing purposes and send out
alerts when special conditions apply.

Messaging Instead of calling a service, an application can send messages and
communicate asynchronously with other applications. The ESB can provide guaranteed
delivery and persistence of the message. This is explained in more detail in the section
“Events and Event-Driven Architecture (EDA).”

Synchronous/asynchronous adaptation An enterprise service bus can expose services
with either a synchronous or an asynchronous interface—regardless of the nature of

the actual service provider(s) it needs to invoke; it can adapt from synchronous to
asynchronous, and vice versa. This—together with support for queuing and store-and-
forward for services that are temporarily unavailable—provides another very important
type of decoupling: The provider does not need to be available at the same time as the
consumer, and the consumer does not need to wait for the response from the service it
invokes. This has the same impact on service invocations as the answering machine and
voicemail had on communication via telephone.

Composition An ESB may be used to aggregate the results from several services in

a single response to a service invocation, effectively publishing a new, composite
service; enrichment can also be seen as a special case of composition. Note that other
components—such as a business process engine that runs BPMN or BPEL processes—
can provide similar composition- and service-coordinating functionality.

An ESB may also be able to mediate between different security protocols: for example,
allowing (or requiring) the consumer to send a request with a SAML authentication token
while the service provider is authenticated through basic HTTP authentication.

Many of the functions listed are instances of mediation—a word with several meanings,
including conciliation and matchmaking. The ESB clearly is good at bringing two parties together
across various types of divides: communication protocol, location, technology, message format,
synchronous/asynchronous, availability, and security protocol. Other functions an ESB may offer
include technical and administrative aspects, such as performance improvements through result
caching, high availability through clustering, reliability and transaction management, enforcement
of authorization rules, throttling of message load, and SLA monitoring.

Chapter 2: Introduction to Service-Oriented Architecture 35

Canonical Data Model

When we compose applications using services, it is important that the services use a common
vocabulary or language. All services base their interface on this data model. Clearly this helps to
standardize the service contracts because consumers will encounter the same data structures in all
services. It also helps to lower the number of message formats an application has to know about
and cater to. The number of resource-intensive—and error-prone—transformations can be reduced.

It feels better to remove the reference altogether.

This Esperanto-like common language for services in the same business domain is called the
canonical data model. It has data definitions for the business objects—usually described in XSD
(XML Schema Definition). The canonical data model is closely aligned with the business
terminology and the business view of information—and is absolutely devoid of technical baggage
such as column names, SQL naming conventions, and technical data types. It should be centrally
managed by a team that consists of architects, business analysts, and developers.

In addition to the core canonical model with business object definitions, we will make use of
utility data definitions. These define special-purpose data structures used for parameters and faults
as well as for technical records that, for example, report on the results of data manipulation or
other metadata regarding the service execution. These structures usually have references to the
business objects. The canonical model can be said to cater to data at rest (the core definitions)
and data in motion (supported by this latter category of utility objects and technical definitions
that support the operation through metadata or pragmatic data structures).

For example, let’s look at a service that provides patient records. This service could offer the
capability to retrieve patient records in two ways: “get a list of a small subset of attributes for all
patients that satisfy certain search conditions” and “get a set of patient records based on a
collection of primary keys.” The first capability uses a data structure that defines a collection of
records consisting of just a few fields; these records can be defined based on the regular patient
element, but are probably better defined using a specialized type. A 360-degree patient type
could also be defined with a deeply nested tree structure that brings in everything that possibly
could be said about a patient.

Ideally, of course, every service in the world would speak canonical, but they do not (most of
them don’t anyway). So transformations will occasionally need to take place to translate between
noncanonical and canonical message formats. Note that in some industries, standards have been
established for data that is exchanged between business partners. The data format described for
the data in motion is, of course, a perfect foundation for the data at rest.

In large organizations with multiple business domains, it sometimes proves impossible to
establish a single enterprise-wide canonical model. Organizations may have multiple canonical
models—for example, per business domain and/or derived from external communities—that are
organized into a tree-like structure (using nested namespaces) with various levels of abstraction
and specific purposes.

We will see later how the canonical model can be defined as not just a collection of business-
based data structure definitions, but also as a library of domain values and even business rules.

Of course, commercial off-the-shelf applications typically do not comply with the organization’s
canonical data model, although, of course, they may comply with industry standards that can also
be used inside the canonical data model. A mediator, such as the ESB, is used then for transforming
the data that these applications expose to the canonical data model for the service consumers
(see Figure 2-6). Another common pattern is to have all the applications—both consumers and
providers—use their own format and then let the mediator transform everything. However, this can
be quite expensive in terms of resource usage.

36 Oracle SOA Suite 11g Handbook

Patient Patient
service Transform consumer

Patient Patient

FIGURE 2-6. Transformation is needed when an application (the patient consumer in this
example) can’t handle the canonical data definition.

The data flowing through the service-oriented infrastructure should be canonical as much as
possible. This way, if an application does not speak canonical, we should transform from (and to)
the application format as close to the application as possible. That usually means that the final
step before an application is invoked is the transformation from the canonical to the application-
specific format—performed by a mediator. For applications that do not speak canonical and call
in to the service-oriented system, we should offer an application-specific interface that feeds into
a mediator that transforms to the canonical format as early as possible. In general, transformations
should be kept as far down the technology stack as possible—they should be kept out of the
higher-level (composite) services if at all possible.

Governance

Traditionally, stand-alone applications—as described earlie—were developed by dedicated
teams that remained attached to the application during subsequent stages in the lifecycle. The
assets that formed the application were often completely owned, controlled, and exclusively used
by this relatively small team.

In Service-Oriented Architecture, most assets end up very much not (exclusively) owned by
any team or even department: They are—in theory at least—owned by the enterprise, targeted at
widespread reuse, and not naturally controlled by an individual or group. However, every service
needs to have an owner who is responsible for the services delivered. Because the service
delivers business value, it is a business unit that owns it.

Management of the lifecycle of these assets is important, especially given the extent of reuse
we are trying to achieve. To realize reuse, the availability of assets needs to be made public and
the assets need to be found and understood. Once reuse has happened, the process of evolving
those assets becomes more involved: Multiple parties have a stake in the assets and may have
specific requirements with regard to their evolution. SOA governance controls that process.

Other aspects of governance include: How do we ascertain that assets have the required
quality and deliver on their (functional) promise? How do we define and record the required
service levels and subsequently monitor the actual performance of assets?

Before the management of the assets themselves is in full swing, governance is required to
enforce the architectural principles laid down for the organization. What processes must be
implemented to ensure that all teams stick to the rules?

Governance must be implemented at every stage of the SOA lifecycle to track ongoing changes
to the architecture, design, and implementation—and to define, implement, and execute the
processes around designing and implementing changes to assets and the creation of new ones.

Chapter 18 introduces governance in the context of the SOA Suite, but only scratches the
surface of that topic (it is mainly outside the scope of this book).

Chapter 2: Introduction to Service-Oriented Architecture 37

Events and Event-Driven Architecture (EDA)

As described in the beginning of the chapter, SOA and events are closely related. Let’s first define
events: An event is a signal of a significant change in the state of a business object. Examples are
receiving a request, death of a patient, a fire alarm, receipt of a payment, and so on. Employees,
partners, customers, and also processes in an organization react to these events.

Some events are triggers that start a process. For example, in the appointment process, we can
define the event “Doctor referral received.” When this is received by the hospital, the appointment
process is triggered and appropriate actions are taken. Some events trigger more than one process:
For example, when a patient dies, this can trigger an investigation and at the very least the
cancellation of future appointments and any lab tests currently under way for that patient.

Events can be defined in the same layer as the services. Using events decreases dependencies
between service providers and service consumers because it provides for asynchronous
communication and does not require the publisher to know if and what subscribers exist for
a message. The following design principles apply to events:

B Events should contain enough information for the receivers to base decisions on, or to
analyze them for business activity-monitoring purposes or complex event processing.
A “new patient” event should contain, for example, the date, patient identifier, and
department. If a certain process needs more information about this event, the process can
fetch it using the patient identifier in the event payload.

B Events should be loosely coupled. An event does not know what process it starts or what
activity caused it to be published.

The best-known pattern for events is publish-subscribe (see Figure 2-7): An event is published
by a provider, and clients that are interested in the events subscribe to the message based on
some characteristics of the message. With some types of subscriptions, message consumers do
not need to be available when the message is published by the publisher. We will discuss this in
more detail in Chapter 9.

Consumer

Publisher Provider Consumer

Consumer

FIGURE 2-7. Publish-subscribe pattern

38 Oracle SOA Suite 11g Handbook

Implementation Considerations The different types of events can be implemented in several
ways: We can have triggers in the database that publish an event to a queue when a record is
updated, inserted, or deleted. The same can be implemented using Java and JMS: A call to a Java
method could cause a message to be published to a JMS queue or topic. We can publish an event
from a BPEL process when we finish a process or a step in the process. We can define sensors
(out-of-process wiretaps that emit trace details about the BPEL process and the current activity) in
BPEL processes for specific activities, and do the same with ESB routing rules.

The message or event itself can be implemented using different standards: The payload can
be XML, text, a Java object, and so on. In an SOA environment, it is easiest to use XML, which is
the language for all application components and tools anyway. How a service can be consumed
also depends on the implementation that is picked. If we use JMS, we can determine at run time
what subscribers exist for a certain topic. But we can also decide at design time what message is
propagated to which subscribers, using content-based routing, for example. Last but not least,
there is a draft release of a new Web Service specification for events: Web Service Eventing (WS
Eventing).

Business Activity Monitoring (BAM) We can define events that should be published from
running processes. These events can be used for business activity monitoring (BAM). The goal of
BAM is to provide real-time information about the status and results of the processes. When
certain events occur, an alarm can be raised. For example, the hospital might want to monitor
cancellations in the appointment process. If completion of a cancellation activity takes too long,
an alarm can be raised to the supervisor to reassign the task to someone else. We will discuss
BAM in more detail in Chapter 19.

Complex Event Processing (CEP) Sometimes we are not interested in events from a specific
process, but we are looking for patterns. Complex event processing deals with the task of
processing multiple simple events, with the goal of identifying the meaningful complex events or
patterns. This has the advantage that a process does not need to be modeled in advance to be
able to detect significant events. Examples are insurance fraud detection, detection of specific
predictive patterns in stock trading, and also temperature control in the facilities of St. Matthews.
A more detailed introduction and some examples of using CEP are discussed in Chapter 19.

SOA from an Implementation Point of View

We talked about SOA from the business perspective and discussed the architectural meaning of
Service-Oriented Architecture. The last view we want to discuss is the implementation view.
There are several implications from an implementation and technology perspective when we
move to Service-Oriented Architecture:

B The infrastructure on which services run changes from the traditional “application”
infrastructure. We introduce services, processes, and events into our run-time
environment—such as Web Services and business process implementations—that require
special infrastructure to run (for example, an enterprise service bus, an SOA or SCA
container, a process engine, and tooling to enforce security). Middleware is introduced
that needs to be administered; new technologies such as Web Services need to be
learned by developers as well as administrators.

Chapter 2: Introduction to Service-Oriented Architecture 39

B The way we deploy and subsequently manage our run-time artifacts changes, too.
Because we introduce sets of loosely coupled components, instead of deploying one big
application, we have the option to install well-defined separate components on different
servers. We will probably have to do many more but far less complex deployments.
Making a small change may result in just a small redeployment effort, instead of a
full-blown redeployment. This new approach requires different skills from both our
administrators and our developers.

B St Matthews has decided to use the Oracle SOA Suite 11g, after a careful product
selection process. This suite offers all the functionality the hospital needs, and the
developers and administrators are already familiar with Oracle products. Apart from that,
the suite offers out-of-the-box solutions for PeopleSoft HCM and SAP R/3 through the
adapter framework. Last but not least, SOA Suite 11g is component based and standards
based. This gives St. Matthews the opportunity to use other tools and middleware for
specific areas. The SOA Suite 11g components are discussed at length in Chapter 3.

B One of the primary objectives behind SOA is agility, the ability to adapt—the essential
attitude to embrace change. Organizations adopting SOA will typically carry out
frequent changes in response to business requirements. These changes can consist of
reorganizing business processes, assembling new applications from existing business
services or rewiring existing business services or applications, changing the logic of
(potentially heavily reused) elementary services, and so on. We need to think about
change procedures, automated testing strategies, and efficient deployment.

B New programming languages, standards, and frameworks are used. Because one of
the guiding principles of SOA is standardization, adopting SOA in an organization will
likely mean some changes in the frameworks, tools, and standards used, shifting the
organization to industry standards for Web Services such as XML, SOAP, and WSDL. We
will talk about the standards in this section and in more detail in the rest of the book.

B The new programming languages, standards, and frameworks introduce a need for new
(versions of) tools. St. Matthews is, as we discussed before, an Oracle shop that has
selected the Oracle SOA Suite to develop its SOA artifacts for. Therefore, the hospital
will use JDeveloper 11g to create Web Services and other artifacts.

Standards in SOA

One of the important principles of SOA is standardization. It is very hard to communicate with
other applications if the protocols and message formats that these other applications use are all
different. We saw that in our discussions of canonical data formats and ESB. The same is true for
protocols. IT systems in an organization typically use various protocols and programming
languages. This makes combining them into new applications difficult, if not impossible. To solve
this, services should use standard protocols and message formats. In this section, we will briefly
discuss some of the most prominent standards used in SOA. The next chapter introduces many
more standards. In the rest of the book, these standards will be discussed in more detail as we
encounter them in the examples and cases.

40 Oracle SOA Suite 11g Handbook

Web Services One of the most important sets of standards is the one concerning Web Services.
The World Wide Web Consortium (W3C) describes Web Services as follows (www.w3.0rg/2002/
ws/Activity):

“Web Services provide a standard means of interoperating between different software
applications, running on a variety of platforms and/or frameworks. Web Services are
characterized by their great interoperability and extensibility, as well as their machine-
processable descriptions thanks to the use of XML. They can be combined in a loosely
coupled way in order to achieve complex operations. Programs providing simple services
can interact with each other in order to deliver sophisticated added-value services.”

There are two ways of creating a Web Service: using a formal protocol defining the operations
and message format in advance, and using a loose protocol where a hint of the next available set
of operations can be derived from the last service response. SOAP Web Services are an example
of working according to formal specifications defined in advance, whereas RESTful services are
an example of the latter approach.

SOAP and WSDL SOAP Web Services dictate a formal method of communication between
applications. Through SOAP and WSDL, an organization can specify the available operations in
services and the data that can be exchanged with the services. The specification of these services
in such a formal way has several advantages:

B The interaction is strongly typed: the consumer knows what type of data to expect.

B Because SOAP is more formal, there is more tool support to create SOAP-based Web
Services.

B Multiple protocols are supported (SOAP over HTTP and SOAP over JMS, for example).
B Additional features, such as WS-Addressing, WS-Security, and Basic Profile, are used.

The SOAP specification is discussed in more detail in Chapter 4 and in Appendix B.

However, this formal, contract-based, and XML-riddled approach is sometimes perceived as
very heavy-handed. The overhead in terms of the infrastructure required for handling SOAP Web
Service interaction and the sheer size of the SOAP messages compared to the actual information
content of those messages can cause people to shy away from SOAP.

RESTful Services A more lightweight Web Service alternative is available in the form of RESTful
services. REST, by the way, is an acronym for Representational State Transfer. Originally introduced
by Roy Fielding as a rather formal resource-oriented method of programmatic interaction over the
HTTP protocol using the four basic HTTP operations—PUT, POST, GET and DELETE—for CRUD
operations, RESTful services have evolved into a plethora of lightweight HTTP-based APIs. RESTful
services accept simple HTTP requests and send equally simple responses.

There are no generally accepted standards for RESTful services (for example, the use of contracts
of some form of description of the services). Initially, it was almost blasphemy to suggest the need or
even the usefulness for such descriptions, whereas in later stages large groups experimented with
WADL (Web Application Definition Language), a simpler counterpart to WSDL. REST-style services
can return responses in XML, although other formats such as CSV and JSON are popular too.

There is a lot of support for REST on the client side (consuming RESTful services in many
programming languages) and some on the server for publishing REST-style services. Some
enterprise service bus implementations have some support for REST—although mainly in situations
where the payload is XML described by some predefined contract, however lightweight.

Chapter 2: Introduction to Service-Oriented Architecture 41

REST seems primarily useful for data integration between web clients and servers, not so
much for enterprise SOA.

RSS Feeds Another lightweight approach to programmatic (one-way) exchange of information

is through RSS feeds. A simple HTTP GET request (REST-like) suffices to retrieve the information;
the format is a predefined XML structure. RSS only supports a very simple interaction pattern, but
in some situations may be just what the doctor ordered.

Policies As we discussed before, a service consists of an interface that can be described in a
WSDL, an implementation that can be in virtually any language and contract. The contract
describes the quality of aspects of the service. Examples include the number of concurrent calls
it can handle, the maximum number of records it returns, its maximum response time, the
authorization required for this service, the availability of the service, and the way the service
will evolve. Some aspects of the contract can be defined using the WS-Policy standard. For other
aspects of what is sometimes laid down in a service-level agreement (SLA), a standard format is
currently lacking.

UDDI Directory, Service Registry, and Service Repository Because we want to reuse our
assets and build new applications using existing components by exposing them as Web Services,
we need some type of registry to store and publish information about the services in our
organization—which services are available and where can they be found. To make it possible for
different tools to look up services, a standard has been defined to discover (web) services: UDDI
(Universal Description, Discovery, and Integration). UDDI defines a standard method for
publishing and discovering network-based software components in SOA. The comparison is
frequently made with the Yellow Pages—a directory that you browse through when you are
looking for a specific service. It contains an API for publishing and searching for services, and to
subscribe to changes to the service metadata.

UDDI was one of the earliest standards in the Web Service arena, along with WSDL and
SOAP. However, it has never really caught on for design-time service discovery. Many UDDI
implementations or service registries today seem primarily used for run-time lookup of the
physical location of services, a form of service (endpoint) virtualization.

The originally intended role of the UDDI-based registries has been taken over by a more
elaborate service repository—or asset manager—that is primarily used at design time. This serves
as a service inventory—a listing of the services available in the organization along with extensive
metadata that helps search operations and also provides real insight into the purpose, status, and
fit-for-use of the services. Note that the service repository contains many more SOA artifacts than
just services (WSDL and XSD); virtually any artifact that can provide insight and facilitate reuse
and collaboration, from service-level agreements to canonical data model descriptions, can be
recorded. An important role of the service repository is to provide insight into the dependencies
between the artifacts, primarily to assess the impact of changes.

Service registries tap into or collaborate with the service repository, using maybe 10 percent
of their information for service discovery.

Note that although UDDI is a formal industry standard for service directories, there is no such
standard for service repositories. Several vendors offer products that implement the concept of a
service repository, but these are not based on some common standard. Oracle offers the Oracle
Enterprise Repository.

42 Oracle SOA Suite 11g Handbook

Industry Standards Many standards have been developed for structuring messages and services
in specific industries and business domains. An example is HL7 in the healthcare domain. HL7 is
a framework (and related standards) for the exchange, integration, sharing, and retrieval of
electronic health information. Another example is XBRL—a standard for financial reporting.

Service Component Architecture A relatively new standard is Service Component Architecture
(SCA). It is a set of specifications that describes a model for building applications and systems using
a Service-Oriented Architecture. It is a widely supported standard, backed by most large vendors
of SOA software and tooling. We will discuss SCA in more detail in Chapters 3 and 14, and we
work with it throughout the book—SCA underpins Oracle SOA Suite 11g.

Summary

A service-oriented approach will help St. Matthews establish the business services that are
required to help automate the business processes. SOA principles will help St. Matthews (and us)
design the elementary services with the right level of granularity, based on a common, canonical
data model, that are composed to create more complex composite services and business services.
The services will work together based on standardized interfaces and contracts that help reach a
high level of decoupling (or loose coupling). These interfaces are also essential in order to
achieve reuse of the services. Decoupling, service composition, and reuse are some of the factors
in achieving more business agility—the ability to flexibly and speedily respond to changing
business requirements. They also help to keep the costs down and the quality up: Reuse means
less development and testing effort as well as smaller maintenance effort because logic is not
duplicated in many components.

Service-Oriented Architecture helps achieve maximum interoperability—potential for
interaction across technology stacks and products from different vendors. It thereby reduces the
dependency on vendor-specific solutions and allows organizations to use best-of-breed products—
provided that these products support interfaces based on open, service-oriented standards.

Event-Driven Architecture (EDA) provides an extra level of decoupling: Through business
events that can be produced in any application, business process, or service implementation and
that can be consumed by any registered application, business process, or service, we achieve a
form of interaction that does not introduce dependencies that might hamper future changes in
artifacts because of increased impact. EDA uses asynchronous communication facilitated by
process- and service-agnostic infrastructure.

SOA offers flexibility in adapting business processes and underlying implementations as well
as cost efficiency by reusing and sharing existing assets and increasing process efficiency.

The eAppointment Pilot Project

Mary proposes to start with a pilot project, called eAppointment, to prove to the board of directors
that SOA is the way to go for St. Matthews. This book tells the story of this project and demonstrates
how Oracle SOA Suite 11g provides the means to achieve the business, architectural, and technical
objectives.

The core business process in the eAppointment project is very visible to the patients: the
appointment process. There are several reasons for selecting the first process to take on in such a
pilot project: the urgency of existing problems, the visibility throughout the organization, the largest
chance of a quick success (the low-hanging fruit), and the toughest nut to crack that would provide
the best possible proof for the validity of the approach. In this particular case at St. Matthews, it is

Chapter 2: Introduction to Service-Oriented Architecture 43

Register Schedule Prepare Notify
patient appointment instruction patient

FIGURE 2-8. Intake patient process—appointments

actually a combination: The patient appointments process is very visible and is currently a source of
frustration among hospital staff and patients alike, and at the same time it’s not all that hard to
improve and reap some early benefits. Figure 2-8 shows the high-level overview of this process.

The process starts when a referral for a patient is received from a family doctor or another
primary healthcare provider. Some system at St. Matthews needs to register the patient data. If the
patient is already known in the hospital, the existing record is updated; otherwise, a new patient
record is created. If this is the first appointment for the patient, an appointment is scheduled with
the first available doctor. Otherwise, an appointment is scheduled with the doctor who had
previous appointments with this patient, at least if the doctor is available during the period within
which the appointment needs to take place. Then instructions for the patient are prepared,
depending on the type of appointment required. The appointment details, along with these
instructions, are sent to the patient, either by e-mail or in a traditional letter. The patient does not
need to confirm the appointment; it is considered confirmed unless it is canceled. If the patient
wants to reschedule, she can call the hospital to change the appointment. If the patient cancels,
the appointment is removed from the doctor’s schedule. The process ends when the patient
arrives at St. Matthews for the appointment. If the appointment date passes and the patient does
not show up, the process is terminated as well.

This page intentionally left blank

CHAPTER

Oracle Fusion Middleware
and SOA Suite 11g

46

Oracle SOA Suite 11g Handbook

t. Matthews is facing several real business challenges, as we have seen in the
previous chapter. The hospital has well-defined views as to how to approach these
. challenges from the business perspective as well as the implementation or
| technological perspective. Service-Oriented Architecture (SOA) as an overarching

' design principle is a key element in this approach. To apply the concepts laid down
in St. Matthews’ architecture blueprints, the hospital needs to put in place a technology stack that
supports those architectural concepts. Chapter 2 made the opening moves in this direction.

St. Matthews has evaluated a number of SOA and middleware offerings from various vendors—
including open-source products—and has picked Oracle Fusion Middleware (FMW) as its preferred
stack. Among the selection criteria, support for open industry standards ranked very highly, along
with product functionality, operational (administration) effort, and maturity. Because it is a long-
running and rather satisfied user of Oracle technology—RDBMS and various tools, including Oracle
Forms—the IT staff at St. Matthews has a natural bias toward the Oracle Fusion Middleware offering.
It hopes and expects that FMW wiill offer additional advantages, such as even better integration with
the Oracle technologies already in use (for example, PL/SQL), that alternative products wouldn’t
provide, in addition to a smoother learning curve based on the current skill set.

This chapter introduces Oracle Fusion Middleware in general and then focuses on the SOA
Suite, one of its key components. It first offers an overview of the history of SOA and middleware
within Oracle. Then it paints the broader picture of Fusion Middleware before concentrating on
the SOA Suite and the products and technologies FMW comprises. The chapter concludes with
the installation of the SOA Suite 11g and briefly touches upon the migration from previous
releases of the Oracle SOA Suite. At the end of the chapter, we’ll have the SOA Suite up and
running, ready for the development of services.

History of Middleware and SOA in Oracle

Oracle aspires and even claims to be the number-one vendor in the middleware market. Whether
or not that claim is justified, and regardless of what being “number one” in middleware exactly
means, it is very clear that Oracle has undergone a dramatic makeover from not having a
meaningful presence in middleware market at all to being at least one of the dominant players.
How did that makeover happen? Why did it happen? And what is middleware anyway?

An exact definition of middleware is almost impossible to give. Historically (from the mid-
1980s), middleware was very much associated with messaging and queuing, brokers, transaction
monitors, and distributed processing. The essence of middleware is in connecting software
components and applications, enabling interoperability between various platforms and different
systems, and supporting the automated, structured exchange of data across the IT landscape. As
such, middleware became the platform for Enterprise Application Integration (EAl). In more recent
years, middleware has become the label for technology for (web) services and SOA. The term
middleware now encompasses almost all software infrastructure required for implementing SOA.
It has come to also be used for areas such as identity management, business intelligence, and
content management. Note that although some vendors include databases in their definition of
middleware, Oracle does not.

The Mists of Time—Until 2001

It is difficult to point out exactly when Oracle started doing middleware for real and what those
initial activities were. It is much easier to see what those early efforts led to.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 47

The Oracle RDBMS has been an interoperability platform from very early on: The RDBMS was
released for all major platforms, and many not so major ones as well. Oracle Corporation has always
invested a lot of effort in porting the C-based Oracle RDBMS software from Solaris—the primary
release platform for many years until Linux (temporarily) usurped that position—to a host of other
operating systems running on hardware from PCs to mainframes. Oracle database applications
written on one platform will be portable to any of the other platforms that the RDBMS runs on. This
means, for example, for PL/SQL programs “write once, run everywhere”—the much-touted Java
tagline, was realized before Java even existed! Interoperability with non-Oracle technology was not
as hot an issue at that time.

A first stab at messaging (infrastructure) was delivered through Advanced Queuing (AQ) in
the Oracle 8.0 RDBMS release (1998). AQ is based on database technology, including tables
and PL/SQL. It adds to the database the ability to implement, publish, and subscribe scenarios
where applications asynchronously communicate messages. Note that AQ is still the backbone
of persistent messaging in WebLogic today.

In the mid-1990s, client/server was all the rage, and in that two-tier architecture there was
initially no place for middleware—a third tier. However, the rapid expansion of the Internet as
well as several major challenges with the client/server architecture, such as maintenance effort
and server-side scalability, resulted in the rise of the three-tier architecture and the introduction
of the notion of an application server. An application server can be used to execute common
business logic for all clients, thereby decreasing load for both the front end and back end. Also,
through the type of functionality offered by this middle tier, it is the best place to position and do
integration (using middleware).

The need for integration across different systems in the enterprise—and, later, also between
enterprises—became more apparent and formed another force that drove the creation of middleware
software. The fact that most organizations use technology from different vendors, and that integration
therefore also means interoperability across various technology platforms, was one of the drivers for
the development of industry standards.

Oracle announced its full support for the Java platform early on, in 1997. In 1998, the Oracle
8/ RDBMS was released with a Java Virtual Machine (JVM) inside the database. Oracle also
released several versions of its ill-fated OAS product, the Oracle Application Server. OAS 4.0, for
example, released in 1998, debuted support for CORBA, an early interoperability standard. Based
on OAS, Oracle announced the Oracle Integration Server (OIS) at the end of 1999, a platform for ...
integration! OIS leveraged Advanced Queuing and introduced early versions of technology
adapters for integration with packages or views in the database as well as some third-party ERP
(SAP, PeopleSoft) systems. Other components new in OIS were Workflow and InterConnect. Until
overtaken by the Oracle Enterprise Service Bus (OESB), InterConnect was the primary Enterprise
Application Integration product offered by Oracle and it laid the foundation for several pieces of
today’s SOA Suite.

In 1998, the World Wide Web Consortium (W3C) published the 1.0 release of the XML
standard. This turned out to be the foundation for almost every integration and interoperability
initiative ever since. Oracle was quick to join the XML crowd. In 1999, the first release (of many)
of the XML Development Kit (XDK) appeared. The 9/R2 landmark release of the RDBMS had
built-in support for SQL/XML and the native XMLType data type. The XML functionality in the
RDBMS was collectively labeled “XMLDB,” a term that today covers many of the more native
database features around XML.

48 Oracle SOA Suite 11g Handbook

Industry Standards: From 1998 until Now

The evolution of middleware technology within Oracle Corporation took place alongside
developments in the industry. Both commercial vendors and open-source products were released,
competing with Oracle’s offerings. More importantly, most vendors were collaborating in various
consortia and standards bodies to create the industry standards that would bring such tremendous
change to the world of middleware and the promises of interoperability. The true reason why
SOA could bring the success and the results promised by various reuse and integration initiatives
since the 1980s lies in the widespread commitment to open standards, among the commercial
vendors as well as the open-source projects.

Many of the standards around the Web, Web Services, SOA, and interoperability are created and
maintained by standards bodies such as the W3C, OASIS, and JCP, in close collaboration with many
of the major industry players. Companies such as IBM, Microsoft, SAP, Sun Microsystems, BEA
Systems, Hewlett Packard, Fujitsu, webMethods, Software AG, and, of course, Oracle, frequently
join forces to further the evolution and widespread promotion of standards. Implementation of and
compliance with these standards has become an important part of marketing efforts, and any product
that fails to meet the standards’ specifications will have problems competing with similar offerings
that do support the standards.

XML (eXtensible Markup Language, inspired by HTML and its predecessor SGML) was the
first (and foremost) standard in this area, sponsored by Microsoft and published by the W3C in
1998. XML is today the lingua franca as well as the main lubricant of SOA, Web Services, and
other interoperability initiatives, as well as the foundation for many more specialized standards.
The XML standard describes a set of rules for creating documents with structured data. XML itself
is very generic—something like ASCII or comma-separated files with more structure. Its real value
starts to shine in conjunction with standards and tools that describe and perform validation of the
structure and content of the documents (XSD), retrieve pieces of information from the documents
using structured queries (XPath), and transform documents into different structures (XSL-T). You
will see many examples of these core XML technologies throughout this and any other SOA-
related book.

Hot on the heels of these standards related to storing information in structured documents
and manipulating those documents were standards for exchanging information captured in
such documents. The first definition of SOAP (the Simple Object Access Protocol) saw the light
of day as early as 1998. SOAP describes a simple envelope-style mechanism for combining
payload and metadata in structured packages. In 2000, the Web Service Definition Language
(WSDL) introduced the now-omnipresent standard for describing the contract for a Web
Service—where the definition of a Web Service by now has been stretched to encompass
almost any service and operation that deals with structured information. Fairly well known,
though not overly successful, is the Universal Description, Discovery, and Integration (UDDI)
standard, also dating from 2000. UDDI is intended to underpin directories of Web Services that
tools can browse through in order to discover useful services. Despite its lack of immediate
success, UDDI has certainly helped to promote the concept of service registries with listings of
useful services that potential consumers such as developers can browse through. UDDI, SOAP,
and WSDL can be seen as the first generation of the XML-based standards concerning Web
Services. In 2004, the WS-I Basic Profile was published to complement this threesome—a
set of guidelines on how exactly to apply these core Web Service standards, to ensure full

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 49

operability (the original standards allowed for multiple interpretations in certain areas that led
to differences between vendors’ implementations).

The second wave of standards in the area of Web Services is concerned with more advanced
concepts around message exchanges, such as the policies that apply to the message, the security of
the messages, sending them in a reliable way to guarantee the reception (in the proper sequence
and without duplication) of messages, correlation of multiple messages sent over a longer period,
and the specification of return addresses and other concerns. Together these standards are referred
to as WS-*: Their names all start with WS, and collectively they constitute a framework for
service-oriented message exchanges that make it useful to have a common denominator. The * is
usually pronounced splat or just star. Important members of the WS-* family are WS-Addressing,
WS-Reliable Messages, WS-Security, and WS-Policy.

The automation of business processes has always been an important objective for the IT
industry. The complexity of many processes and the involvement of multiple IT systems and
applications, as well as the required participation of humans, have stood in the way of process
automation for a long time.

With the rise of Web Services to overcome the interoperability challenges, fresh opportunities
started to open up for business process automation. New ways to describe business processes
in a structured way started to appear in 2004. The most prominent examples are Business Process
Modeling Notation (BPMN) and Business Process Execution Language (BPEL, defined through
BPEL4WS and WS-BPEL). Process definitions include the process routing and decision logic,
calls to Web Services, and tasks to be performed by people. As the standards evolved, engines
to execute such process definitions were developed by various vendors. BPEL4People and
WS-Human Task (2007) have added human task-oriented extensions to BPEL that, by itself, is a
rather technical Web Service-oriented language. Table 3-1 provides a chronological overview
of some IT industry standards and specifications relevant to middleware and Service-Oriented
Architecture.

Service Orchestration and Composite Services
In the previous chapter, we discussed elementary services and business services. The latter are
coarser grained, offering more specific and complex functionality, leveraging the elementary
services to help provide their functionality. Composing the coarse-grained services takes a
combination of flow logic, calls to other services, and logic to process the results of those calls.
The industry had recognized the challenges of service composition or orchestration. In
many cases, a number of services need to be invoked to accomplish a certain task, and only
when all services have been called and delivered their response is the task done or the
composite service complete. If a service call fails—either because of a technical issue or
because of a business exception—the task may need to be undone or may need additional
steps to overcome the problem. Multiple service calls can be made in parallel. Calls can be
made to synchronous services, which send their reply as the return message to the request,
and also to asynchronous services, which call back at some later point in time to deliver their
response. These clusters of service calls or composites can represent a real business process
or implement a composite service. Instances of such composites that perform service
orchestration can be long running—up to days or even months when real business processes
are implemented. Multiple instances of the same composite can be active at the same time,

50 Oracle SOA Suite 11g Handbook

Standard

Enterprise Java Bean
(EJB)

XML

SOAP

XPath

XSLT

WSDL

UDDI (Universal
Description,
Discovery, Integration)

XSD

Java Message Service
(IMS)

Java EE Connector
Architecture (JCA)

Security Assertion
Markup Language
(SAML)

Web Services for
Remote Portlets
(WSRP)

WS-Reliable
Messaging

Year of
Original
Publication

1997/1999

1998
1998
1999
1999
2000

2000

2001

2001

2001

2002

2003

2003

Current Release
and Year
Published

3.1, 2009

1.1 2nd
edition), 2006

1.2, 2007

2.0, 2007

2.0, 2007

2.0, 2007

3.0, 2004

1.0, 2001

1.1, 2002

1.5, 2006

2.0, 2005

2.0, 2008

1.1, 2007

Standards
Body

JCP

W3C
W3C
W3C
W3C
W3C

OASIS

W3C

JCP

JCP

OASIS

OASIS

OASIS

Purpose

JEE specification for exposing and
accessing remote Java-based business
logic

Flexible yet structured language for
creating text documents

XML-based protocol specification for
exchanging messages with Web Services

Query language for retrieving
information from XML documents

Style sheet language for describing
transformations for XML documents

XML language for describing the Web
Services contract

XML language for publishing a registry of
(web) services

Schema language for defining the valid
structure and rules for XML elements
(and successor to DTD)

JEE specification that describes a Java
API for loosely coupled, asynchronous
interactions through Message Oriented
Middleware

JEE specification for creating adapters to
connect Java with Enterprise Information
Systems

XML-based standard that describes
how security-related information
(identification, authorization) can be
exchanged

Specification for interaction between
portals (Portlet consumers) and (remote)
Portlets (Web Services with a user
interface)

A wire protocol used in SOAP messages
to ensure reliable transport between
sender and receiver

TABLE 3-1. Chronological Overview of Some IT Industry Standards and Specifications Relevant to
Middleware and Service-Oriented Architecture

Chapter 3:

Oracle Fusion Middleware and SOA Suite 11g

51

Standard

Business Process
Execution Language
(BPEL4WS/ WS-BPEL)

Service Data Objects
(SDO)

Business Process
Modeling Notation
(BPMN)

WS-I Basic Profile

WS-Security

WS-Addressing

XQuery

BPEL4People and WS-
Human Task

Service Component
Architecture (SCA)

WS-Policy

WS-I Basic Security
Profile

Year of
Original
Publication

2004

2004

2004

2004

2004

2006

2007

2007

2007

2007

2007

Current Release
and Year
Published

2.0, 2007

2.0, 2005

1.2, 2009

1.1, 2006

1.1, 2006

1.0, 2006

1.0, 2007

1.0, 2007

1.0, 2007

1.1, 2009
(approval draft)

Standards
Body

OASIS

OASIS

OMG

WS-I

OASIS

W3C

W3C

OASIS

OSOA

W3C

WS-I

Purpose

Executable language for processes that
interact with Web Services

Data-programming architecture that
facilitates working with structured data
objects in Service-Oriented Architecture

Standard for ways to graphically describe
business processes—and as added bonus
simulate or even execute those processes
for real

Specification on how to apply standards
such as SOAP, WSDL, and UDDI in
order to achieve true interoperability
across technology stacks

Specification on how to apply
security—for example, through SAML or
Kerberos—to Web Services and SOAP
messages

Standard that provides transport-neutral
mechanisms to address and identify Web
Service endpoints and to secure end-to-
end endpoint identification in messages

Programming language for querying
collections of XML data (technically a
subset of XPath)

Extension of BPEL4WS to specify
interaction with humans and a human
task-definition language

Configuration language for describing
composite applications based on service
components

XML language for describing the
policies—such as Security and Quality of
Service—that apply to a Web Service

Specification on how to apply security
standards such as WS-Security in order
to achieve true (security) interoperability
across technology stacks

TABLE 3-1.

Middleware and Service-Oriented Architecture (Continued)

Chronological Overview of Some IT Industry Standards and Specifications Relevant to

52 Oracle SOA Suite 11g Handbook

-

BookACompleteTrip \
service BookFlight

e —

Iil//y BookHotel

lﬁ‘% HireCar

Ij__'\ﬁ

GetTravellnsurance

\

FIGURE 3-1. An example of service orchestration, combining external services and internal
logic and exposing a single coarse-grained business service

handling different requests from potentially different clients. Figure 3-1 shows an example of
service orchestration where the BookACompleteTrip service orchestrates the flight, hotel, car,
and insurance-related services.

BPEL was the first language for implementing service orchestration—programs written in
BPEL invoke (usually multiple) Web Services, perform process logic, handle faults in service
calls, coordinate transactions, and deal with events and timeouts. Programs written in BPEL are
known as BPEL processes. These processes run in a BPEL container. They are usually started
through a call to the Web Services interface published for the BPEL process or initiated by the
consumption of an event.

Through BPEL, many organizations successfully created SOA applications: programs or
service composites that implemented business logic largely by orchestrating services that do the
real work. However, even though BPEL can orchestrate multiple service calls and perform many
of the actions required in a service composite, the BPEL container will usually work with other
engines to execute all logic in a process and the services it invokes. For example, pieces of
computing logic are implemented in Java; a workflow engine is engaged to handle human tasks;
adapters are required to interact with databases, message queues, and a file system; and a rule
engine implements decision logic that determines the routing through the process at junctions.
Service composites usually also involve a fair bit of message transformation, filtering, and routing.

When the BPEL process is really the implementation of a business process, chances are that it
will be long running (longer than a few seconds) and will carry some state data—data that it
hangs on to for a large part of its lifetime. BPEL processes can also be used to create composite
services—the coarser-grained next level from elementary services. In that case, a BPEL process
instance will complete much faster and should not be considered stateful.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 53

Note that in many cases the BPEL process could by itself take care of most of the work that can
be delegated to other service engines—and before the various dedicated service engines were
available, many BPEL processes were developed that actually do all the work themselves. However,
for reasons of performance, functionality, and development productivity, it is better to use the best
tool for the job. Equally important is the management agility: With all logic programmed into the
BPEL process, every little change requires a redeployment of the entire service composite. Especially
with long-running processes, such redeployments are not a trivial affair. Better to have the BPEL
process collaborate with logic running in other engines that are more easily reconfigured and have
different procedures for configuration and deployment. Some engines, for example, support a great
deal of run-time configuration.

Recently we have seen a shift away from BPEL: True business processes are increasingly
implemented using engines running BPMN. BPEL seems to be primarily an integration engine that
combines services to provide the type of coarse-grained service we discussed earlier.

Service Component Architecture (SCA)

With on the one hand the obvious success of BPEL for creating service composites and on the
other the ongoing challenges, many vendors working on Service-Oriented Architecture have
joined forces to come up with a new standard for creating service-oriented applications.

The objective of this standard was to allow the development of a service-oriented application
that could implement every piece of its functionality in the language and run-time engine best
suited for it and still have all the pieces integrated in a simple, standardized way, based on the
established standards for services. It is assumed—though not required—that the application will
invoke several external services. It is also expected that the application will expose a service
interface itself. Reuse is an important theme in SOA and is also a key objective for this new
standard: Applications developed according to the standard are reusable components that can be
included in other applications.

This standard is called Service Component Architecture (SCA), first published in 2007. It is
expected to become the dominant guiding principle, according to which vendors build their SOA
containers, and thus the framework for development of SOA applications.

The promise of SCA is that developers can use various languages running on different run-time
engines to implement various parts of the application—for example, BPEL, Java, another SCA
composite application, a rule engine, a workflow engine, and technology adapters to work with
databases, queues, and file systems. Each such part of the application is called a (service) component.
Each service component publishes a contract that describes its interface through a WSDL document.
The developers specify the functional link between these different parts of the application, and it is
up to the SCA container or run-time engine to facilitate communication between the components in
the most efficient way, usually through a native, binary communication protocol.

The coupling between service components is very loose; they can work together without any
knowledge about each other’s implementation. This way of creating composite applications is
very flexible: It allows replacement of one service component with another that, as long as it
fulfills the same contract, could be implemented in an entirely different language running on
another service engine.

SCA is not just for easier and more productive development of SOA applications. It also specifies
how the behavior of the application can be made configurable to allow administrators to apply
changes in the behavior without redeployment of the application. Changes in the location of services
called from the application can be changed at run time without impact on the availability of the
application. Quality of Service aspects, including security policies and reliability requirements, can
be (re)configured during or even after deployment.

54 Oracle SOA Suite 11g Handbook

SCA helps to simplify the assembly and deployment of composite applications. An SCA
composite application can be assembled from a collection of SCA composites and then turned
into deployable units.

Not Invented Here (2001-2008)

Around the turn of the century, Oracle had strong support for queuing, Java, and XML in its
RDBMS. In addition, it had a number of what one might call “middleware products” that were
mildly successful at best. OAS was struggling in a market dominated by IBM WebSphere, BEA
Weblogic, Sun IPlanet, and several open-source products. Oracle Integration Server did not get
any real traction, and Oracle Corporation seemed to be looking for a product strategy that would
make it a serious contender in the now rapidly evolving market for middleware.

During these years, we have seen a slowly but steadily evolving tendency at Oracle HQ to no
longer insist on building every technology and product itself. In 1994, Oracle acquired the RDB
database from Digital (Equipment Corporation), an acquisition that worked out very well. It
demonstrated how Oracle would generally treat products it acquired: continue and frequently
even intensify the development of new product releases. Maybe that experience prepared the
organization for what was to come in later years.

In 1998, Oracle released JDeveloper 1.0, its first ever Java Development IDE, based on
Borland’s JBuilder product. This initial release consisted of over 90 percent JBuilder code, and
was a rather feature-poor product in the eyes of today’s Java developers. However, its significance
was huge. Next to the traditional development tools created within Oracle, such as Oracle
Designer, Oracle Forms, Oracle Reports, and Discoverer, Oracle offered a tool for Java (web)
developers. And it would continue to evolve JDeveloper to become the strategic development
platform of Oracle. In 2002, the JDeveloper 9/ (9.0.3) release meant the end of the last JBuilder
remnants in the products. Yet the experience with a product that started out based on a third-
party code base probably also contributed to the acceptance of externally developed products at
the core of new Oracle initiatives.

In 2001, Oracle radically changed its Application Server tactics. Rather than struggling on
with its own OAS product, it struck a deal with a Norwegian company called Orion to license its
application server. Orion became the heart of Oracle Containers for J2EE (OC4)) (initially the / in
OC4J stood for Java), the engine for the Oracle Internet Application Server (iAS). iAS quickly
expanded its reach to become the middle-tier platform for such diverse products as Portal, Forms,
J2EE Applications, Workflow and InterConnect, Discoverer, Oracle Single Sign On, Oracle
Internet Directory, and many more.

Support for Web Services in the Application Server started to appear from 2001 onward,
and was complemented by development facilities in JDeveloper almost from the start. Shortly
afterward, support for UDDI was added to the Oracle Internet Directory product. The year
2003 saw the announcement of Oracle’s implementation of WSRP (WebService for Remote
Portlets), a standard that facilitates the integration of Portlets (services with a user interface)
across vendor platforms.

In 2004, the cascade of acquisitions started in what was by that time becoming known as the
“SOA space.” Oracle acquired dozens of companies and products, most of them to be folded into
the Enterprise Applications portfolio, but a substantial number in middleware as well. All of these
acquisitions quickly helped to put together a suite of products and technologies that covered most
of the requirements for implementing Service-Oriented Architecture. The acquisition of Collaxa
for its BPEL Process Manager (2004) laid the foundation for the later SOA Suite 10g product. Thor,
Oblix, and OctetString were acquired in 2005 for their various security, identity and access

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 55

management (IAM), and services management related offerings. The Oracle WebService Manager
(OWSM, frequently pronounced awesome) was based on the technology in these products.

As part of the 2005 acquisition of PeopleSoft, the Business Activity Monitor (BAM) was added
to the growing range of middleware products. Also in 2005, Oracle gave up its own UDDI
implementation and instead decided to license the Systinet Service Registry from Systinet
Corporation (bought by Mercury a little later, which itself was acquired by Hewlett-Packard in
2006). In 2006, a partnership was entered into with IDS Scheer, a leading vendor of business
process modeling software (acquired by Software AG in 2009), that allowed Oracle to offer a
product—Oracle Business Process Analysis (BPA) Suite—based on ARIS.

Another major chunk was swallowed later in 2005, when Siebel Systems was acquired. In
terms of middleware, Siebel brought what was to become the Bl Enterprise Edition to the table.

Amid all these influxes from the outside, Oracle developed its own Enterprise Service Bus
(ESB)—released in 2006. The Oracle ESB leveraged a lot of the work that had gone into developing
InterConnect and a wide range of technology adapters, and did this based on standards for XML
and Web Services. The first incarnation of the Oracle Rules Engine was published around that
same time. With the ESB, Rules Engine, WebService Manager, and BPEL Process Manager
components packaged together, Oracle released SOA Suite 10g in early 2006, accompanied by
JDeveloper 10.1.3 with the design-time environment for these components. Even though the various
components were not extremely well integrated, the suite, together with iAS 10g, offered a wide
range of functionality for developing, deploying, and managing SOA implementations. Table 3-2
lists Oracle’s most relevant acquisitions and OEM partnerships around middleware technology
(see http://www .oracle.com/us/corporate/acquisitions/index.htm for a complete, up-to-date list of
product and vendor acquisitions).

With this first generation of the SOA Suite in place, the next step was to be a much more
integrated SOA platform with all the various pieces really integrated together. The outline of SOA
Suite 11g—the core of the Fusion Middleware platform—was becoming clearer from 2006
onward, with initial technology previews being published starting in late 2007. However, plans
were to be changed dramatically in the course of 2008, as Oracle’s largest technology takeover
until then unfolded. Among its products were the Aqualogic Service Bus (an ESB), BPM Studio (a
BPMN-based product for Business Process Modeling), the Enterprise Repository (for governance
of services and other IT artifacts), Aqualogic Data Services, Tuxedo (for managing transactions
across distributed systems including mainframes), and a number of portal products.

When the Oracle-BEA deal was closed at the end of April 2008, the architects of Fusion
Middleware returned to the drawing boards. BEA’s products offered valuable opportunities for
improving the pending SOA Suite 11g that simply had to be taken advantage of—at the cost of a
regrettable delay in its original release schedule. The entry of WebLogic into the Oracle stable
meant, for example, the early retirement of the OC4J-based Application Server line: All Oracle’s
middleware were to be delivered on top of the WebLogic platform.

Other acquisitions that had an impact on the middleware product portfolio include Sunopsis
(2006, rebranded Oracle Data Integrator), Stellent (2006), and Universal Content Manager and
Hyperion in 2007—a solution for corporate performance management. Early 2010 saw the
completion of the acquisition of a big (Glass)fish: Sun Microsystems. Sun was a prize for Oracle
because of its hardware and its control over Java. As a bonus, Oracle gained control over many
Sun products concerning identity and access management, Web Services, BPEL and integration,
portals, as well as another JEE application server: GlassFish. None of these products gets the

56 Oracle SOA Suite 11g Handbook

Year Type Vendor Product Purpose
2001 OEM Orion OC4) Java/)2EE application server
2004 Acquisition Collaxa BPEL Process Manager Web Service Orchestration
2005 Acquisition Siebel Systems BI EE Business intelligence, OLAP,
reporting
2005 Acquisition PeopleSoft Business Activity Monitoring Real-time analysis of business events
2005 OEM HP (Mercury) Service Registry UDDI service directory
Systinet
2005 Acquisition Thor Technologies Xellerate Identity and access management
2005 Acquisition OctetString Virtual Directory (Engine) Identity and access management
2005 Acquisition Oblix COREid, COREsv Identity and access management/
Web Service management
2006 Acquisition Sunopsis Data Integrator Data integration (ELT)
2006 OEM IDS Scheer ARIS/Oracle BPA Business process analysis
2006 Acquisition Stellent Universal Content Manager ~ Content management
2007 Acquisition Hyperion Hyperion, ESSBase Corporate performance
management
2007 Acquisition Bharosa Bharosa Tracker and Security and real-time fraud
Authenticator detection
2007 Acquisition Bridgestream Role Manager Identity and access management
2007 Acquisition Moniforce Moniforce Web user experience monitoring
2008 Acquisition BEA WeblLogic, Aqualogic JEE Application Server, ESB, SOA
Service Bus, Enterprise governance, BPMN, transaction
Repository, BPM Studio, management
Tuxedo, Portals
2008 Acquisition ClearApp ClearApp Management of composite SOA
applications
2009 Acquisition Sun Microsystems Hardware and infrastructure Manifold, including middleware
components: for running JEE applications,
GlassFish, OpenESB with implementing SOA, processing
IEP, OpenPortal, OpenSSO, events, and managing identities/
Identity Management, Portal, authentication and authorization
MySQL
2009 Acquisition GoldenGate GoldenGate Real-time data integration and
continuous data (changes) availability
2010 Acquisition ~ AmberPoint Governance System, SOA management and governance,
Management System security, business transaction
management
TABLE 3-2. Oracle’s Most Relevant Acquisitions and OEM Partnerships around Middleware Technology

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 57

“strategic” status at Oracle. This means that while some of their capabilities may be added to the
existing Fusion Middleware components, none will replace a current FMW product. As such, the
impact of the acquisition of Sun on the SOA Suite 11g was fairly limited.

More impact—at least on operational management, security, and governance of SOA
applications—can be expected from the acquisition of AmberPoint, which was announced in
February 2010.

Invented Here after All

Not all new middleware technology was seized from the outside world. Indeed, one of Oracle’s
current flagship middleware products was built from scratch at Oracle—it simply did not exist
anywhere in the world. WebCenter is a product for Enterprise 2.0, the enabler for enterprise-wide
collaboration. It delivers the next generation of enterprise portals. WebCenter extends SOA
concepts and services with a user interface through its support for WSRP Portlets. It provides the
integration point at the user-interface level between many areas of functionality, such as content
management, task management and workflow, enterprise-wide search and communication
through e-mail, instant messaging (or chat), and VolP (Voice over IP). It is also a natural fit for
user interfaces that expose or leverage the services provided from the SOA.

WebCenter, Oracle Applications, Bl Enterprise Edition, BAM Studio, Enterprise Manager, and
an increasing number of other Oracle products are developed using the homegrown Application
Development Framework (ADF). This framework contains ADF Business Components for smooth
interaction with the database and ADF Faces, with a rich Web 2.0 library of user-interface
components based on the JavaServer Faces (JSF) industry standard. The rich web applications are
agnostic when it comes to their data provider—the ADF Model abstracts the underlying business
service—and work equally well with a persistence layer based on JPA and EJB as well as Web
Services.

ADF has facilities for very productive, declarative development with several reuse mechanisms
and support for advanced data visualization, active (event-driven, server-push) user interfaces,
and “design time@run time” (discussed later in this chapter) for application customization and
personalization. Development of ADF applications is done with Oracle JDeveloper. The applications
run on a J(2)EE application server, typically WebLogic Server.

ADF is used in the SOA Suite to implement the user interface for the human tasks that are part
of the SOA applications.

Complete, Open, and Integrated—2009 and Beyond

Around the turn of the century, Larry Ellison stated that enterprises should not go out and select
best-of-breed products from a range of different vendors that then would have to be integrated
together by “the guys with the glue guns.” Much better, he said, to buy a pre-integrated suite—
engineered from the beginning to fit together—that does not require such a “glue gun” approach.
That pre-integrated suite, by the way, was supposed to be the Oracle 11/ eBusiness Suite.

Clearly this strategy was not embraced by the marketplace, and organizations continued to
acquire best-of-breed products that required integration. Oracle itself started to do the same thing,
as was described in the previous section. With PeopleSoft (HRM/HCM), Siebel (CRM), Retek
(Retail), Portal (Billing), and many other applications, Oracle bought itself an impressive range of
best-of-breed products that required ... integration. At the technology level, by the way, it did
something very similar. With Stellent, BEA, Sunopsis, Hyperion, and others, Oracle acquired
superior, market-leading alternatives to some of its own products. Of course, these products, too,
needed integration.

58 Oracle SOA Suite 11g Handbook

The continuing and even increased need for integration of business applications provided
Oracle with a market opportunity. It could make money in the middleware space to support all the
integration efforts going on. In fact, how credible would the position of the Oracle Application
Server platform be without support for integration and service orientation? Providing solid and
functionally rich middleware was probably not just an opportunity as much as a necessity.

Apart from the external drivers, there was an urgent internal driver that was probably the most
pressing one: Customers running a combination of modules from Oracle eBusiness Suite, Siebel,
Retek, and PeopleSoft demanded of Oracle that these modules work together smoothly—
something they obviously had not been designed for. Although this requirement posed a huge
challenge, it was a challenge quite similar to the ones facing most enterprises: how to make
legacy, custom, and COTS (commercial off-the-shelf) applications work together. Oracle’s
middleware had been pushed by the Oracle marketing teams and sales force as the solution for
such challenges, so now it was time to put their money where their mouths were—or, as is the
usual expression within Oracle, it was time to “eat your own dog food.”

Based on the Oracle 10g SOA Suite, the Application Integration Architecture (AIA) was
developed. AIA provides process integration packs (PIPs), collections of BPEL processes that
implement business processes across various Oracle Applications products (for example, order
processing across modules in EBS and PeopleSoft). Underpinning the PIPs is the AIA Foundation
Pack that contains Enterprise Business Objects and Enterprise Business Services, which allow
organizations to create their own customized business processes on top of the Oracle SOA Suite,
spanning multiple modules from different products in the Oracle Applications portfolio and also
legacy applications, including SAP modules and custom-built applications. AlA is crucial to
Oracle’s strategy with regard to its Enterprise Applications portfolio. AIA’s requirements will further
drive the development of Oracle’s SOA products, and its success will provide clear proof of the
value of those products as well as a reference implementation with best practices, reusables, and
guidelines for organizations using the SOA Suite for their own SOA implementation.

Fusion

With the acquisition of PeopleSoft, Oracle announced its Fusion vision and roadmap. Later
acquisitions had their impact, not so much on the vision itself but certainly on the roadmap and
timelines. There has been a lot of confusion as to what Oracle’s Project Fusion entailed. At the
core, “Fusion” has these aspects:

B The integration of the acquired business entities into Oracle, reorganization as well as
staff retention, especially among engineers

B A newly developed next-generation application that is based on industry standards and
the latest technology and that takes the best features, flows, and usability traits from the
existing application products; this new product is known as Fusion Applications

B Technology for making different products in the Oracle Applications portfolio—such
as EBS, PeopleSoft, Siebel, Retek, and JD Edwards—work together, as well as the
technology stack for the new Fusion Applications; this technology has been labeled
Fusion Middleware

The adage Oracle uses for Fusion Middleware (FMW) is “complete, open, and integrated.”
This captures the essence of the objectives with and claims for Fusion Middleware.

Complete means that all capabilities in every middleware area you can think of are provided
by Fusion Middleware. And to put it even stronger, Oracle claims that every capability in FMW is

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 59

provided by the best-of-breed offering. So even if an organization wants to pursue a best-of-breed
strategy, it would have to select Fusion Middleware components in every area because they are
the best of breed in their own right. Oracle further strengthens the completeness claim with
Fusion Applications as the living proof. Oracle has a unique ability to maintain the completeness
in the future, given its resources, dedication, and internal needs.

Open refers to the fact that Fusion Middleware is hot-pluggable. This means that the FMW
components can be replaced by alternative products from other vendors. Oracle recognizes the
fact that even though it claims to provide a complete, best-of-breed solution in every area,
organizations may have current investments or even deviating views as to which product is the
best solution in a certain area of middleware capabilities. Another aspect of openness is the
support for open standards. Fusion Middleware complies with every major industry standard in
the area of middleware—some 195 standards are supported and adhered to in the FMW 11g
release. This makes the product open in the sense that it can be interacted with in ways that
are common across the industry. FMW is not open source, obviously, but does not tie an
organization to Oracle proprietary protocols or hamper interoperability. Custom applications
written for use with Fusion Middleware will run with alternative middleware platforms that also
support the industry standards.

Now let’s consider integrated. Not only does Fusion Middleware offer all middleware
capabilities (complete), it also has all these capabilities nicely integrated and working together.
That may sound trivial—if a vendor offers a number of middleware products, you would naturally
expect them to work together. However, frequently that is not the case at all—and it wasn’t the
case for the 10g releases of the Oracle SOA Suite. Fusion Middleware provides that integration
across different areas of functionality, such as business intelligence, Web Services, content
management, enterprise collaboration, identity and access management, governance, event
processing, and custom-developed user interfaces. It helps organizations create business
processes that integrate with these different technologies across the enterprise.

Fusion Middleware 11g: The Innovative Foundation for Enterprise Applications
July 1, 2009, marked a milestone in the history of Oracle Corporation. On that day, the worldwide
rollout of Oracle Fusion Middleware 11g was initiated, the culmination of many years of helping
forge the industry standards, conducting research into interoperability, creating new tools and
frameworks, acquiring and absorbing products from external parties, and architecting a complete
stack of middleware products. The public unveiling of FMW 11g was one of the biggest product
launches in Oracle’s history.

Fusion Middleware 11g consists of many different products that provide solutions in diverse
areas, from identity and access management, business intelligence, event processing, content
management and data integration to a data grid, web application development, enterprise portal
and collaboration, business process management, governance, security, and, of course, Service-
Oriented Architecture. Fusion Middleware 11g runs on top of WebLogic Server 11g. The design
time for most products in the stack is JDeveloper 11g.

Fusion Middleware is not sold as single product with a simple price tag. Oracle understands
that many organizations will, at least initially, only use specific components from the wide range
of middleware products. Customers buy licenses for specific product suites, bundles of related
products in specific areas of functionality. Among the FMW 11g suites offered that are associated
with SOA are the BPM Suite, EDA Suite, Governance Suite, and, of course, SOA Suite. Note that
these suites have a certain level of overlap. Also note that for most suites, several reduced-cost
variations are offered that support usage of only specific products from the suite.

60 Oracle SOA Suite 11g Handbook

The biggest customer for Fusion Middleware is Oracle itself. The development of Fusion
Applications and other products in the Oracle Applications portfolio is all done on top of the
Fusion Middleware 11g stack. Most organizations will have less stringent requirements for their
development and integration efforts than the ones faced by Oracle’s internal divisions. Because
the exact same technology is available to external customers as is being used internally, Oracle is
providing the proof in the FMW 11g pudding by eating all of it itself.

SOA Suite 11g: The Key Components

SOA Suite 11g is first and foremost an SCA container, a run-time engine that can execute
composite service applications. Composite (service) applications are SCA-compliant applications
that are assembled from various service components that are wired together internally based on
WSDL contracts. Composite applications publish a service interface through which they can be
invoked by external clients. This interface is frequently a (SOAP) Web Service interface, but other
types of bindings are also possible, such as based on EJB/RMI and JMS. SOA Suite 11g can run
multiple instances of every composite application in parallel. It can handle calls into applications,
coordinate messages between components within an application, and facilitate calls from the
application to external services.

You invoke a composite application that exposes a Web Service binding by sending an XML
message to a URL. That message will be processed—possibly resulting in database manipulation,
file creation, human task execution, e-mail sending, and event publishing. At some points during
the processing of your message, you may receive return messages that can contain the results of
whatever the application has been doing.

The composite applications running on the SOA Suite can make use of the following service
languages and engines for executing its components:

B BPEL Process Manager Orchestrates (potentially) long-running service composites with
many interactions with external services, both outgoing and incoming.

B Decision Service or Business Rules engine Executes decision logic that can be
(re)defined at run time.

B Human Workflow Service For engaging humans in making decisions or providing
information.

B Spring-based Java Beans (as of 11gR1 PS 2) Custom business logic implemented in Java
acting on the messages.

B Mediator For filtering, transforming, adapting, and routing messages.

B BPMN Business process logic defined through BPMN can be executed inside the SOA
Suite (by the same engine that also runs BPEL). (This, too, was introduced in 11gR1 PS2.)

Composite applications accept incoming request messages and route them through components
programmed using these technologies. Note that other SCA containers may support different service
engines—for example, running Cobol, C, and C#—and that Oracle may add new service engines to
the SOA Suite as well. Each component performs a service that may alter the message, create new
messages, have external effects, or influence the onward processing in the application. Composite
applications can call out to external Web Services—and receive asynchronous responses or other
incoming messages from these external services. Applications can also make use of the Event
Delivery Network to publish business events as well as to consume such events.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 61

Ingredients of a Composite Application

When developers create an SOA composite application, what they are actually doing is
working on XML files. What gets deployed to the SOA Suite’s SCA container typically is a
collection of the following files:

B The WSDL and XSD files that describe the interfaces (contracts) of the application
as a whole (the services it exposes) as well as the service components running
inside the application.

B The files that are the programs to run in the BPEL and Mediator engines or that
define the human task to be performed by an end user.

B Files that describe how the SCA components are wired together to exchange XML
messages to be processed at run time.

B Definitions for how XML messages are to be transformed en route from one
component to the next.

B Some of the XML files provide the configuration details for the adapters that the
composite application can use to communicate to external technology platforms,
such as database, file system, e-mail server, and message queues.

B Configuration plans that apply environment-specific deployment details.

Most of the XML, by the way, is hidden from view by visual editors that present far
prettier and easier-to-understand renditions of those blocks of XML data.

All of the XML files are bundled together in archives—a JAR (Java Archive) or SAR
(Service Assembly Archive, aka SOA Archive, a deployment unit that describes the SOA
composite application)—that are deployed to the SOA Suite container.

The SOA Suite is shipped with an impressive set of technology adapters. These adapters speak a
specific protocol and language to some external technology platform on one end and act like a
Web Service on the other. Examples of these protocols, platforms, and languages include the file
system, FTP servers, the database, JMS queues, the eBusiness Suite, SAP, and various B2B exchange
types, such as RosettaNet, ebXML, HL7, and EDI(FACT). These adapters make it possible for SOA
applications to connect to many different components and thereby service-enable existing assets.

Outside of the SCA container—but still part of the SOA Suite license and prepared for integration
with the SOA composites—are several other valuable products: the Oracle Service Bus (OSB), Oracle
Business Activity Monitoring (BAM), and Oracle Complex Event Processing (CEP).

Adapters

SOA Suite 11g is integrated with a large number of adapters that the composite applications can
make use of for accessing services across various technologies and protocols. These adapters
allow the composite applications to retrieve data from, forward messages to, and leverage
functionality in many different places in and even outside the enterprise—from database and file
systems to EDI trading partners and legacy applications. Some adapters allow for the activation of

62 Oracle SOA Suite 11g Handbook

composite applications from the outside world. The most important adapters available for use in
SOA Suite 11g composite applications access the following targets:

B Database For accessing tables and views (query and data manipulation) and calling
PL/SQL program units

File and FTP For reading and writing files from a file system and an FTP server

Queues For accessing queues through JMS, Oracle Advanced Queuing, and MQ Series
Enterprise Java Bean (EJB) To communicate with remote Enterprise JavaBeans

Sockets For reading and writing data over TCP/IP sockets

Oracle Applications (aka Oracle eBusiness Suite adapter) For retrieving data from and
sending data to eBusiness Suite (11/ and 12)

Business Activity Monitoring (BAM) For sending data and events to an Oracle BAM
server

B ADF-BC (Business Components) For interacting with an ADF BC-based Service Data
Obiject service

B B2B For the exchange of business documents with e-commerce trading partners based
on industry standards such as RosettaNet, HL7, and various EDI protocols; also support
for interaction with SAP and other ERP applications

Adapters will usually be called by the service components running in a composite application
(outbound). Note, however, that most adapters can also initiate a new instance of an application
(inbound). The database adapter, for example, can “poll for changed records,” and any new or
changed record can start a new instance. Likewise, the file and FTP adapters can poll for new
files to arrive on the file system or an FTP server, or for new lines in an existing file. This adapter,
too, can instantiate a composite application instance when new data is read from a file that has
changed.

Other adapters that can act as “service clients” that create new instances of composite
applications include the EJB adapter, the JMS adapter, and the AQ adapter. Inbound adapters can
connect to existing instances of composite applications (see Chapter 6 for details).

Adapters are discussed throughout the book: For example, the database adapter is discussed
in Chapter 5, the file adapter in Chapter 7, the JMS adapter in Chapter 12, and the ADF BC
adapter in Chapter 20.

Event Delivery Network

Business events are situations of potential interest. Examples are the reception of an order,
cancellation of an appointment by the patient, the failure of a credit check, the crossing of a
stock threshold (we are critically low on Band-Aids), and the acceptance of a job offer by a new
nurse. These events frequently occur in business processes when certain conditions are met or
actions have been performed. Events can also come into existence during the execution of a
service component. The business events may trigger the start of new composite application
instances or could notify already running instances.

However, the burden of informing any potentially interested party of the event should not be
on the service component that happens to encounter the situation. The producer of the event—
the application or service component that causes or encounters the situation that is deemed to be

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 63

of business interest—is not responsible for what happens with the published event, nor does or
should it care. This keeps producers and consumers decoupled: Consumers can be added or
removed without impact on the producers of events. Likewise, new producers can be introduced
without any effect on the consumers. To make this happen, we need a “man in the middle” of
sorts, a generic medium that deals with both consumers and producers.

A key part of SOA Suite 11g is the Event Delivery Network (EDN), an intermediary that takes
on the responsibility of receiving events from producers and delivering them to interested parties.

Business events are defined across services and composite applications as an extension of the
canonical data model. The definition of a business event comprises a name, possibly custom
headers, and the definition of the payload. These definitions need to be registered with the EDN.

Service components—BPMN, Mediator, and BPEL—can publish events (occurrences of one
of the predefined event types) to the Event Delivery Network. Events can also be published to the
EDN from ADF applications and through a PL/SQL API.

Service components such as Mediator, BPMN, and BPEL register their interest in one or more
of the centrally defined business events with the EDN. Such an interest can indicate all events of
a specific type, but also can include more fine-grained selection rules that refer to the custom
headers or payload to filter on specific occurrences of an event. When an event has been
published, the Event Delivery Network will make sure that all interested parties will receive the
event. Note that it is very well possible that an event is not delivered to any interested party at all.
In that case, it disappears into the void.

Chapter 9 discusses the Event Delivery Network and presents several examples in detail.

Oracle Service Bus

Composite applications running in the SOA Suite will frequently need to access services made
available in an enterprise service bus (ESB), possibly based on services running in other SCA
containers, offered by external parties, or running on legacy platforms such as mainframes. In a
similar vein, the services exposed by the composite applications within the business domain may
need to be made available to a wider audience; this, too, is typically done through an ESB.

SOA Suite 11g contains an ESB: the Oracle Service Bus (the successor to BEA’s Aqualogic
Service Bus, abbreviated OSB).

Chapter 13 describes the OSB and how it can be used along with SOA composite applications.

Business Activity Monitoring (BAM) Server

Oracle BAM provides a framework for creating dashboards that display real-time data as it flows
into the BAM server. This is typically data received from physical sensors (security gates, RFID
scanners), trace details from computer applications (request logging in web applications, process
progress signals from a BPM or workflow engine), or live data feeds with financial data, weather
reports, or even sports statistics. Rules can be created in BAM to instruct the framework to
highlight deviations and send alerts under specified conditions. BAM is primarily used to monitor
aggregates against predefined thresholds for data recently received over relatively short periods
(typically minutes to hours, rather than months to years). That, along with the built-in capability
to trigger alerts and take actions, is the main distinction between BAM and traditional business
intelligence, which tends to be more passive and more historically oriented. BAM tries to
facilitate the operational control of business process execution.

Data used by BAM for the actual reports is managed in memory in the Active Data Cache.
Data is loaded into this cache in real time via various channels. Probably most important in the

64 Oracle SOA Suite 11g Handbook

context of the SOA Suite is the BAM Adapter—it is not only the fastest option for streaming data
into the BAM server; it is also integrated into composite applications like all other adapters. For
BPEL there is an additional option through the BAM sensor action that can be enlisted when
adding special tracers to activities in the BPEL processes. Alternative routes for data into BAM are
Direct JMS, Oracle Data Integrator, and through the Web Services interface exposed by the BAM
server.

Chapter 19 introduces Business Activity Monitoring in detail.

Fusion Middleware Infrastructure and WebLogic Server 11g

SOA Suite 11g runs inside WebLogic Server 11g—the SCA container lives inside the JEE
container. The underlying run-time infrastructure of Fusion Middleware 11g is the WebLogic
Server platform, managed through the Administration Console. Several web applications are
installed into the WebLogic Server domain as part of SOA Suite 11g to support the FMW 11g run-
time operations. The Oracle Enterprise Manager Fusion Middleware Control Console is the most
important one of these—other examples are the SOA Composer, the Worklist application, and
several BAM web applications.

The Oracle Enterprise Manager Fusion Middleware Control Console is the integrated console
for virtually all run-time monitoring and administration of SOA composite applications and their
instances. This console is an ADF 11g web application that runs on WebLogic and is accessed
from a browser by the SOA Suite administrator to work on tasks in these main categories:

B Configuring Adjusting properties from SOA infrastructure and service engines down to
components in composite applications.

B Monitoring Aggregating metrics, performance figures, and faults across applications,
components, and service engines; reporting the current state of running instances;
providing an audit trail per composite instance; drilling down to the steps through a
component; and inspecting the log files.

B Managing Deploying, stopping, and starting composite applications; recovering from
faults; terminating application instances; unit testing of composite applications; and
attachment of policies to SOA composite applications, service components, and binding
components. The Oracle WSM Policy Manager is the integrated facility to attach policies
regarding security, reliable messaging, addressing, and logging to Web Services and
service composite applications.

The WebLogic Server Administration Console is used alongside the Enterprise Manager
Fusion Middleware Control for normal JEE administrative tasks such as the configuration of data
sources and JMS objects, administration of the security realm, and management of the technology
adapters. Figure 3-2 shows the architecture of WebLogic Server and SOA Suite 11g installed on
top of it.

User Messaging Service

Another element in the infrastructure is the Oracle User Messaging Service (UMS). UMS provides
applications with two-way communication with users across various channels and protocols.
Messages can be sent and received through e-mail, IM (XMPP), SMS (SMPP), and voice (VolP).
Most of the time, the message will be initiated by the application, but UMS also caters to

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 65

JDBC data / [] [] Database
sources SOA app 1 SOA app 2 adapter
BPEL] | BPMN] | BUS'”eSS] osB|| Ms
JMS L | rule - d
Mediates Human Sprin a apter
—— Task Java/EJB
Flle
XA/TA Event Delivery Network) system
\SOA Suite 11g adapter
WebServices Meta Data User messaging
EJB management Services (MDS) service
{ Platform security services]

WebLogic server 11g

FIGURE 3-2. WebLogic Server with the SOA Suite installed on top of it

scenarios in which the user is the sender of the message and the application is on the receiving
end. The arrival of the message is fed into the application by UMS.

Notifications will frequently be sent via UMS from BPEL processes, the Human Workflow
engine, and the BAM server. WebCenter, ADF, and other web applications can also make use of
UMS. UMS consists of a server that works with a number of drivers to connect with message
gateways using specific protocols. These external gateways are not part of WebLogic Server or the
SOA Suite. Various e-mail servers, chat (IM) servers, and external providers of SMS and text-to-
speech services can be integrated.

Appendix C and the book’s wiki provide instructions for configuring the UMS services.

Meta Data Services (MDS)
The Fusion Middleware run-time environment has at least one, and possibly multiple, metadata
repositories that contain metadata for Oracle Fusion Middleware system components. A metadata
repository contains metadata about the configuration of Oracle Fusion Middleware as well as
metadata for different types of enterprise applications. Shared artifacts such as XSD documents
describing the canonical data model, data value maps that describe mappings between business
vocabularies in different domains, reusable transformations, human task definitions, security
policies, business rule definitions, and business event definitions are deployed to and managed in
metadata repositories. Artifacts in these metadata repositories can be used during development as
well as at run time. Meta Data Services (MDS) provides a single interface across all repositories.
MDS provides services to validate, version, tag and categorize, discover, and manage artifacts
throughout their lifecycle.

A special facility in MDS is its support for customization. MDS can return specialized versions
of artifacts that are created from a base version with context-sensitive deltas applied to it.

66 Oracle SOA Suite 11g Handbook

Design Time

The IDE (integrated development environment) used by developers to create service composite
applications is JDeveloper 11g. JDeveloper is an IDE in more than one way. Most facilities required
for developing software are integrated into a single workbench, including editors, debuggers, and
support for testing, building, and deploying software artifacts. JDeveloper is integrated with
WeblLogic Server for easy deployment, execution, and debugging of web applications. JDeveloper
also brings together the design time for many different products and technologies—from Complex
Event Processor, BPM, UML, Java, and ADF to SQL and PLSQL (SQL Developer), and from
WebCenter, Data Integrator, XML, and Web Services to all the technologies and service engines of
the SOA Suite. That means JDeveloper is also the integration development environment.

Oracle Service Bus currently has two design-time environments: One is a browser-based
console and the other is part of the Oracle Enterprise Pack for Eclipse. OSB support in JDeveloper
is planned.

The slogan “design time at run time” is becoming fashionable, and describes the ability to
change the behavior of already deployed applications at run time. Fusion Middleware supports
various forms of this run-time application manipulation. For the SOA Suite, some of the interesting
DT@RT bits include editing of business rules; manipulation of domain value maps; configuring
properties on service composite applications and adapters; and creating, removing, or changing
subscriptions to business events. The Oracle Enterprise Manager Fusion Middleware Control
Console, the BPM Process Browser, and the SOA Composer are the tools for most of the SOA
Suite’s DT@RT, as is the OSB Console.

Related Suites and Products in FMW 11g

Applications running in the SOA Suite or organizations working with the SOA Suite will frequently
use other Fusion Middleware products as well. Some of the most likely suspects that you may run
into or decide to use alongside the SOA Suite are detailed in this section.

The Application Development Framework (ADF) is a JSF-based framework for developing rich
Java web applications. ADF has special integration points with the SOA Suite. To name a few:
ADF is used to create the user interface for the human tasks, ADF Business Components (ADF BC)
are used to publish SDO services on top of the database (which are used in, for example, BPEL
processes), ADF BC is capable of publishing events onto the Event Delivery Network, and ADF
applications can consume the Web Services exposed by composite service applications running
in the SOA Suite. By the way, ADF was also used by the Oracle development teams to create the
Enterprise Manager Fusion Middleware Control Console.

WebCenter has several faces, one of which is its portal capability. Portlets can be seen as a
special type of service: a service that has a user interface built into it. WebCenter provides ADF
applications with the ability to consume such services, and it also enables ADF developers to
expose their applications as Portlet services. WebCenter is also an extension of ADF as a foundation
for rich web applications, through a large collection of services that add “integrated collaboration”
to ADF applications. This includes support for blogs, wikis, RSS feeds, chat, e-mail, tagging and
linking, content integration, management of tasks, activities and events, and enterprise search across
all content, services, and application data. WebCenter also adds design-time at run-time capability
to an ADF application. This enables an application administrator or content editor to change the
appearance and content of application components at run time—very much like regular portal
products do, but in a more advanced and better integrated-with-ADF way.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 67

Fusion Middleware contains a number of products for governance of SOA artifacts (and other
IT assets). At the core of governance is the Enterprise Repository. The Enterprise Repository
provides metadata management for technical and software-related SOA assets and sophisticated
tools for governing those assets throughout their lifecycle to promote reuse. The Service Registry
provides a standards-based (UDDI) reference for the dynamic discovery and use of services and
their associated policies at run time. It contains a subset of the metadata managed within Oracle
Enterprise Repository that is useful to the run-time infrastructure for dynamic discovery of services
and policies.

Oracle BPA is a tool for business analysts and architects to perform process modeling and
analysis as well as simulation and publishing of process models. It integrates with both BPM and
BPEL: Process models (also called blueprints) from BPA serve as the starting point for more
detailed, implementation-ready process definitions created in BPM and BPEL.

CEP subscribes to event streams—such as from the SOA Suite Event Delivery Network (although
more likely from lower-level and more voluminous sources)—and executes a Continuous Query
Language (Oracle CQL) query to search for aggregates, patterns, and exceptions in real-time event
streams. The events processed by CEP are usually highly frequent, sometimes physical in nature,
and can be quite meaningless by themselves. The results from the continuous queries that reveal a
meaningful pattern or an exception are turned into events at a higher, more business-oriented level
that can be fed into Oracle BAM or the Event Delivery Network, for example.

Oracle Data Integrator (ODI), together with Oracle GoldenGate, provides a data-integration
platform that covers all data-integration requirements—from high-volume, high-performance ELT
batches, to real-time, event-driven, trickle-feed integration processes, to SOA-enabled data
services. This technology can be used alongside an enterprise service bus to handle large volumes
of data that primarily need to be moved from one system to another in not necessarily a service-
or XML-oriented way. ODI has support for Web Services as well—both outbound and inbound.
In addition, it can be integrated directly with Oracle BAM.

NOTE
“ ODI intentionally uses the term ELT instead of the more common ETL

' (Extract, Transform, and Load).

Application Integration Architecture (AIA) is a framework for integrating various products and
modules from the Oracle Applications portfolio and for creating cross-module business processes.
AlA builds on top of the SOA Suite. Through AIA, JD Edwards, Retek, PeopleSoft, Siebel, EBS, and
Fusion Applications—among others—can interact in a loosely coupled way. AIA provides a
reference architecture for implementing SOA that can also be used with custom applications and
third-party software.

The Oracle Identity and Access Management offering has a substantial number of products
that help implement and manage scalable security based on open standards for applications and
services. Through Oracle Platform Security Services (OPSS)—an abstraction layer that implements
a security and identity and access management APl—applications can use a uniform set of services,
without having to deal with implementation details of the underlying security infrastructure. OPSS is
the platform that provides security to Oracle Fusion Middleware, including products such as
WebLlogic Server, SOA Suite, WebCenter, ADF, and Oracle Entitlements Server, to name a few.
Note that OPSS can run on various JEE application servers, including JBoss and WebSphere, in

68 Oracle SOA Suite 11g Handbook

addition to WebLogic. SOA Suite and WebLogic Server interact with OPSS for securing Web
Services and composite applications.

The Universal Content Manager, with supporting tools such as SiteBuilder, is another component
of Fusion Middleware. This product will typically not have direct interaction with applications
running in the SOA Suite. The same applies to the FMW products for Business Intelligence (BI EE)
and Enterprise Corporate Performance (Hyperion).

Oracle has bundled many of its FMW products in suites, such as the SOA Suite. These suites
comprise a logically related collection of products sold under a single license. Having said that,
most suites can be bought with tailor-made licenses that apply to a subset of the products in a
suite. And besides, there is a lot of overlap between the suites that is accounted for when you
acquire more than one of them. The most relevant product suites around the SOA Suite are the
BPM Suite, EDA Suite, SOA Governance Suite, BPA Suite, and Data Integration Suite.

Getting Started with SOA Suite 11g

This book is by no means intended to be only theoretical. Yes, it does tell a story and hopefully
explains a great deal about the SOA Suite by showing examples and describing the concepts
behind and workings of the service engines, underlying standards, and technologies and
supporting tools. However, you—and your fingers—will only start to learn for real once you start
practicing what is preached in this book. So now is the time to get into gear. It’s time to get
yourself a fully operational SOA Suite (version 11g) so you can start developing, deploying, and
running composite service applications as well as fully appreciate what it is really like to create a
service-oriented application.

This section describes the steps to take for installing and configuring SOA Suite 11g. It only
provides high-level instructions, however, because the details can be found in several excellent
installation manuals. The book’s wiki provides an online chapter complement with an extensive
installation instruction using many screenshots. The complement guides you through the
installation of a complete SOA Suite 11g environment that goes with the examples in this book.

It is assumed that you will install into a development environment to start dabbling with the
SOA Suite—not a full-blown, highly available, clustered production environment.

Installation of SOA Suite 11g

The SOA Suite is available for various operating systems, including Windows, Unix, and Linux.
You can install and run the SOA Suite on a machine that has at least 2GB of memory, some 10GB
of free disk space, and a dual-core 1.5 GHz processor. If you intend to run JDeveloper on the
same machine, you should have at least 3GB of memory.

Part of the SOA Suite infrastructure is the metadata repository that needs to be installed in a
10g or 11g Oracle RDBMS. Note that SQL Server 2005 and 2008 are also supported, as may be
other databases at some point. Before you start the installation, you need to make sure you have
access to such a database—with 1GB of disk space for the creation of new tablespaces. The
database parameters for processes and open_cursors should be set to a value of 500 or above.
You need database user credentials with DBA or SYSDBA privileges.

The documentation for the installation (as well as all other details) of the SOA Suite and
the other components in Fusion Middleware can be found online at http:/www.oracle.com/
technology/documentation/middleware.html.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 69

Downloading the Software

Before you can start with the installation, you need to download the required software from Oracle
Technology Network. Go to the OTN page for Fusion Middleware Software: http://www.oracle
.com/technology/software/products/middleware/index.html. Download the following components:

Repository Creation Utility 300MB

WebLogic Server 11g 800MB

SOA Suite 11g 1.5GB

JDeveloper 11g 1TMB

B JDeveloper extensions for SOA and BPM - 450Mb
B Oracle Service Bus 11g - 900Mb (optional)

Oracle Complex Event Processing 11g (optional)

The design and run-time environment for SOA Suite 11g is illustrated in Figure 3-3.

NOTE
- This software (the full production versions) can be used for free under
i

N the OTN Development License for self-education or for prototyping
and development of applications. All you need is a free account on
the Oracle Technology Network.

JDeveloper 11g

WLS (domain)

/. WebLogic Server 11g \ ®

CEP 11g
[‘ SOA Suite 11g]

® Oracle Service
Bus 11g

soa_domain

connection

\I

Oracle RDBMS 10gR2/11g

==

FIGURE 3-3. Installation applies to three tiers: the JDeveloper design time, and the run-time
setup of the Database and the Middle Tier

70 Oracle SOA Suite 11g Handbook

Installation Steps
This section presents the installation steps for the SOA Suite. Further details can be found through
references on the the book’s wiki.

1. Run the Repository Creation Utility (RCU) to install the metadata repository. The RCU is
started from the rcuHome/bin directory. The RCU creates all tablespaces, schemas, and database
objects required in the metadata repository for SOA Suite and BAM. Select at least the SOA
Infrastructure and the Business Activity Monitoring component under SOA and BPM infrastructure.
The Metadata Services should be selected automatically upon making those choices.

The default (or minimum) tablespace size can be a bit large for a development environment.
You can decrease the size of the data file associated with each tablespace to save on disk space.

2. Install WebLogic Server and create the middleware home. Run the downloaded
executable file for WebLogic Server 11g (the internal release number is 10.3.x). Select the option
Create A New Middleware Home. Accept the option to perform a typical installation and accept
other default values by clicking Next until the Finish button is enabled. Then click the Finish
button. Now WebLogic Server will be installed. You could start WebLogic Server when the
installation is complete to verify the successful installation. However, let’s first install SOA Suite
11g and create the SOA domain inside WeblLogic Server.

3. Install the SOA Suite. Extract the downloaded ZIP file to a temporary directory. Run the
executable runlinstaller (Linux and Unix) or setup.exe and pass the parameter -jreLoc, specifying
the location of a Java 6 run-time environment (for example, the one installed along with
WeblLogic Server in MIDDLEWARE_HOME\jdk160_11).

The Installer Wizard appears. It performs a number of checks—available disk space, hardware
requirements, and so on. Then it asks for the install location. In the Oracle Middleware Home
field, specify the absolute path to your existing Oracle Middleware Home directory; this is the
directory created when you installed Oracle Weblogic Server. It presents a summary and allows
you to start the actual installation by clicking the Install button. When you click that button, the
SOA Suite software is installed in a directory structure starting at SOA_HOME that lives under
MIDDLEWARE_HOME.

4. Configure the SOA Suite. At this point, we have the metadata repository prepared in the
database and a clean install of the WebLogic Server. The SOA Suite software has been installed,
but not yet configured. There is no SOA container running inside WebLogic Server just yet. The
next step entails configuring the SOA Suite inside the WebLogic Server. We do this using the
Fusion Middleware Configuration Wizard.

This Configuration Wizard is located in the SOA_ HOME/common/bin directory (for Linux) or
the SOA_HOME\common\bin directory (for Windows). Go to this directory; then run the config.
sh script (for Linux) or the config.cmd script (for Windows) to start the Configuration Wizard.
Unless you have very specific reasons for deviating from the default settings, you should accept
them as they are for this development environment.

The wizard will create a new WebLogic domain called soa_domain. You have to provide the
credentials for a new user who will have the Administrator role. The default recommended values
to accept are weblogic for the username and weblogic1 (the last character is the number one) as
password. Note: Another frequently used password is welcome 1. You may come across it in
tutorials and installation instructions or other documentation.)

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 71

WebLogic Terminology
The product we just installed is called WebLogic Server 11g. However, at this point we
cannot run it because it has no instance to start and run.

An installation of WebLogic Server can be used to run one or more domains. For the
installation of the SOA Suite and the BAM server in the personal development environment,
we will assume for this book that you will work within a single domain. A domain is a
logically related group of servers that can share certain resources. A server is a unit that can
be started and stopped independently of other servers. Servers host the components and
associated resources that constitute your applications—for example, JSF pages and EJBs.
Every domain contains a special server: the Administration Server (AdminServer). You use
the Administration Server, programmatically or through the Administration Console or
WLST, to configure all other server instances and resources in the domain.

All other servers in the domain are called managed servers. When a managed server
starts up, it connects to the domain’s Administration Server to obtain configuration and
deployment settings. However, a managed server can start up independently of the
Administration Server if the Administration Server is unavailable. Several managed servers can
be linked to form a cluster. Note that a cluster runs within a single domain.

The installation of the SOA Suite that is described next involves an AdminServer, a
server for the core SOA Suite components—usually called soa_server1—and a second,
managed server that runs the Oracle BAM Server and web applications; this server is called
bam_serverl by default.

Specify database connection details for the metadata repository you created using the Repository
Creation Utility in step 1. On the Summary page, click Install to start the creation of the new SOA
domain with three servers inside: AdminServer, soa_server1, and bam_server1. Note that you can
run this Configuration Wizard at a later moment to apply additional configurations to this domain.

The new domain is created in the directory MIDDLEWARE_HOME/user_projects/domains/
soa_domain.

5. Install the Oracle Service Bus 11g. (This step can be considered optional at this point, as
the OSB is only required for Chapter 13.) Run the setup.exe from the OSB 11g download. Provide
the JRE location. Install the OSB 11g into the same Middleware Home used for the SOA Suite
11g. Next, run the configuration wizard to extend the soa_domain created during the installation
of the SOA Suite 11g with a managed server osb_server1 that contains OSB 11g.

6. Install Complex Event Processing 11g. Again, an optional step, Complex Event Processing
is only introduced in Chapter 19. The CEP installation process creates a separate lightweight
container that runs CEP. Additionally, Eclipse should be installed as the development environment,
with the CEP plug-ins to complete the CEP IDE.

7. Start the AdminServer and the managed servers for SOA and BAM. Before we can start
doing anything at all with the SOA Suite, we need to start the servers in the new Weblogic SOA
domain. We will use three command-line scripts to get these servers going.

72 Oracle SOA Suite 11g Handbook

Starting the SOA Server without Entering the Credentials

If you do not want to have to type in the username and password of the administrator
account every time you start up the server, you can do the following—after having started
the server at least once to have the directory structure created:

1. Create a new directory called “security” under MIDDLEWARE_HOME \user_
projects\domains\soa_domain\servers\soa_server1.

Create a new text file called boot.properties in this directory.
Add two lines to this file with username and password key-value pairs, like this:
username=weblogic

password=weblogicl

When the server is started, the credentials are read from this file. Note that the file will
be changed into a more secure, encrypted pair of values. The same instructions apply to the
BAM server and the OSB server.

First, to start the AdminServer, locate the startWebLogic.cmd script (Linux: startWebLogic.sh)
in the MIDDLEWARE_HOME \user_projects\domains\soa_domain directory. Run this script from
the command line.

When the AdminServer is running, you should start the SOA server and optionally
the BAM server and/or the OSB server. Go to the directory
MIDDLEWARE_HOME \user_projects\domains\soa_domain\bin, which was created by the SOA
Suite Configuration Wizard. Open a command window and enter the following command to execute:

I startManagedWebLogic.cmd soa_serverl

(On Linux, use the script startManagedWeblogic.sh.)
To start the BAM server, use this same command for the bam_server1, and for the OSB server
replace soa_serverl with osb_serverT.

NOTE
“ You will be prompted for the username (weblogic) and password
r (weblogic1) of the administrator credentials used to boot the server, so
do not go away right after starting the script.

8. Access the Oracle Enterprise Manager Fusion Middleware Control. With the servers
running, now is a good moment to check out the Enterprise Manager. This console is where most of
the administration tasks take place with regard to the SOA Suite and the composite applications. The
Enterprise Manager Fusion Middleware Control, shown in Figure 3-4, supports various actions, such
as deploying, starting and stopping, and testing composite applications, as well as inspecting
completed and running instances of the applications, including fine-grained details from individual
service engines and every single step in BPEL process execution. The console is available at http://
localhost:7001/em. Use the username weblogic and the password weblogic1 to log in to the console.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 73

L C paltrreb PUR ¢ oo ot s o 1

tepee i jonie

Hireme f boskas
M~ Farm_saa_domain o [EE R
T Erpa Bl vl b L 1 e o ki T 0
¥ e s ey
=T Erpenrmrees [o
"] [y ep—
e
o T 1.0 . Q g
| i g g T h
ol e i [T
T sarimee o
B e
: :_.;-‘ "F.d#.- Bew Tew [y - Wuir:
B P b B 2 i) Mg il ol [Pl i
a0 | 3 M F g T i o R Ay g i e
14 & e P i e Bl s L iRl LLid
Py oW e s e Ry T A e e &
| ST T i i et &
& i b o i e] [T
L by T el et
P AT ol Py ik T (I E—— o LM e
T, i o T L] i mm Tl
L CERE i} [rra—— 4. Herumgeey Sewery
Py L oy Pt Prarssder T B ey el L} oo
Py e T i B e T iF]
[pe— L i sl
P Mt i D Pl ¥ 3 e
=12 R T e {F ey = Dare Ersssrr Desdee ¥
I L o i 55 il 1 kil e rw P Brnmy
[T T — B e Py e T—
1 Fi o L e T e et el Pty Cr e Ve’ S e B e S
| r— TR — I.\p:-. -.-..l'.--.--r:uu-...-m--mu
;::.‘:;:-; : :':T: -j.-'\.-r.u'l-l-\.'.uu-\.-rl-l-l.-u-\.-'-ur-m P TE———— 8
B nrrery ke s Hebdrems o

FIGURE 3-4.

The Enterprise Manager Fusion Middleware Control

The SOA node is the starting point from which you can inspect the list of deployed composite
applications—although, of course, initially there are none.

The classic WebLogic Server Administration console is also available and can be accessed at
http://localhost:7001/console. You will need this console to create and edit JDBC data sources
and JMS queues, as well as to configure various technology adapters and the identity store used
by WeblLogic Server and SOA Suite.

Other web applications running at this point include the following:

The BPM Worklist application, which displays the tasks assigned to users by the Human
Workflow service. This application can be accessed at http://localhost:8001/integration/
worklistapp.

Running at http://localhost:8001/soa/composer is the SOA Composer, an application that
supports live editing of Business Rules and Domain Value Maps.

BPM Process Composer is the application where business analysts and business process
developers meet up to create and edit Business Process Models; it is available at http://
localhost:8001/bpm/composer.

When the OSB server is started, the console—both for development as well as for
administration—can be accessed at http://localhost:7001/sbconsole.

When the BAM server is started, the BAM web applications are available from the start
page at http://localhost:9001/OracleBAM.

74 Oracle SOA Suite 11g Handbook

9. Take further configuration steps. The installation and configuration of the SOA Suite is
now done to the point where we can start deploying and running the composite applications.
There are some additional configuration tasks you may want to perform, either now or at a later
moment. You could, for example, configure JMS queues or JDBC data sources in the WebLogic
Server Administration Console.

This may also be a good moment to configure the User Messaging Service (UMS) to allow
the composite applications to send and receive notifications via e-mail, IM, SMS, and other
communication channels.

Details for the configuration of JMS, JDBC, and UMS can be found online in Appendix C.

Installing JDeveloper

Go to the JDeveloper Downloads page on OTN (http://www.oracle.com/technology/software/
products/jdev/htdocs/soft11.html) and download the latest JDeveloper Studio Edition release.
After downloading the executable EXE, BIN, or JAR file, run the file to start the installation. Accept
the default settings in the Installation Wizard and have both JDeveloper and an integrated
WebLogic server installed.

NOTE
“ We will not use the integrated WebLogic Server for running the SOA

composite applications because it does not have the SOA server
installed.

Adding JDeveloper extensions When the installation is done, start JDeveloper. Before you can
design SOA applications, you need to install the SOA Suite extension—and for BPMN components
the BPM Studio extension. Select the option Check For Updates from the Help menu. The Check
For Updates Wizard comes up. Make sure that the box for Oracle Fusion Middleware Products is
checked on the Source page. The list of available updates will include the latest Oracle SOA Suite
Composite Editor 11g plug-in as well as the BPM Studio extension. Check both boxes and click
Finish. You will now probably have to provide your OTN credentials. JDeveloper will then start to
download the plug-ins (some 450MB in total). After the download completes, you need to restart
JDeveloper in order to activate the two plug-ins.

You can also add the SOA Composite Editor and BPM Studio extensions to JDeveloper from
local files that you download from the Oracle Fusion Middleware Products Update Center
(http://www.oracle.com/technology/products/jdev/101/update/fmw_products.xml). This can be
useful when you have to install the same version of the plug-ins on several clients or when the
download from JDeveloper fails for some reason (possibly firewall related). Just download the ZIP
files for the SOA Composite Editor and the BPM Studio. Then run the Check For Updates Wizard,
and on the Source page select the radio button Install From Local File. Select the downloaded ZIP
file to install the extension from.

Create a connection to the SOA Suite To deploy SOA applications directly onto the SOA
Suite, we need to configure an application server connection in JDeveloper to the WebLogic
Server soa_domain.

To create this connection, start JDeveloper and go to the Resource Palette. Click the New
icon, select New Connection, and pick the Application Server connection type from the list. Enter
FMW11g_SOASuite11g_local as the name for the new application server connection and select
WebLogic 10.3 as the connection type. Click the Next button. Provide the authentication details:

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 75

Again, use the weblogic/weblogic1 username/password combination. Next, you need to indicate
the WebLogic hostname (localhost for local installations) and the port for the AdminServer (7001
by default). Also enter the name for the domain you connect to; the name suggested in the
on line installation instructions is soa_domain. Click the Next button again. When you test the
connection, you should receive a number of success messages, one for each of the different ways
of connecting to the domain.

Click the Finish button to close the Create Connection dialog. The new connection is now
available on the Resource Palette.

See the on line chapter complement for detailed screenshots.

Sample Application and Fusion Order Demo
Oracle provides a demo application—called the Fusion Order Demo (FOD)—as a showcase for
Fusion Middleware applications. This demo application is an end-to-end application example
developed by the Fusion Middleware Product Management. It demonstrates common use-cases
in Fusion Middleware applications, especially the integration between ADF, SOA composite
applications, and WebCenter, as well as the usage of various service engines and adaptors inside
SOA applications. The business scenario demonstrated in FOD is a web shop where customers
can order products. Every new order triggers various process flows that handle the approval,
logistics, and payment details.

You will find the Fusion Order Demo on OTN (http://www.oracle.com/technology/products/
jdev/samples/fod/index.html). Installation and configuration instructions are provided on this page.

NOTE
“ To see every aspect of this demo in action, you would have to update
! JDeveloper with the WebCenter plug-in. However, for inspecting the

SOA Composite applications in the demo, this is not required.

Create and Run the “HelloWorld”

of Service Composite Applications

This section walks you through the steps to create, deploy, and test-run (with SOA Suite 11g) the
world’s most basic SOA composite application. At the end of this section—after maybe ten
minutes” worth of work—you will have your first application running in the SOA Suite. (Note that
detailed, step-by-step screenshots for this section are available in the on line chapter complement
on the book’s wiki.) The steps are as follows:

1. Fire up the engines. First, start the database that hosts the metadata repository and then the
Weblogic servers in the SOA domain (AdminServer and the managed soa_server1) using the
command-line scripts.

Locate the startWeblLogic.cmd script (Linux: startWeblogic.sh) in the MIDDLEWARE_HOME \
user_projects\domains\soa_domain directory. Run this script from the command line or terminal.

When the AdminServer is running, you should start the SOA server. Go to the directory
MIDDLEWARE_HOME \user_projects\domains\soa_domain\bin, which was created by the SOA
Suite Configuration Wizard. Open a command window and enter the following command to execute:

startManagedWebLogic.cmd soa_serverl

(On Linux, use the script startManagedWebLogic.sh.)

76 Oracle SOA Suite 11g Handbook

2. Start JDeveloper. Be sure to choose Default Role if you are prompted to select a role.

3. Select New from the File menu. From the New Gallery that is presented next, select the
SOA Application item in the Applications Category (under the General node). Click the OK
button to continue.

You will be prompted to provide a name for the application—for example,
HelloWorldSOAComposite. Leave the Application Package Prefix field empty and click the
Next button. On the next page, enter HelloWorld as the name of the project and click Next
again. JDeveloper then asks you what type of composite application this will be; pick
Composite with BPEL on the Configure SOA settings step. Click Finish to have the application,
project, and service composite created.

4. The Create BPEL Process dialog appears. Specify the name for the new BPEL process
(HelloWorld) and the template (Synchronous BPEL Process). Make sure the box Expose As A
SOAP Service is checked, and accept the defaults for Namespace, Service Name, and Input and
Output (variables). Click OK. The Create BPEL Process dialog is shown in Figure 3-5.

5. The BPEL editor opens up. You will see the basic structure of the BPEL process with a
Receive activity and a Reply activity, by default configured to receive a single string and return
a single string. You need to add one activity to set the value of that string result: Drag an Assign

& Create BPEL Process] il

BPEL Process Q

A BPEL process is a service orchestration, used to describefexecute a business process (or large grained ﬁ
service), which is implementad as a stateful service,

Tame: |He||0WDr|d |

Mamespace:; |htt|3:,I',I'XITI|I‘IS.Drade.CDI‘ﬂ,I'HE"DWDI’|C|SOF'|CDI‘I‘IDDSitE_jWSII'HE"DWDHCLI'HE"DWDI'H |

Template: [Q Synchronous BPEL Process '] =]

Service Name! |he||ownrld_c|ient |

Expose a5 a SOAP service

Input: |{http:Il'll'xmlns.Dracle.cnm,l'HeIIanrldSOP.CDmpnsite_iws,l'HeIIDWnrld,l'HeIIanrld}-prncess| Q

Outputk: |1Ins.Dracle.cnm,l'HeIIDWandSOACDmpl:usite_iws,l'HeIIDWDrId,I'HeIIanrId}prncessRespnnse| q

t oK, I | Cancel

FIGURE 3-5. Configure the new HelloWorld BPEL process.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 77

— el ML o prshs Overvien (oS poanposis ool | oy Helhedom bl bpeed

= ﬂ'rmtmm [P

- - 5-5-08 % - e e e =
Partret Links a I:::l Par et Links Fl
BFf B Frints
* BFEL Acivitime ared Carsporants
= Fcirtian aned Coooorariy
= T &% L Frocam
i Redes i
bﬁ .hh.—r'll:l'
p—, Letiet Ll «F Haddoa
by i - A
| Baorredd_ctarit: ! l
— " 3
" :
repheTabpad la Chach Fank
] Lo
S Crasta Entty
o g
Ay
i P

FIGURE 3-6. Add an Assign activity to the BPEL process.

activity from the Component Palette and drop it between the Receive and Reply activities already
in the process, as shown in Figure 3-6.

Double-click the Assign activity to open the editor. Select the second tab, labeled Copy
Operation, if it is not already selected. Click the green plus sign and select Copy Operation from
the drop-down list. On the right (or To) side of the window, expand the outputVariable node, the
payload child node, and its client:processResponse node, and then select the client:result node.
That is the target of the Copy operation.

On the left (or From) side of the window, choose Expression in the drop-down list. Click the
calculator icon to open the XPath expression editor. Type the following text in the expression
box:

Concat ('Hello dear',)

Position the cursor between the comma and the closing parenthesis. Expand the inputVariable
in the BPEL Variables tree, all the way down until you can select the node client:input. Select that
node. Click the Insert Into Expression button to add [an expression to extract] the value of the
input variable to the expression. Click the OK button to close the expression editor. Click OK
again to close the Create Copy Operation dialog and then one more time to close the Assign
Editor. Figure 3-7 shows the creation of the copy operation in the Assign activity.

You have now created a valid BPEL process—one that receives a request message that
contains a single string and returns a message that will contain the concatenation of “Hello
dear” with that same input string. It’s not much, but it constitutes a real BPEL process inside
the HelloWorldSOAComposite application.

6. To test this application, deploy it first. Right-click the HelloWorld project. From the
context menu, select Deploy and its nested option, HelloWorld.

78

Oracle SOA Suite 11g Handbook

i D] HEP- b Sl

FIGURE 3-7. Configuring the Assign activity

The Deployment Wizard appears, which is a multistep dialog. In the first step, select Deploy
To Application Server (instead of deploying to an SAR file). Click Next. Accept all the default
settings in the second step, and click Next. On the third page, select the FMW11g_SOASuite11g_
local connection to the WebLogic server with the SOA domain. Click Next. On the next page,
select soa_server1 as the target server for deployment. Click Next, and the Summary page
appears. Now you can click Finish.

The SOA composite application is built, resulting in an SAR (Service Archive) file. The archive is
now handed to soa_server1 in the SOA domain on the WebLogic server. The message “Deployment
Finished” should appear in the Deployment sub tab of the console window after several seconds
(up to one minute).

7. Deployment is complete. With the deployment done, we can access the composite
application’s Web Service interface from tools such as the HttpAnalyzer inside JDeveloper or
soapUl (an open-source tool frequently used for testing Web Services). We can also open the
Enterprise Manager to first inspect the deployed composite application and then test it.

Open the Enterprise Manager (http://localhost:7001/em). Expand the SOA node and its child, the
soa-infra node, under the root node Farm_soa_domain. The node for the HelloWorldSOAComposite
application should be listed. Select that node.

The right side of the page is refreshed to present the details for this composite application.
Click the Test button to call the service exposed by this composite application. Enter a value for
the input field—for example, your own first name—and click the button labeled Test WebService.
The Web Service exposed by the HelloWorld application is invoked. This will create a new
instance of the composite application. After a few seconds, the result from the service should be
displayed, something to the effect of “Hello dear Lucas.” Figure 3-8 demonstrates the test run of
the HelloWorld application’s service.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 79

CHRACLIE Evapitss FEARYes Make badiis Lav Hy Iy Heipe Le
P T B, by

& - U Helket®eld [LO]@ Lol s el | i) oprem 241
= B Fn_goa _dovssin, o] S Crgae 5 e

+ [Bype e Prpdrrh

e _ Bavai edaried @ | Tocs 0 | Boes | Futen... e | | etirge.. v [=
o E;':::m'_m Dbl el Sl R Ted . H-‘&
o R patiiaer i [1.0] e Yo

o] Tl el [1.0] P r
el Page Labwed Hare B, 5505 3 14T &M <BT
3 | T e ey = 7 =
=] wcs_donain .
B bty Tkl WD BEraE 1P Ak Tl -
] W s poape by bk ey IV, iy WAPETRL 3 Pt o o i P o bk o Wiy v, b VDL g i P WEETI. ey
B et ckvmt e gt P Ftll e VL. il P ekt Srvars e nailen: i o, nd P it e Opaatin ek i Rt i beat.

- Jemp—— Tl iy e i i i, i 1T R e i,
| reiergditi e =
[Lt M T i Ak higpeop-ra et ocabinlin ked-nl et i lecdld e _spewilln. | P Wil

TP B iy Copalicel e WD, b

Tmrvicy baplwerel]_clerd s

ot Hall'iiei]_pd
e o P— | Esame Snspeesn
Ersgpmrg i B4, | beig {ieg e g g g 500 | biog mbea Tedk: Tesn
sy T (e 4002
Propasdl S Trt v 5l
vt Pl P T
Faia i [W
1 W L vt ok 7 WV B ey ¢ Gt (5 pikond -
Z
Irgrat fepanenin ntil
[l |
R Fopr Rk
= ® paryiad prvied
= =
RERES R
s "k Torvird
e =

FIGURE 3-8. Running the SOA composite application HelloWorld in the Enterprise Manager
Fusion Middleware Control

When you click the node for the HelloWorldSOAComposite application, you will see the
new instance listed. You can drill down on this instance to find out more about the components
in this instance that have executed (how long they took to complete, for example) and all trace
details for activity inside those components (such as the activities in the BPEL process). You need
to click the instance ID itself to see more information (not just on the row where the instance
information is shown).

At this stage, you have achieved quite a bit. The SOA Suite 11g run-time environment has been
installed and configured. Also, it actually works because it was possible to deploy and run a very
simple composite application on it (whatever exactly that may be). The design time (JDeveloper
with SOA Suite extension) is also up and running, appropriately configured with a connection to the
SOA Suite container.

Migrating from SOA Suite 10.1.3

Many organizations have adopted Oracle SOA Suite 10.1.3 in the recent past, using BPEL
Process Manager, the enterprise service bus, and/or Web Services Manager. Some even started
with the 10.1.2 release. Such organizations typically have made considerable investments in

80 Oracle SOA Suite 11g Handbook

their environment, the SOA applications, and the skills required to develop the applications
and administer the infrastructure.

With SOA Suite 11g, these organizations may feel like they are up against the “dialectics of
progress”: They were the first to adopt Oracle’s SOA offerings and as a result they now have to
make additional investments to upgrade to this latest release. However, much of the investment is
not lost, but instead can simply be applied to SOA Suite 11g. And these early adopters are best
equipped to appreciate many of the improvements available in 11g over the previous releases of
the SOA Suite. Finally, Oracle has provided various tools that support the migration. As a result, it
may not be as earth-shattering, risky, or costly as it appears from a distance.

Note that there is no supported migration path from SOA Suite 10.1.2 to 11g; you will have to
perform an upgrade from 10.1.2 to 10.1.3 first.

The migration to SOA Suite 11g involves several aspects:

B The environment or run-time infrastructure (from OC4J to WebLogic Server)
The development tools (JDeveloper)

The security framework and identity and access management tools

The SOA applications developed on 10.1.3

Any long-running BPEL processes with open instances

Client applications that hook into the SOA Suite via (Java) APIs

The skills, processes, standards and guidelines, and best practices

You can find more on migration from Oracle SOA Suite 10g to release 11g in Appendix A.

Summary

Oracle SOA Suite 11g did not appear out of thin air. It is the next step in a long evolution in the
IT industry at large (and Oracle Corporation in particular).

This chapter gave you a glimpse of the rise of software for integration and later on middleware,
in general, within Oracle. We discussed the advent of industry standards, starting with XML and
encompassing the Web Services standards, and more recently the standards for business processes
and service components. These standards are essential to success of Web Services—the foundation
for interoperability—and Service-Oriented Architecture. Oracle plays an important role in the
specification process and the promotion of most industry standards.

Oracle itself is an interesting example of integration: The company has acquired and subsequently
absorbed several dozens of other companies and their software offerings. Many important parts of
today’s software portfolio have roots in products from these “scalps.” The most striking acquisitions
in the area of middleware are Collaxa (2004), BEA (2008), and Sun Microsystems and AmberPoint
(both in 2010).

A many-year process of innovation, integration, and interaction with customers, including the
important internal Applications Development teams, has finally resulted in Fusion Middleware.
OnJuly 1, 2009, Fusion Middleware 11g was launched. FMW offers a wide palette of middleware
technology, ranging from business intelligence, Web Services, and content management, to enterprise
collaboration, identity and access management, governance, event processing, and custom-developed
user interfaces. SOA Suite 11g is an important element in the FMW 11g stack, with interactions with
many of the other areas within FMW.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 81

The SOA Suite has at its heart the SCA container that runs SOA composite applications. These
applications are built from components that run on specialized engines: BPEL, Mediator, BPMN,
Business Rules, (Spring) Java, and Human Task. The components can interact with external Web
Services and technology adapters to reach out to the database, file system, messaging infrastructures,
and so on. The SOA Suite provides a framework for negotiating events between applications, offering
a very decoupled way of making different applications interact. Other products in the SOA Suite are
Oracle Service Bus, Business Activity Monitoring (BAM), and Complex Event Processing (CEP).

Organizations that have adopted earlier generations of the SOA Suite will have to go through
a migration process when they want to take up the 11g release. This migration applies to several
aspects, including the infrastructure, applications, other software assets, and the skills of staff such
as developers and administrators.

This concludes Part | of the book. The next part introduces the components of the SOA Suite
in detail and demonstrates how to create composite applications with them.

This page intentionally left blank

PART

Developing Composite
Applications

This page intentionally left blank

CHAPTER

XML and Web Services
Fundamentals

86 Oracle SOA Suite 11g Handbook

art | of this book introduced St. Matthews (our business case), the key concepts

. and objectives for Service-Oriented Architecture, the industry standards, and the
. Oracle product portfolio for implementing SOA. At the end of Chapter 3, we

| installed the SOA Suite and got our first SOA application running by publishing
the obligatory HelloWorld Web Service.

Before we start developing much more complex SOA applications, we need to establish a
little foundation, consisting of XML, XSD, and WSDL. Of course, XML is the lingua franca for all
messages and most contracts, definitions, configurations, and even programs in our service-
oriented world. XSD (XML Schema Definition) is the data-modeling language for describing the
structure of XML documents, and WSDL (Web Service Definition Language) is the language for
describing service interfaces. This chapter provides only a quick introduction to these three key
languages. You may want to check out some of the resources mentioned on the wiki to get a little
more background on XML, XSD, and WSDL.

This chapter creates the starting point for the eAppointment project at St. Matthews, a crucial
project that must substantially optimize the process for creating and managing appointments. It
describes how Margaret Scott and Frank Tiger set out to create the definition of a Web Service
that will expose various operations concerning patient data. This service is implemented in the
next chapter, based on Frank’s existing Patients database.

Kicking the Tires on the eAppointment Project

The board of directors has nominated Margaret Scott, an experienced business-savvy project
manager, to lead the eAppointment project. It will be her job to bring together business and IT
staff from many different departments and with various roles, and have them share information,
responsibility, and ownership of the process of making and managing appointments. A “project
start architecture” document has been written, outlining the business objectives and information
architecture context of the eAppointment project.

Today, Margaret is meeting with Frank Tiger, team leader for the application management and
support team in the information department. He and his team take care of the Clinical Information
System, a key application for surgical data whose scope was later expanded to also support the
medical laboratories. Frank came to St. Matthews in one of the 1990 mergers. Before that he headed
data operations in one of the smaller hospitals that was merged with St. Matthews. Over the past two
decades, Frank and his team have been nurturing their database with patient data. Starting out as a
small scheduling and billing information system used at the surgical care department, it slowly grew
into a patient record system used all over St. Matthews. The team now also tracks simple medical
patient data such as blood pressure readings, weight, and height. Today, Frank is sitting on the largest
pile of patient records in the hospital—with over 300,000 patient records and many tens of millions
of associated table rows. His cooperation is critical for the eAppointment project, and Margaret
certainly knows that.

Frank is regarded as an Oracle guru. He started working with Oracle Database version 4 and
has seen over a dozen upgrades of the RDBMS. He has even managed to stay abreast of most recent
developments in SQL and PL/SQL. He writes Analytical SQL, uses the Model clause, and has traded
the DECODE for the CASE operator. However, Java and web applications are not his thing, as he is
wont to let people know. He has not been involved with any of the SOA initiatives at the hospital so
far. In truth, all the buzz and managerial expectations have left him a little anxious.

Margaret and Frank have a little history together. They collaborated on a project for the
migration from the VAX/VMS mini computers to the current Unix systems in the early 1990s.

Chapter 4: XML and Web Services Fundamentals 87

More recently they had some discussions regarding the security of “St. Matthews online,”
a project managed by Margaret.

Margaret feels that although Frank is very reluctant and a little scared of this SOA thing, she
has a good story and sound arguments to win him over.

When the niceties are over and they have established that they are both doing well and it is
great to see each other again, Margaret states, “l hear you have a lot of patient data!”

Frank cheers up. That is one of his favorite topics, professionally speaking at least: “That’s
right! I'm sitting on the largest database with patient records in our hospital!”

“That's just great Frank,” replies Margaret. “l was hoping for that. You have probably heard
about the new eAppointment system we are creating.”

The hospital’s board of directors sees a lot of opportunity for improving patient satisfaction
through better quality of services, while cutting costs at the same time. Realizing the business
benefits promised by SOA are crucial to meeting these objectives. Refocusing the IT department on
services rather than on more or less closed, departmental applications and closed data stores will
be a challenge. One of the first areas they want to target is the patient appointment process: It is
this process that causes much vexation among patients and has a negative impact on patient
satisfaction—one of the key performance indicators (KPls) for St. Matthews. And at the same time,
the process is hugely time consuming for hospital staff. The main reasons seem to be the fact that
patients are asked to provide the same information over and over again, the inflexibility in
changing appointments or scheduling multiple visits next to each other, and the lack of clarity and
information about the appointments. The hospital staff responsible for managing the appointments
is far from happy with the situation. But now there is hope for improvement, if not revolutionary
change—the eAppointment project has been announced.

“I am managing that project,” says Margaret, “and we need to be able to retrieve patient records
for existing patients or create new ones as part of the process of managing patient appointments.”

Frank may not (yet) be into SOA, but he certainly is a service-oriented guy. He immediately
offers: “Here, | can give you connect details to our database. Normally there is a formal procedure,
but for you | can cut through some red tape. | will give you the full data model, with table and
column definitions. You’ll be up and running in no time!” He is pleased with himself for being so
cooperative. But he slightly miscalculated the situation.

“] am not that kind of girl!” Maggie says girlishly. “I may want your data, but | certainly
do not want your dirty tables!” She tries to make it sounded lighthearted, but has to get a very
important point across here.

Frank is a bit baffled. Here he was, promising unprecedented access to his data, and he feels
utterly rejected. Then, in the rebound, he pulls himself together and suggests, “Let me create a
View layer for you! We insulate you from all the complex SQL and provide a business APL.” He
knows the word business usually goes down well with project managers.

Margaret stands tall. “To be frank, | do not want to do SQL anymore.”

“Hey, | am Frank here!” he makes a feeble attempt at a little humor. But he does not feel
lighthearted. With all his good intentions, he is not getting the response he was looking for. What
more could she possibly want from him?

Margaret is not oblivious to his confusion. “Frank, look here, we are all into services now. We
want to deal with clear interfaces, as technology-free as possible, with no implementation details.
| simply do not want to depend on the way you implement your database. | know you are constantly
optimizing the data design—and | want you to be free to do so, even if that means moving to a
different physical database or even opting for a different kind of data storage—based on in-memory
grid technology, for example. What | want from you is a service.”

88 Oracle SOA Suite 11g Handbook

“I suppose that means we will have to do that XML thing,” says Frank. He has not been
completely unaware of the world around him. The advent of the Internet, widespread use of XML,
the introduction of Web Services, liberal use of acronyms such as B2B, OO, SOAP, and more
recently SOA, and even talk of business-IT alignment—he has heard it all coming and most of it
going as well. Having a tough-enough job as it was, he tried and managed to steer clear of most
of the hubbub. And now apparently it has arrived after all.

Margaret replies, “Yes, | would like you to provide Web Services that talk XML. You and your
technology talk XML, we and ours do too—even if they are two completely different worlds in
terms of platform and architecture.”

“How is that better than straightforward SQL?” Frank feels tired. So his database and good-old
SQL are not good enough anymore. He wonders whether he is.

Margaret is prepared to explain to Frank what is driving her—and most of the rest of the world.
“Using XML-based services means that my team does not need to have SQL skills. We both know
that doing SQL properly is specialist’s job! And even though SQL is more or less a standard,
someone who's an expert in SQL on a MySQL database may royally screw up on Oracle or DB2.
So | prefer to leave the heavy SQL lifting to the experts, such as yourself.

“Perhaps even more important than getting rid of my dependency on SQL experts in my team,
I will not have a direct dependency on your data model, your upgrades, or even your physical
location—TIike | said before. Loose coupling. That is the magic phrase. Of course, | will still
depend on you—or at least on your service—but in a much more subtle way. And if at some
point in time your local patient hub is replaced by the new SAP or Oracle Fusion Applications—
based standard solution, | will be able to continue running the eAppointment process against
the same service, which simply switched from your database to the new solution.”

Frank, drinking his coffee, almost chokes on it. Still coughing he enquires of Margaret
whether there are plans to replace him. Margaret quickly reassures him: “I was just giving you a
longer-term, strictly hypothetical example. As far as | know, there are currently no plans to do
anything of the sort.”

She continues: “Being able to talk against your Web Service means that we will have a
consistent way of communicating with all services we deal with. Yours is certainly not the only
one! For us it is great if every service—whether based on a relational database such as your
Oracle Database or the facilities department’s DB2, or implemented on top of the mainframe or
the .NET platform—can be accessed in the same way.”

“Yeah, great.” Frank is near sarcasm now. “I’'m thrilled for you. Would there be something in
it for me as well?” He knows he should have seen this coming—and prepared himself. He has
had his head in the sand on this one. Silently he is angry with himself.

Margaret, however, really has some good news for him: “Actually, there is quite a bit in it for
you too,” she tells him. “Well, some of it is good for the hospital in general, and some of it is
especially good for you. For starters, you will be the SOA guy—hip and happening all over again!
It must have been the introduction of client/server technology and the graphical user interface
that was your last chance to shine!”

“Seriously though: | will pay for using your services. | have a pretty substantial budget for realizing
this eAppointment system. And since your service will contribute some key functionality, it is obvious
that there is plenty of budget to have your team develop the service. Besides, this does not end with
the initial development and roll out of the service. We will make an SLA, a contract that states that
you will continue to provide the service under certain conditions—Ilike response time, availability,

Chapter 4: XML and Web Services Fundamentals 89

and security—and that the eAppointment’s business owner will pay for the service level. So you will
continue to have budget for managing and perhaps improving the service.

“As you know better than | do, there are many parties in this hospital who are interested in
your data. You have always been helpful in supporting all these parties, but usually in a very
informal way. With little or no benefit to your department, apart perhaps from their undying
gratitude. The new service approach we are discussing here will allow you to continue to help all
those parties, and in a more structured way that is more visible and recognized. They can make
use of the same service we are discussing for eAppointment. So you—and the hospital at large—
reuse the work you have already done. And you can sign an SLA with each of these parties. That
means that everyone will still rely on you—and thank you for it. And they will transfer some of
their budget as well as payment for using your service. To you, it may not matter much whether
the service is used by one party or by many. But the extra budget from those SLAs will certainly
allow you to make the service better and richer.

“Oh, and | shouldn’t forget this part: Service-Oriented Architecture is explicitly named in the
hospital’s strategic outlook for the next three years. The board has named it one of the key
elements for the success of the “Happy Client” and “Quality Health Check 2012” programs. To
get SOA really going here, they have set up a sponsor committee. This committee is to provide
additional funding for implementing services with proven reuse potential. Getting this patient
service up and running will most certainly be backed by this committee, resulting in an additional
budget as well as pretty high-profile visibility for your team!”

Just as Margaret had hoped, some of the things she has mentioned have piqued Frank’s
interest. The prestige of his team is important to him—as is being able to continually improve the
database and surrounding infrastructure. Having a budget and relative freedom—because of these
loosely coupled interfaces—really appeals to him.

“You can improve the implementation” Margaret continues, “without any of you noticing it!”

Frank, starting to see some interesting opportunities, exclaims, “Oh, and | know that George in
the lab has a lot of data that may interest my ‘service consumers.” He has all kinds of information
about the tests ran on their blood and other bodily fluid samples. Today, either they have to ask
him for access to data—which he is quite often not able to provide—or they completely overlook
him. In both cases, patients are tested for things they have recently been tested for. Together we
can really offer a powerful service! And | am sure there are more like him, who have these hidden
nuggets of data we can add to the patient service in order to enrich it. Would you like that?”

Margaret would—for two reasons. First of all, the additional data Frank is talking about is very
useful. It will save her a trip down to the lab, where she expects a lot more resistance than Frank
came up with. And she very much wants to encourage Frank, who, after a hesitant start, is quickly
coming round and turning into a very enthusiastic believer.

But then Frank slows down. He calls himself to order it almost seems. He looks at her. He
seems to have lost some of his fervor. She is not losing him now, is she? He doesn’t seem as sure
of himself as he was just a minute ago. What is the matter with this rock-solid database guru?

Frank takes a deep breath. “Margaret, | know a lot about databases and SQL. And you really
had me going there, with the service idea and the sponsor committee and the reuse. And the
visibility of my team and all. But | know nothing about services—or XML for that matter. Can we
do this at all? How do we get going, Margaret?”

Margaret knows it is now time for the next stage. Frank wants to give it a try, and she needs to
help him with the first steps.

90 Oracle SOA Suite 11g Handbook

“Frank, | really appreciate your willingness to help me out with this service. And | am sure
you and | will work together just great. Of course, | realize this is going to be a big step for you
and your team. | am sure we can do this together.”

Margaret continues: “How to get things going, you ask? That is probably not as hard as it may
seem to you right now. The first step is that we outline the functionality your service will provide.
More specifically, we define the interface for the service. As soon as we have described the
service interface, my team can start coding the application that consumes your service, as they
will then know exactly how the service will look to them and how they can invoke it. And your
team can start thinking about the implementation of the service interface.

“At that point you probably ought to start learning about a few things. You will need some
understanding of XML technologies, as the storefront of the service will be XML based. In addition,
you need to know about Web Services. At that point, we can discuss several ways for you to
implement and publish the Web Service—for example, using either native database facilities, some
Java programming, or a service component in the SOA Suite. Note that at this point the hospital’s
architecture vision plays a role, too, as we are making choices that should be valid into the future.

“The first questions we will address are pretty straightforward. What functionality do we need
from your service for eAppointment? We will express the service interface in several elements:
What does the service request look like? What input should we send to the service? What are the
parameters we could or should include in the service request? And what is the structure—data
type, format, allowable values—of the request?

“Next, how is the service response composed? What data will be included in the response,
and what will be the structure?

“Finally, will your service throw any exceptions—and if so, what will be the exceptional
circumstances? What are the names and types of exceptions?”

Frank interjects, somewhat relieved: “That is really no different from creating a PL/SQL
package specification! You describe a function or a procedure with a name, the input parameters,
and the return value or the output parameters—which is almost the same as what you are saying.
The only real difference | see is that in PL/SQL we may raise exceptions in a program unit, but we
do not explicitly say so in the specification—they come as a surprise. | hear Java is somewhat more
structured in that area—as hard to believe as it may seem.”

Margaret is pleased with Frank’s reaction. He really is getting the hang of it. And he is right, of
course. What she has said about describing the service interface is very similar to the concept of a
PL/SQL package specification or an interface in Java programming. One important distinction is
the specific format for writing down the interface for a Web Service.

“You are right, Frank. It basically is the same thing. It will look a little bit different, but by and
large, describing a Web Service interface is similar to specifying a PL/SQL interface...ahem, package
specification.”

“Okay. Let’s get down to business. You will provide us with a service that we can call, let’s
say, the patient record service. We can agree, | think, that this service will accept some sort of
patient identification message as input—with either the patient ID (for existing patients who
remember their ID) or a combination of identifying elements, including birth date, last name,
initials, or Social Security Number. Then, of course, the service will return a response message
that contains the patient data—the name, contact, and address details, personal information, the
medical history, and any recent hospital visits. In addition, the service may return one of several
exceptions, such as when the service is called with an invalid or unknown patient ID. We can
write down this outline of a contract in a slightly more structured way.”

Chapter 4: XML and Web Services Fundamentals 91

Margaret hands Frank a piece of paper with the following XML:

<operation name="getPatientRecord"s>

<input message="PatientIdentificationInputMessage"/>

<output message="PatientDataRecordOutputMessage"/>

<fault message="UnknownPatientIdFaultMessage" name="UnknownPatientId"/>

<fault message="NoUniquePatientMatchFaultMessage" name="NoUniquePatientMatch"/>
</operations>

Frank recognizes the XML syntax. He realizes this is where it all starts. His SOA and Web
Services initiation. And so far, it doesn’t seem too hard.

“Is this the standard way for describing services?” he asks Margaret.

She confirms it is, but adds that this is only a part of it. “The service contract is typically laid
down in a so-called WSDL document. At the heart of the WSDL contract for a Web Service is the
portType element, which contains operation definitions like this one. But more on WSDL later
on. You will first need to study some XML basics.”

Introduction to XML

Clearly XML is an essential ingredient of Service-Oriented Architecture. Service definitions are
expressed via XML documents, the data structure of messages is defined through XML documents,
configuration for the run-time infrastructure is, by and large, in XML, the contents of messages
sent between services and service consumers is XML based, and the SOAP envelope that wraps
the message itself is also—you guessed it—an XML document. In order to delve into doing SOA, there
are a few things you should know about XML. For now, let’s assume you have dealt with XML in the
past. For a basic introduction into XML, as well as a list of other resources with in-depth information
on XML, see Appendix B.

Much of the attraction of XML lies in the fact that in all major application-development
technologies, tools, and platforms, facilities are available for performing the most frequently
needed operations on XML. Whether you develop in JavaScript, PHP, Java, C#, or PL/SQL for the
JEE, .NET, or Oracle Database platform, you will have native language facilities help you process
XML documents. These operations performed on XML documents are:

B Parsing Reading the XML and turning it into a native data object for the programming
language at hand.

B Data binding Going one step beyond parsing and making the data from the XML
document available as a custom, strongly typed programming language data structure (or
domain model). For example, transforming XML into Java objects, and vice versa.

B Validating Verifying the validity of the XML document against rules specified in a
schema such as XSD or Schematron.

B Querying Retrieving specific information from the XML document by applying search
questions.

B Transforming Converting the XML document into another XML document (or a
different format, such as CSV or HTML) by applying a transformation template or
stylesheet.

92 Oracle SOA Suite 11g Handbook

Although some of the operations listed are handled transparently for us by the tools we will
be using for building the SOA, others require attention from the developer and will be discussed
in more detail both in this chapter as well as throughout the book. In particular, the use of XML
Schema Definitions (XSD) for describing the rules against which XML documents should be
validated, the use of XPath for performing queries to retrieve specific information from XML
documents, and the application of XSLT stylesheets for transforming XML documents will be fairly
familiar to you by the time you are done with this book.

XML Documents

An XML document consists of tagged elements organized in a tree-like structure. An XML document
contains various types of nodes:

B Document node (the entire document)

Element node

Text node (the literal values contained in element nodes)
Attribute node

Comment node

Declarations and processing instructions such as namespace declarations, character
encoding, and XML version

These nodes can be validated and accessed in various ways, as we will see in later chapters.
See Appendix B and the references on the wiki for more background on XML.

Creating and Editing XML Documents in JDeveloper 11g

Creating XML documents is a task usually performed for us by automated means. Such means
include textfile-to-XML converters, use of SQL/XML queries, Java programs that construct XML
documents from string data, and text processors that save files in XML format. However, manually
creating or editing XML files is still a common task—for example, for testing purposes or for
management of configuration files—and, of course, for creating schemas that are not generated
by some tool but that are application and technology neutral.

In addition to specialized XML editors, of which there are plenty available, most IDEs
including JDeveloper have fairly advanced XML-editing capabilities. JDeveloper 11g’s XML Editor
has useful features such as checks on well-formedness (does the document comply with the XML
syntax rules?) and validity (does the document satisfy the specific rules laid down in the XML
Schema Definition?) as well as productivity enhancers such as XML element tag completion,
reformat, and code completion.

JDeveloper can also create an XML document based on what is called an XML Schema
Definition (XSD), a document that describes the data design of XML elements. JDeveloper
creates such an XML document with all required structure (elements and attributes) already in
place—though with meaningless, generated content.

Chapter 4: XML and Web Services Fundamentals 93

Data Design for XML—XML Schema Definitions (XSD)

The provisional service interface definition agreed upon by Margaret and Frank specifies an input
and an output parameter. It is implied that these are both XML messages:

I <operation name="getPatientRecord"s>
<input message="PatientIdentificationInputMessage"/>
<output message="PatientDataRecordOutputMessage"/>

</operations>

However, it has not yet been determined how these messages are to be constructed. In
general, when we deal with XML documents, we know that they will follow the XML grammar
rules. Any “well-formed” XML document has a single root element, a tree structure with properly
opened and closed element tags, text content, and attributes. But this is still too vague to start
exchanging meaningful information or to build software to process the XML documents. We need
more specific rules to describe the structure, the data types, and other constraints for the XML
document. Without them, we know little more than a database developer who knows that a
relational database is used but does not have a database design.

The data model for XML documents is expressed using XML Schema Definitions—or XSDs. An
XSD is an XML document—readable to humans and software—that describes the vocabulary for
XML elements and attributes. Once we have the XSD for the XML documents we will be dealing
with, we can determine the validity of XML messages and start building the software that will work
with the XML—we know what information to expect and where to find it in the document.

NOTE
“ XSD has succeeded DTD (Document Type Definition) as the preferred

way of describing the structure of XML documents.

XSD documents define the elements that appear in XML documents. For these elements, XSD
documents specify the following:

B Structure Child elements, attributes, and their order
B Types Primitive (built-in) and user-defined simple and complex (nested) types

B Rules or constraints Default values, the number of occurrences of child elements, the
valid value range or allowable values for attributes, optionality, and updateability

An in-depth introduction to XML Schema Definition is far beyond the scope of this book,
even though some examples are provided later on. If you are not yet familiar with XSD, you can
take a look at Appendix B for some more detailed examples. Additionally, you may want to check
out some of the resources listed on this book’s wiki for a more thorough introduction to XSD.

Decoupling in the real world is often hard to achieve with schemas and contracts generated
by tools—as is all too easy, for example, with a JAXB utility deriving the XSD from Java classes or
with the xsd.exe tool doing the same for .NET classes.

For building loosely coupled systems, it is important that services and underlying schemas are
truly owned by the enterprise, not by the applications. The only way to break the hold of applications
and technology on your service architecture is to eliminate those generated schemas completely

94 Oracle SOA Suite 11g Handbook

from the services you develop for the enterprise! This means that manual development is almost a
requirement for creating schemas (XSD documents) and services (WSDL documents).

Uniquely Identifying XML Elements

Questions that are frequently asked when we (or an automated component) encounter an element
in an XML document include, What element definition is this element based on? And what
exactly is meant with this element? A <table> element could signify an HTML layout structure

or a piece of furniture. An element called <patient> can refer to a person needing a doctor’s
attention but could also describe a personal trait. And one organization’s description of a
customer can be quite different in structure and attribute from another organization’s (say, when
comparing a prison with a hospital). We need to identify those XML elements more accurately
than by just using a simple name—otherwise, we will not be able to connect the element and the
relevant XSD-based definition of the element and we will not be able to properly programmatically
process the element.

Let’s take a brief step away from XML and look at your file system. It probably contains
several files called readme.txt. However, they are not the same file. When we formulate in a more
precise way, these files are not truly called readme.txt—they have something like /etc/directory/
otherdirectory/readme.txt for their name. The file is qualified by the entire directory and filename;
not by its filename alone.

Let’s look at other examples from the worlds of SQL and Java. When we speak about objects
in the database, it is easy to see that instructing a database developer to write a SQL query against
table CUSTOMERS in a specific database is not a good-enough instruction: There can be dozens
of tables called CUSTOMERS. A full identification of the table requires the schema in which it
resides. In Java programs, classes are used to construct objects that contain data and execute
application logic. Any one class usually calls upon other classes to perform some task. For
example, class PageRenderer may call upon class ButtonRenderer to render an instance of a
button. Again, using the indication ButtonRenderer is not good enough, because there may be
several classes called ButtonRenderer. The fully qualified name for a class includes not just the
name of the class, but also the package in which it resides—for example org.superui.renderers.
Thus, programmers—and the JVM class loader—can distinguish between org.superui.renderers.
ButtonRenderer and my.sandbox.ButtonRenderer.

With XML, we have the same challenge. Without further indication, we could easily
misinterpret element names. From the context of the document, we can derive that the “charge”
element does not specify electrical information or the Light Brigade storming in, but most likely
the bill presented to the patient for this particular visit. However, we should not rely on such
subjective, context-based interpretations, but clearly state our intentions. So in XML, too, we use
fully qualified names.

A fully qualified name for an XML element is composed of a local name and a namespace.
The namespace compares to the package name in Java and the name of the schema in the Oracle
database. In XML, the namespace, simply put, is a unique string without any real meaning other
than for identification purposes. Slightly less simply put: The namespace identifier is a URI
(Uniform Resource Identifier) according to the specifications laid down by the IETF (Internet
Engineering Task Force, RFC3986). These are quite simple, for our purpose at least:

“A URI is a—case sensitive—sequence of characters from a very limited set: the letters of the
basic Latin alphabet, digits, and a few special characters.”

Chapter 4: XML and Web Services Fundamentals 95

The IETF also notes that a URI often has to be remembered by people, and it is easier for
people to remember a URI when it consists of meaningful or familiar components. A URI does
not specifically refer to a resource that is accessible at a location that the URI seems to describe.
URIs are used for uniquely identifying resources, not for accessing them.

One straightforward way of making the elements you define in your XML documents unique
is by using a namespace identifier that contains something unique to your organization or even to
yourself. Many namespace identifiers in XML—just like package names in Java—therefore include
the URL for the website of the organization. However, any unique string will do. Here are some
examples:

http://ourhospital.com/patient
http://ourhospital.com/staff
com.ourhospital.patients
PATIENT:UUID673215631265GEE

A namespace provides a container in which to collect names that for some reason belong
together, as is shown in Figure 4-1. These names frequently share an owning organization,

a domain or knowledge area, or an industry. Note that the scope of an XML namespace can
have far more impact on your enterprise than a Java package name or database schema
identification ever could. A Java package name has a scope that is limited to the application

that uses it. An XML namespace can impact the entire enterprise and should be managed with
corresponding care.

http://ourhospital.com/patient

http://www.hospital.org/hrm
e - N N 7 AN N
’ N y . N
/ AN) o7 Gt Employeeid N\
y) A http://who.org/medical y \
, First name v T / SSN State L
1 \ pr S~ /
| Last name A s > / Coutii b
. . I ountr
! Personal informationy ~Bjood pressure readings I v House number |
In Age ,' 4 \ Iu Street ,I
\ . T — \ 1
Y ch Treating physician, | Date of reading b Function 1
N arge ;o ; ‘. Birthdate y
\ Bacier vk y \ Systolic pressure /
A A \ y Bank account ~
~ sBlood pressure readlng/s, \\ Diastolic pressure,” N
~ _od S -,

~_ Gender

XML document

xmlns="http://who.org/medical” P4

xmlns:hospital="http://ourhospital.com/patient”
xmlns:hrm="http://www.hospital.org/hrm”

FIGURE 4-1.

Namespaces for elements in different domains

96

Oracle SOA Suite 11g Handbook

The URI syntax is commonly organized hierarchically, with components listed in order of
decreasing significance from left to right. This does not really mean anything—at least not to
software parsing the URI definitions. It is just a convenient method for organizing the URI in a
way that is inspired by the structure of the real world. For example, the http://ourhospital.com/
patient and http://ourhospital.com/staff namespace identifiers are both defined in “Our Hospital,”
and describe various subdomains in the hospital—in the eyes of human readers. The fact that
their URIs have a partial overlap is meaningless to XML parsers and processors.

We associate an XML element name with a namespace using this syntax:

<patient xmlns="http://ourhospital.com/patient">

Instead of just “patient,” we should now speak about this element as {http:/ourhospital.com/
patients}patient. This is the qualified name of the element, often referred to as the QName. The
name “patient” is the local name.

NOTE
n XML elements do not have to be in a namespace. The local name of
! such unqualified elements is equal to their QName. These elements

are said to be in the “null” namespace.

Having to qualify every XML name in this way would be dramatic: The document inflates
even further, the work involved is almost painful, and the readability is negatively impacted—to
put it mildly. So, instead, we can work with simple prefixes and rely on several inheritance rules.

Prefixes allow us to use friendlier ways of associating names with namespaces. Our patient
element could be fully qualified with syntax like the following:

<hospital:patient .. >

The prefix can be anything you like. It is up to the XML parser to associate each element
via its prefix with the real namespace identifier. The linking pin to make that possible is the
namespace binding, the declaration somewhere in the XML document that associates the prefix—
again, any string you fancy—with the namespace URI:

<hospital:patient xmlns:hospital="http://ourhospital.com/patient">

Some prefixes are reserved—such as xml and xmIns—and some have become so commonly
used for specific namespaces—for example, xsl (http:/www.w3.0rg/1999/XSL/Transform), xsd (for
http://www.w3.0rg/2001/XMLSchema), and xhtml (for http://www.w3.0rg/1999/xhtml)—that you
should refrain from using them for other purposes.

The namespace prefix—unless it is “xml” or “xmlns”—must have been declared in a namespace
declaration attribute in either the start tag of the element where the prefix is used or in an ancestor
element (that is, an element in whose content the prefixed markup occurs). Once a prefix has been
associated with a namespace inside some element tag, it can be used in all child elements. Here’s
an example:

<hospital:patient xmlns:hospital="http://ourhospital.com/patient">
<hospital:personal>
<hospital:firstName>

Chapter 4: XML and Web Services Fundamentals 97

We can also use the concept of the default namespace: Any element that is not specifically
prefixed or associated with a namespace through the xmlns attribute is in the default namespace—
if that has been defined. The default namespace is defined through a variation on the declaration
we saw before:

<patient xmlns="http://ourhospital.com/patient">

By simply using xmlns, without the colon and prefix, we state that for this element and all its
descendants, the default namespace is set to http://ourhospital.com/patient. Because many XML
documents contain only elements from a single namespace, the default namespace further simplifies
things considerably. A single namespace declaration in the root element of the document is all we
need to associate all elements with the appropriate namespace, as shown here:

<patient xmlns ="http://ourhospital.com/patient">
<personal>
<firstName>

Of course, an XML document may very well contain elements from different namespaces.
We can select one as the (global) default namespace—typically the source of the largest portion
of elements. The other namespaces can be associated with prefixes or be used as local default
namespaces. The declaration of namespace bindings is usually done in the root element, but can
be done in any element. See Appendix B for more details and examples.

Creating Real XML Schema Definitions

XSD documents use an XML syntax to define a grammar (or vocabulary) for creating a set of XML
documents. XSD uses fixed XML elements such as type, attribute, element, and so on, to define
the structure. You will find a basic introduction and more details on XSD in Appendix B.

Let’s look at a simple XSD document. It specifies the “address” element in the http;//www.hospital.
org/hrm namespace. The binding to this namespace is specified through the targetNamespace
attribute in the “schema” element. This XSD document states that any occurrence of this {http:/
www.hospital.org/hrm} address element should conform to the rules laid down in this XSD.
The XML elements in this document that are part of the XSD vocabulary itself are all from the
namespace http://www.w3.0rg/2001/XMLSchema, bound to the xsd prefix:

<?xml version="1.0" encoding="utf-8" 7>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.hospital.org/hrm"
targetNamespace="http://www.hospital.org/hrm"
elementFormDefault="qualified">
<xsd:element name="address" type="physicalAddress"/>
<xsd:complexType name="physicalAddress">
<xsd:sequence>
<xsd:element name="postalCode" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string" minOccurs="0"/>
<xsd:element name="country" type="countryCode"/>
<xsd:choice>
<xsd:sequence>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="houseNumber" type="xsd:string"/>
</xsd:sequence>

98 Oracle SOA Suite 11g Handbook

<xsd:element name="poBox" type="xsd:string" />
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="typeOfAddress" type="xsd:string" />
</xsd:complexType>
<xsd:simpleType name="countryCode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="be"/>
<xsd:enumeration value="us"/>

</xsd:restrictions>
</xsd:simpleType>
</xsd:schemas>

This XSD snippet declares the address element, based on the physicalAddress type. Next comes
the definition of this complex type. It contains a number of child elements, such as postalCode, city,
state, and country. These must occur in this order. However, the state element is optional. The
country element is based on a simpleType, countryCode. The countryCode type is based on the
built-in simpleType string. A restriction is defined: The value of countryCode must be one of the
values defined in the enumerations.

The physicalAddressType then contains either a poBox element or a street and houseNumber.
The xsd:choice element specifies this mutual exclusiveness. Finally, the physicalAddressType also
declares an attribute called typeOfAddress, a string that indicates a visiting address or shipping
and mail destination.

Figure 4-2 shows the visual representation of this XSD definition and compares it with similar
designs in UML and ERD modeling.

An XML instance document with the {http://www.hospital.org/hrm} address element has to
comply with the XSD definition to be considered valid by XML processors. Here’s an example of
a valid document:

B <?xml version="1.0" encoding="UTF-8" ?>

<address typeOfAddress="emergencyContact" xmlns="http://www.hospital.org/hrm">
<postalCode>3456</postalCode>
<citys>Luik</city>
<countrysbe</countrys>
<streets>Waffle Avenue</street>
<houseNumber>123</houseNumber>

</address>

NOTE
“ Multiple XSD documents can define elements in the same namespace.

And one XSD document can define elements in different namespaces.
There is no mutually exclusive, one-to-one relationship between XSD
documents and namespaces.

A very special element we can use in an XSD document is the “any” element. We use it to
specify the occurrence of a block of well-formed XML—XML content that conforms to the XML
syntax rules. No other restrictions apply; it can be anything (as long as it is well-formed XML).

Chapter 4: XML and Web Services Fundamentals 99

[<schema> m
[targetNamespace] http:/www.hospital.org/hrm | ress

e country: String Postal code

postalCode: String City

otypeOfAddress state: String State
Country

ey Mail address
houseNumber: String Pobox

physicaIAddress = Visit address
countr
otype ress fount oyumrycode UML class model Street

postalCode
type xsd:string
city

type xsd:str

ate

poBox: String

street: String

House number

ERD

poBox
type xsd:string

countryCode
restricts xsd:string
maxLength | 2
enumeration | nl
enumeration | us
enumeration | de
enumeration | be
enumeration | mx
enumeration | it
enumeration | dk

XSD

FIGURE 4-2. XSD compared to other data modeling techniques: UML Class Model and Entity
Relationship Diagram

This “any” element is convenient to allow parties to include additional information in an XML
document largely predefined through the XSD definition.

The next snippet specifies that inside the patientType there can be a patientattachment
element that contains well-formed XML. The structure or vocabulary for that content is
unknown—it can be anything.

<xsd:complexType name="patientType">
<xsd:sequence>
<xsd:element name="patientAttachment" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

In addition to the any element, there is the anyType type, which can be used to specify both
elements and attributes. This type does not constrain values in any way—and it can be used, for
example, when we have too little information or control to enforce a more specific type.

100 Oracle SOA Suite 11g Handbook

A complex type can be defined as an extension of an existing complex type, adding new
elements to the set already defined in the base type. This extension mechanism is similar to object
inheritance in, for example, Java.

Associating XML Documents with XSDs The XML processor that processes an XML document
can be explicitly instructed about the XSDs to apply—either inside the document or through
programmatic arguments. When the XML document is a message sent to a Web Service, the
relevant XSD is defined indirectly through the WSDL (see later) that contains an XSD reference.

Alternatively, the XML processor may know of one or multiple XSD documents that have
been registered with it. These XSDs describe elements in namespaces—with each XSD providing
the specification for one or more fully qualified elements. When processing an XML instance
document, the QName of the elements in the document is compared with this list of registered
schema-based elements. Any element in the XML instance document that can be matched will be
validated against the schema definition. Figure 4-3 shows an XML document with elements from
multiple namespaces defined in three different XSD documents.

Additionally, the XML instance document can contain an explicit reference to one or more
XSD definitions:

I <address xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.hospital.org/hrm Administration.xsd"
xmlns="http://www.hospital.org/hrm">

<postalCodes>. ..

Namespaces XML schema definitions
P =~ >
/,h S \\A&‘ Administration.xsd ’
< ttp://www.hospital.org/! P
B - «

,

XML document

’
.

mens:hospital=”http://ourhospita|.(;o'rln/pati,e/nt”a a
xmlns:hrm="http://www.hospital.prg/hrm”’
xmlns:who="http://who.org/medical”

<<Uses elements
defined in>>

FIGURE 4-3. XSD documents describing elements in namespaces—implicitly referenced by
XML instance documents

Chapter 4: XML and Web Services Fundamentals 101

The hint about the schema location is passed in the form of a schemalocation attribute that
is defined in the http://www.w3.0rg/2001/XMLSchema-instance namespace. The attribute is
included in the root element of the instance document, and has to be preceded by a namespace
binding—usually to the prefix xsi.

Managing XSDs and XSD Dependencies

It is considered a best practice to use XSD documents to describe the XML vocabulary we want to
use in a specific business domain. Of course, such domains can be quite large with substantial
numbers of elements. Fortunately, we do not have to stick to a single XSD document with all
those elements in a single file. We can use the “include” and “import” elements in an XSD
document, which allow us to organize and manage element and type definitions in multiple
documents and help establish reuse of those definitions. For example, we can create an XSD
document called VeryPatient.xsd that contains a <patient> element that is used from several other
XSDs employed at St. Matthews that all specify XML messages containing patient information:

<xsd:element name="patient" type="patientType" />
<xsd:complexType name="patientType">
<xsd:sequence>
<xsd:element name="personal" type="personNameType" maxOccurs="1"
minOccurs="1"/>
<xsd:element name="mailAddress" type="hrm:physicalAddress" minOccurs="1"
maxOccurs="3"/>

The patient element is based on the patientType complexType that contains, among others,
the mailAddress element, which is based on the hrm:physicalAddress type—from a different
namespace and defined in a different XSD document, called Administration.xsd.

The physicalAddress type is bound to the {http://www.hospital.org/hrm} namespace (its prefix
hrm is declared at the top of the XSD document):

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://ourhospital.com/patient"
xmlns:hrm="http://www.hospital.org/hrm"

The definition for this type is in a separate XSD document that is imported into the VeryPatient.
xsd schema:

<xsd:import schemalocation="Administration.xsd"
namespace="http://www.hospital.org/hrm"/>

The import element tells any processor interpreting the XSD document that it should read the
contents of the imported XSD document and merge it with the current XSD’s definitions. This
means that it is transparent to anyone using the VeryPatient.xsd whether the physicalAddress type
was in that XSD itself or in some imported XSD.

Similar to the xsd:import, the xsd:include construct also instructs XSD processors to read XSD
element and type definitions from the indicated external XSD document. However, include is
used for XSDs with the same targetNamespace as the base XSD, whereas import is used with
external schema definitions describing elements from a different namespace.

102 Oracle SOA Suite 11g Handbook

Managing XSD documents is very important, much like the management of the corporate
data model. The XSD documents form an important asset for an organization that adopts SOA.
Together, the XSDs describe all business data of interest—at the very least the data that is
interchanged between systems and published by (web) services.

The ability to link XSDs is essential in building a structure of schema definitions that is
manageable. Many organizations use hierarchies of XSD documents. At the root, you will find
entities or business objects from specific business domains. It is a common (best) practice to have
the namespace associated with the schema definition derive its name from the business domain.

A note or warning here, before you go overboard with an attempt at an enterprise-wide XSD
hierarchy. There is some risk involved that theoretical soundness conflicts with the harsh reality
of physical components that have neither unlimited memory nor infinitely fast CPUs. An XSD
hierarchy, no matter how correct, may become too complex to handle. For example, it cannot be
compiled because it imports the entire world into a single XSD that is then used by all Web
Services in the organization. In order to compile even the simplest Web Service, over T00MB of
XSDs have to be processed.

WSDLs—the service definitions that we will discuss a little later—are often a better place to
do the final importing of multiple XSDs. This does not mean that importing XSDs into XSDs is a
bad thing; however, the import directive must be used with discretion. The WSDL can choose a
subset of XSDs (which may import a small number of dependent XSDs) that it needs to operate,
instead of indirectly importing all XSDs in the organization.

Extension, refinement, and composition of elements and types can be done at lower levels in
the XSD hierarchy in XSD documents that import the business objects. More specific type and
element definitions used for particular applications and services are defined in yet lower levels,
again importing from the more generic schema definitions. This approach allows for Object
Oriented characteristics such as the reuse and inheritance of business object definitions.

Through the import of the WHO-medic.xsd, we have made the bloodPressureReading element
available in the VeryPatient.xsd document. It allows us to specify how instance XML documents
can define bloodReading elements inside the bloodReadings child in the patient element.

The Service Contract: Introducing WSDL

With this little bit of XSD under our belt, we can take a closer look at the contract Margaret and
Frank should draw up for the service that Frank’s team will provide. We have already seen the
first draft of this contract:

I <operation name="getPatientRecord">

<input message="PatientIdentificationInputMessage"/>

<output message="PatientDataRecordOutputMessage"/>

<fault message="UnknownPatientIdFaultMessage" name="UnknownPatientId"/>

<fault message="NoUniquePatientMatchFaultMessage" name="NoUniquePatientMatch"/>
</operations>

This snippet is part of a WSDL document (WSDL stands for Web Service Definition Language,
frequently pronounced as whiz-dul). WSDL is a W3C standard, originally for defining Web Service
interfaces but today used for almost any kind of service—including Java interfaces, database APIs,
and RESTful services (with WSDL 2.0). A WSDL document describes the functional interface,
including operations, input and output messages, and faults. It also describes the implementation

Chapter 4: XML and Web Services Fundamentals 103

locations of the interface, or rather the physical endpoint (address) where the service can be invoked
in combination with the protocol to be used for invoking the service.

An interface can be bound to multiple protocols—such as SOAP, HTTP, and MIME—and
each binding can be exposed at one or more endpoints. WSDL has extension points that allow for
the definition of other binding types (for example, based on Java, JCA, and JMS). Note that we
will focus on the 1.1 release of WSDL supported by the SOA Suite.

Analyzing the Service Interface According to WSDL

The contract for a service has various aspects to it, of course. Some of it is very much like real-
world contracts, whereas other parts are quite technical in nature. The WSDL primarily describes
the service interface with a number of functional as well as more technical aspects of the contract,
in a way that technical infrastructures can understand and that is accessible to human readers at
the same time by using strongly typed XML with meaningful element names. We will take a closer
look at the essential elements in WSDL documents. Other aspects of a service contract—for
example, regarding its response time, availability, and release schedule—are not part of WSDL
documents.

Abstract Service Interface: The portType

We have talked about a specific operation Frank’s service should provide: getPatientRecord.
However, his service may very well offer additional operations as well, just as a Java class may
contain (and typically does) multiple public methods and a PL/SQL package specification
provides more than one procedure. The WSDL document contains the portType element, a
named set of abstract operations, and the abstract messages (input, output, and fault) involved
with those operations. Faults (referring to SOAP faults here) are the Web Service equivalent of the
exception in languages such as PL/SQL and Java. The portType element is very similar to the Java
Interface artifact—it specifies the abstract service interface that is on offer from the Web Service.
It is up to the port elements to hook up the implementation of this abstract interface and its
operations:

<portType name="PatientDataServiceInterface"s>
<operation name="getPatientDataRecord">
<input message="tns:PatientIdentityRequestMessage"/>
<output message="tns:PatientDataRecord"/>
</operation>
</portType>

Also notice that the input and output messages are now fully qualified and in the namespace
denoted by the “tns” prefix. Figure 4-4 provides an overview of the entire structure of WSDL
documents. Note the three sections that describe the what of the service (what functionality is
offered by the service?), the how of the service (can this functionality be invoked in terms of
protocol and message format?), and the where of the service (at which physical endpoint can the
service be contacted?).

Message Definition

Frank is nowhere near the point where he wants to start talking about the implementation details
such as the endpoint (the URL on which the service can be invoked) for his service. He wants to
first further specify the functionality of the getPatientRecord operation, or at least define what the

104 Oracle SOA Suite 11g Handbook

Administration.xsd
VeryPatient.xsd

complexType

Service invocation contact

types

schema
[Import XSD for namespace|/

message Il]
part

Margaret’s

| Patientldentificationlnput |
team i

portType

operation | Frank’s
| getPatient ~ | implementation
team

Other service
consumers

binding
SOAP, HTTP, Java |

port
| URL, Host:Port |

WSDL document

FIGURE 4-4. Overview of the structure of WSDL documents

structure will be for the input and output messages. That is quite a life-altering change from his
initial response to Margaret’s opening moves, where he almost created the database views on the
spot for her. This structured, step-by-step approach sits well with him. It also gives him time to
absorb all the new lingo and concepts.

The input and output element each have a message attribute. This attribute refers to a message
element defined in the WSDL document or an external XSD:

I <message name="PatientIdentityRequestMessage">
<part name="PatientIdentificationPart" element="pat:PatientIdentification"/>
</message>
<message name=" PatientDataRecord"s>
<part name="PatientDataRecordPart" element="pat:PatientDataRecord"/>
</message>

A message can consist of multiple parts. Each part can be seen to represent a parameter in the
operation request or response. Multiple part elements can be used when a message has several
unrelated or at least logically separate units.

Two types of styles are used for Web Services: document-style and RPC-style Web Services.
For the “document literal (wrapped)” style service (which we will work with most of the time),

Chapter 4: XML and Web Services Fundamentals 105

the WS-I Basic Profile specifies that at most one part is allowed. In general, it seems that unless
there is a real need for using multipart messages, sticking with single-part messages is less complex
and less likely to have you run into tool limitations. This style works with XML documents that can
have a complex, nested structure if needed. The RPC-style service requires individual input and
output parameters, which makes the interface definition much less flexible. For the purpose of this
book—and almost always in other cases—we will use the document approach. The alternative,
RPC, is rapidly going out of fashion. For details, see the almost classic paper “Which style of
WSDL should I use?” (www.ibm.com/developerworks/webservices/library/ws-whichwsdl/).

Each part is based on either a type (for Remote Procedure Call or RPC-style services) or an
element (for the document literal-style services we will primarily deal with) that is defined in the
<types> section of the WSDL document. This section can contain XSD-style element and type
definitions, or import one or more external XSD documents. For reasons of loose coupling and
reuse of type definitions, as well as keeping the WSDL document readable, working with external
XSDs is preferable over including type definitions inside the WSDL document.

The following snippet is an example of a WSDL document that imports message definitions
using an external XSD document (VeryPatient.xsd in this case):

<types>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns="http://www.w3.0rg/2001/XMLSchema" >
<import namespace="http://ourhospital.com/patient"
schemalocation="VeryPatient.xsd"/>
</schemas>
</types>

Frank and Margaret need to flesh out the structure of the Patientldentification and
PatientDataRecord elements in the Patient.xsd. When they have done so, they have the
abstract interface for the getPatientRecord operation in the PatientDataService, because the
functionality is defined but no implementation details are specified. At that point, Frank and
his team can start working on the implementation—how to fulfill the contract—and Margaret’s
team can commence with the realization of service clients that will be invoking that service.
Well, almost. The two first need to agree on how the service will be called. The precise
physical address can be determined later on, but it would be useful to know the protocol via
which the service is to be invoked.

Through the operation and message elements, together with any referenced XSDs, we have
specified the XML structure for the requests to and responses from the service. What we have not
described yet is how the request and the response are communicated. It’s like agreeing on the
form that we will fill out and send to an agency to make a request. If we do not discuss the
address to which we should send the form or the postal service to use—that is what the service
and port elements are for there is a chance of that form not arriving in good shape. We should
also give consideration to the envelope we should wrap the form in and the fact that we may
need to provide a return address if we ever want to receive a reply from this agency.

Many tools, including the Oracle SOA Suite, are able to speak SOAP (formerly known as the
Simple Object Access Protocol, but today just referred to as SOAP). Other protocols—such as
REST, e-mail, and binary message transmissions—may also be supported.

106

Oracle SOA Suite 11g Handbook

SOAP: The XML Transmission Language

SOAP describes the meta-details for sending messages between service consumers and
providers. It is a W3C standard that describes the structure of an XML document—this time
the XML document that contains at its core a message being transmitted, enveloped by
metadata pertaining to the transmission itself.

A SOAP message in its simplest form looks SOAP document
like this: envelope
/ header \
NOTE blocks that contain QoS details
We discuss SOAP 1.2, as that is the default and other metadata
version used in the Oracle 11g SOA Suite. body
)) | XML payload |
At the core is the payload—that is,
the message itself. It's like the letter inside the

envelope. The payload is wrapped inside k /
the <body> element. The <header> element

optionally contains header elements—elements that provide metadata about the message
that is being sent. This is much like the information you may scribble on the envelope in
which you send a letter, such as the return address and perhaps a specific indication of the
department the letter is intended for or the topic it is about.

The SOAP header can contain various types of metadata, including addressing
information—for example, the address to which to send any replies, transaction coordination
details, and authorization tokens—used to identify the sender of the message.

Namespaces can be declared at various levels, such as the root Envelope element or the
Header and Body elements. The Body element is the container for the actual payload sent
in the SOAP message. In the following example, the payload is the {http://ourhospital.com/
patient}patientldentification root element with its contents:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing" >
<env:Header>
<wsa:MessageID>urn:CBCA87702F9311DFBFAEA7F5A2B8D1B8</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://www.w3.0rg/2005/08/addressing/anonymous</wsa:Address>
</wsa:ReplyTo>
</env:Header> <env:Body>
<nsl:PatientIdentification>
<nsl:patientId>3232</nsl:patientId>
</nsl:PatientIdentification>
</env:Body>

</env:Envelope>

The structure of SOAP messages is the same, regardless of whether the messages
contain a request or a reply—just like the basic concept of an envelope is the same, no
matter what’s in the letter it contains.

Chapter 4: XML and Web Services Fundamentals 107

The How and Where in the WSDL Contract

The Binding element in the WSDL document is used to describe the fact that the specific operations
in the service are callable via a specific protocol binding and data format. Several options are
available for bindings, including HTTP, MIME, JCA, and SOAP (the latter being the most prominent
among them):

<binding name="PatientDataServiceSoapHttp"
type="tns: PatientDataServiceInterface">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getPatientDataRecord">
<soap:operation soapAction="getPatientDataRecord" />
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

The type attribute in the binding element refers to a portType element—the element that
contains the interface that declares the available operations. The binding element links a portType
to a protocol and a style of message formatting. In this case, we have defined the binding of the
PatientDataServicelnterface portType to the SOAP protocol using a document-style message format.

The child element of the binding element—in this case, soap:binding or {http://schemas.
xmlsoap.org/wsdl/soap/}binding, because the prefix soap is bound to this namespace—indicates
the protocol. The soap:binding element specifies the format through the style attribute—which we
will always set to document.

For each operation in the referenced portType that we want to support through the binding,
we need to include a child “operation” element inside soap:binding. The name attribute on the
operation element refers to the name of one of the operations inside the referenced portType.

The input and output elements are finally used to specify whether the SOAP binding has a
literal or encoded use for the parameters. We will always use literal—refer to the paper mentioned
earlier for details.

The WSDL document will be completed with the Service element that finally assigns physical
address details to each of the binding elements in the document. Here is the Service element for
the contract Frank and Margaret are drawing up:

<service name="PatientDataService">
<port name="PatientDataRecordServiceSoapHttpPort"
binding="tns: PatientDataServiceSoapHttp ">
<soap:address location="URL_To_ Be_ Defined"/>
</ports>
</services>

This element associates a binding element with a physical endpoint. The binding tells us how
to invoke the service operations—which protocol and message format—and the port child of the
service element contains the details of the whereabouts of the deployed service implementation.

108 Oracle SOA Suite 11g Handbook

However, note that Frank is at this point far from able to indicate the URL where his service
will reside, nor does Margaret need that information at this point. The location is therefore not yet
defined in the WSDL.

JDeveloper provides a WSDL editor with both Source and Design views, the latter offering
a graphical overview of the WSDL with drag-and-drop support for adding elements to the
document. However neat this Ul, you will probably find yourself inspecting and editing the
source code directly. By the way, most WSDL documents will be generated for you by the
SOA Suite design-time environment, based on BPEL process and Mediator service definitions,
for example.

Demo: Create the Simplest Web Service Implementation

Once you have the complete WSDL and any referenced XSDs, you can start writing code that
calls the Web Service (even if it does not yet exist) and processes its response. Calling a Web
Service is supported by libraries and platform infrastructure in many technology environments.

Creating an implementation of a Web Service according to the specification laid down in the
WSDL and the XSD is also rather straightforward in various technology stacks. We will discuss
this process for Java using JDeveloper.

NOTE
“ All the source code discussed, screenshots for the important steps,
; and some bonus material are on the book’s wiki.

The Contract for the Simple Web Service

Let’s assume a fairly simple WSDL document along the lines of the PatientDataRecordService—
but simpler, just to give you the idea. The key parts of the WSDL document are shown here.
Let’s see how to read it:

<definitions
targetNamespace="ourHospital.PatientData"
xmlns:tns="ourHospital.PatientData"
xmlns:hospital="http://ourhospital.com/patient"
>

<types>

<schema attributeFormDefault="qualified"

elementFormDefault="qualified"
targetNamespace="http://ourhospital.com/patient"
xmlns="http://www.w3.0rg/2001/XMLSchema" >
<import namespace="http://ourhospital.com/patient"
schemalocation="SimplePatient.xsd"/>

</schema>
</types>
<message name="PatientIdentityRequestMessage">

<part name="in" element="hospital:patientIdentification"/>
</message>
<message name="PatientDataRecord">

<part name="return" element="hospital:patient"/>
</message>
<portType name="SimplePatientRecordDatalInterface">

Chapter 4: XML and Web Services Fundamentals

<operation name="getPatientDataRecord"s>
<input message="tns:PatientIdentityRequestMessage"/>
<output message="tns:PatientDataRecord"/>
</operation>
</portType>
<binding name="SimplePatientDataRecordServiceSoapHttp"
type="tns:SimplePatientRecordDataInterface">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getPatientDataRecord">
<soap:operation soapAction="getPatientData"/>
<inputs><soap:body use="literal"/></inputs>
<output><soap:body use="literal"/></output>
</operation>
</binding>
<service name="SimplePatientDataRecordService">
<port name="GetPatientDataRecordServiceSoapHttpPort"
binding="tns:SimplePatientDataRecordServiceSoapHttp">
<soap:address location="http://host:port/hospital...

.../patientservices/GetPatientDataRecordServiceSoapHttpPort"/>

</ports>
</service>
</definitionss>

The portType element contains the actual operation on offer in this service. Through the

109

message elements and the schema referenced from the <types> element, we quickly get a feel for

the input parameters and the outcome of calling the operation.

We can ask for a PatientRecord by submitting the PatientldentityRequestMessage (which

contains the Patientld, an integer value from the XSD). The service returns to us an XML

document—PatientDataRecord—that contains patient details such as name, initials, gender

and birth date, recent hospital visits, and some physical characteristics that could include

weight, height, and color of eyes. We learn this too from the SimplePatient.xsd document.
The service is (to be) offered through the SOAP protocol—as we can see from the binding
element. The endpoint is not yet specified—so we do not know the actual URL where we can call

this service.
The (referenced and external) SimplePatient.xsd document looks like this:

<xs8d:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://ourhospital.com/patient"
targetNamespace="http://ourhospital.com/patient"
elementFormDefault="qualified">
<xsd:element name="patientIdentification" type="patientIdType"/>
<xsd:element name="patient" type="patientType"/>
<xsd:complexType name="patientIdType">
<xsd:sequences
<xsd:element name="patientId" type="xsd:integer"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="patientType">
<xsd:sequence>

110 Oracle SOA Suite 11g Handbook

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="physicalCharacteristic" type="measurementType"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="hospitalVisit" type="hospitalVisit" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="measurementType">
<xsd:sequence>
<xsd:element name="dateOfMeasurement" type="xsd:date"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="hospitalVisit"s>....</xsd:complexTypes>
<xsd:simpleType name="genderType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="M"/>
<xsd:numeration value="F"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

In fact, the service does not even exist at this point. Let’s first do something about that by
creating a simple implementation.

Creating an Implementation of a Web Service

JDeveloper helps with the implementation of a Web Service: You can ask it to generate a service
implementation based on a WSDL document. All you have to add yourself is the Java code that
does the actual work. All the Web Service deployment details and XML-to-Java data type mapping
are taken care of.

When we select the WSDL file in the Application Navigator, we can find the option Create
Web Service in the right-click menu. Selecting it brings up a wizard that we can, by and large,
accept the default values in. You may want to set a nicer package name in which the Java classes
will be generated.

The central class generated by the Create Web Service Wizard is PatientType—based on the
XSD element by the same name. Its properties are defined as follows:

I public class PatientType {
@XmlElement (required = true)
protected String name;
@XmlElement (required = true)
protected String initials;

protected List<MeasurementType> physicalCharacteristic;
protected List<HospitalVisits> hospitalvVisit;

The annotations are part of the JAX-WS specification, introduced in JEE 5. They provide
additional type-mapping instructions to the container in which the Web Service will be deployed.

Chapter 4: XML and Web Services Fundamentals 1711

It is now up to us to implement the class SimplePatientRecordDatalnterfacelmpl—more
specifically, the method getPatientDataRecord that accepts a PatientldType and returns a
PatientType:

public PatientType getPatientDataRecord (PatientIdType in)

We can both deploy and subsequently test the Web Service from the right-click menu once
we have implemented this method.

Invoking Web Services from Java and PL/SQL

When they have been implemented and deployed, Web Services can be called from different
technology stacks—the main raison d’étre for Web Services. Invoking the Web Service introduced
earlier can be done from, for example, PL/SQL and Java—this is shown in detail on the book’s
wiki. The wiki also introduces the tool soapUI, which can be used to invoke (and test) the Web
Service as well as to provide mock implementations for Web Service contracts.

Summary

The SOA Suite speaks XML. Almost all files we create during the development of composite
applications are XML documents. And the vast majority of data processed by those applications
when in production is also XML. It is essential for SOA Suite developers—as well as architects
and to some extent functional analysts and testers—to be aware of the primary XML concepts and
technologies, such as namespaces and XSD as well as XPath and XSLT (see Appendix B for these
last two).

The interfaces for services in the SOA Suite are typically specified in yet another XML document,
based on WSDL. This chapter introduced the structure of the WSDL document, focusing first on the
portType (the interface) that defines the operations and refers to the input and output parameters,
whose structure is usually defined in associated XSD documents. The port element in the WSDL
document specifies through which protocols (such as SOAP) and on which endpoint the service
can be invoked. This element only needs to be defined upon deployment—and it may even be
derived as a result of deployment.

The Web Service interface definitions are technology neutral: They can be implemented in
and invoked from many different technologies. The chapter briefly discusses the implementation
of a WSDL contract using Java. The wiki has examples for other implementations and service
consumers.

In the next chapters, we will create SOA composite applications that are the implementation
of WSDL contracts. These applications are constructed according to the Service Component
Architecture (SCA) specification that was introduced in Chapter 3. The SCA specification goes
beyond WSDL. SCA defines a general approach for describing what you could call the deployment
contract for services as well as for creating composite services built from individual service building
blocks—the service components. Also see Chapter 14 for a more detailed discussion on SCA.

In the next chapter, we will create a service component—using the BPEL Process Manager in
conjunction with the Database Adapter—that provides the implementation for the service
contract Frank has agreed on with Margaret. This component is embedded in an SCA composite
application that offers a single service to the outside world: the PatientRecordService. The SOA
Suite runs such composite applications and forwards the Web Service calls directed at the
PatientRecordService to the composite that has them executed by the BPEL process.

This page intentionally left blank

CHAPTER

First Steps with BPEL and
the Database Adapter

114 Oracle SOA Suite 11g Handbook

hapter 3 introduced the SOA Suite and explained how it implements an SCA
container according to the Service-Component Architecture. We develop
. composite applications in JDeveloper that we can then deploy to and run in the

| SOA Suite. These applications typically expose public Web Services that clients

' can invoke. Internally they consist of service components that do the actual work.
SOA Suite supports various types of service components, including Mediator, Java (Spring),
Human Task, and Business Rule.

Another type of service component is introduced in this chapter: the BPEL Process service
component. BPEL (Business Process Execution Language) is a programming language for creating
a piece of service logic—logic that exposes a service interface and that typically orchestrates
multiple service calls. At the same time, BPEL has many of the traits of general-purpose
programming languages, as we will see in this chapter and the next. A BPEL process can be fairly
long-running, contains state, and can receive incoming messages in addition to the original
request that instantiated the process. This chapter introduces BPEL and the development of
BPEL service components. Note that the online chapter complement offers additional screenshots
and detailed step-by-step instructions to follow the examples hands-on.

Introducing the Business Process
Execution Language (BPEL)

The previous chapter introduced the PatientDataService, which makes data available in a
standardized, technology-independent way. Of even more importance to St. Matthews and
indeed every organization are its business processes that use the services. The business processes
are the concerted actions that an organization performs to achieve its business objectives. For
St. Matthews, among its business processes are the “intake patient/treatment patient/discharge
patient” processes as well as the “win employee/manage employee/lose employee” and “gather
claims/send claims to insurers/process payments” processes.

Continuing our discussion from Chapter 2, we see that when we analyze business processes
at the lowest level (where the action is), we can describe them as a series of activities, usually
by different actors, in a predefined order that may vary with the results of earlier steps, and
with information associated with the processes that is constantly transferred and manipulated
between steps and actors. A business process, for example, may have the patient, the reception
desk, the departmental office management, a doctor, and the billing department for its actors.
The information associated with the process could include the patient’s personal details, recent
health history, a list of recent hospital visits, the request from the patient to see a specific doctor,
as well as the preferred date and time, the best available timeslots for the doctor, and the agreed-
upon appointment.

Looking at the business processes from a service-oriented point of view, the actions can be
seen as calls to various services. The services are either implemented by software (system-centric)
or performed by human actors (human-centric). Executing the business process is largely a matter
of orchestrating the services that need to be invoked and managing the state of the process during
its lifetime. The business process may run very rapidly—in less than a second, perhaps, if only
computers are involved—or it can take hours, days, or even months.

Chapter5: First Steps with BPEL and the Database Adapter 115

Automating a business process in an SOA environment can be done through BPEL, the Business
Process Execution Language. BPEL is a programming language for implementing process flows and
composite (or orchestrated) services. BPEL is a standard maintained by OASIS and supported by all
major players in the IT industry, including Microsoft, Oracle, IBM, Software AG, Adobe, and
SAP. A BPEL program—referred to as a BPEL process definition—can be run by a BPEL engine,
just like a Java program can be run by a Java Virtual Machine and a PL/SQL program by the Oracle
RDBMS. A BPEL process is often published as a Web Service. It then has an associated WSDL
document with XSD definitions and one or more operations on a portType that can be called
through SOAP messages. Note that we will later discuss other ways to call and communicate with
BPEL components.

BPEL Ingredients

A typical BPEL process contains the following items:

B Calls to services. A service in this sense can be a task performed by a human staff
member, hiding behind the service interface of a workflow engine, or an automated Web
Service, although for the BPEL process, the distinction is not important.

B Specific BPEL activities, including data manipulation (calculation and transformation of
variables associated with the process) and flow logic, including decision point (if-then-
else and switch/case, iteration, parallelism, wait).

B Event handlers and fault (or exception) handlers.

In SOA Suite 11g, BPEL components often work closely together with other service components
in a composite application, such as Mediator, and Business Rule service components, to facilitate
interaction with other services and provide complex, externalized decision logic.

Human Task components are also frequently wired to BPEL processes for the manual handling
of activities in potentially complex workflows. The recent BPEL4People extension to the original
WS-BPEL standard adds specifications that define a standardized approach for integrating human
interactions more closely with BPEL processes. More on human tasks in Chapters 10 and 11.

Another regular partner for BPEL components is the Notification Service for sending messages to
human users via e-mail, SMS, and instant messaging (internally connected to the User Messaging
Service, or UMS).

Its good fit with business processes notwithstanding, BPEL also provides a powerful way for
implementing composite services that do not necessarily directly relate to an automated business
process. Of course, services can be implemented using a variety of technologies, as we have seen
in the previous chapter, including Java, PL/SQL, C++, and .NET. However, when a service
component has to invoke multiple services—either external to the composite application or
provided by other service components inside the composite, and potentially asynchronous and
long-running—BPEL is typically a good way to implement the component. This holds especially
true when over the course of the component’s lifetime some state is built up in variables and
process flow logic is involved to loop or conditionally branch.

A BPEL component has the unique capability to receive additional messages, beyond the first
invocation that initiated the component instance, and respond to them. This allows clients to
interact with the process—for example, to check on its progress, provide additional information,
or get a hold of intermediate results.

116

Oracle SOA Suite 11g Handbook

Synchronous and Asynchronous Services

In the previous chapter, we assumed a pretty simple world, where a call to a service results
in a more or less instantaneous response. Or at least, although the response may take some
time to arrive, we will just wait for it. Just like synchronous function or method calls in
PL/SQL and Java, the process thread blocks until a result is received. However, in the real
world, some services do not render responses in a timely enough fashion to justify waiting
for them. We may have to ask the service desk, bank manager, or wedding planner to call
us back when they have the answer to our query—we just ran out of lunch break and
cannot stay on the line any longer. In short, synchronous request/reply cannot include
human activities. Well-known examples of asynchronous communication are e-mail and
voicemail. We leave a message, do not stick around for an answer—as there is no one to
provide that answer—and expect to get a reaction later on.

The same goes for clients that call services in a SOA world. Some services are inherently
asynchronous—which means that they will always send their responses by calling us back
instead of replying while we are on the line. Asynchronicity is often deliberately used to
decouple the service consumer from the provider (or the availability of the provider). In case
of an asynchronous call, the caller is not dependent on the immediate availability or fast
response time of the provider. Less dependency means more flexibility!

However, whereas the coupling decreases on the one hand—the callee does not need to
be available when the call is made, nor does the callee need to respond extremely rapidly—it
increases on the other, as the caller needs to implement a callback interface stipulated by the
service contract: Only when the consumer implements and exposes the callback interface can
the asynchronous response be received and processed. This introduces a new dependency on
the definition of the callback interface.

A call to an asynchronous service is handled differently than a synchronous call. The
calling party needs to provide a callback address, for example. It also needs to determine
what it will do during the time it waits for the callback. Will it be suspended? Will it wait?
Can it do other useful things? And how will it know the callback has arrived?

The answers to these questions vary with the technology involved. We will see how
BPEL processes deal with calls to asynchronous services—very elegantly, that much | will
give away at this point. Many other technologies have more difficulties in dealing with
asynchronous service calls natively—usually relying on some form of external message
queuing to handle the requests and or the responses.

You can tell asynchronous service interfaces quite easily from the WSDL: The portType
has operations without an output element, even though you clearly expect a response. A
second portType defines the callback interface with operations that handle the response. The
calling party has to implement this portType and let the asynchronous service know what the
address or end point is where this “receive asynchronous response” service can be invoked.

A special type of asynchronous service is the fire-and-forget service, a one-way service
that never returns the asynchronous response. The client can immediately resume
processing after making a call to this type of service and it does not have to anticipate a
response in the future.

A BPEL process can be short lived or long running, and it can publish synchronous and
asynchronous operations. A BPEL process that has among its activities a human task, a
“wait,” a “pick,” or a call to an asynchronous service will typically publish an asynchronous
service—however, that decision is up to the developer.

Chapter5: First Steps with BPEL and the Database Adapter 117

BPEL is one of the first-class citizens for component implementation included in the SCA
standard, along with Java, Spring, PHP, (SOAP) WebServices, and C++. Services implemented
using BPEL can easily be configured in SCA components and linked with references provided by
other SCA components.

In this chapter, we will get off to a flying start by doing a rapid implementation of an SCA
composite application with BPEL-based service components. We will then take a first look at
some of the basic programming constructs of the Business Process Execution Language and go
on to see how we can leverage other services from a BPEL process (for example, to retrieve
information from an Oracle database).

Implementing the Composite PatientDataService

Let’s revisit Frank’s Patient Data Service—a composite service that we worked on in the previous
chapter. It seems that the data that this service will return for a particular patient has to be gathered
from various sources. Additionally, the service will have to do some processing and transformation
on the data retrieved from those sources to make it fit the requirements of the service consumers as
laid down in the WSDL. Even though a request for patient data is not much of a business process
all by itself, it is a composite service, and because of the service orchestration requirements, BPEL
is a good choice for implementing the Patient Data Service.
Now buckle up for a fast BPEL ride with the Oracle 11g SOA Suite:

1. Start JDeveloper 11g. Create a new application by selecting File | New from the main
menu and selecting the node General | Applications in the categories tree. Select SOA
Application in the items list shown on the right side. Click OK.

2. You will be prompted to provide a name and a directory for the application. Enter
PatientDataService as the name for the application. Also enter a directory of your choice
(see Figure 5-1).

& Create SOA Application - Step 1 of 3

Name your application

Application Mame;

@ Application Name |F‘atientDataService |

Project Mame
)TI‘ Direckary:

Project 504 Settings |C:'|,SO.¢\Suitel1gHandbook‘l,F‘artTwo'l,ChapterShPatientDataService | I Browse.., I

Application Package Prefix:

| |
|_<E£E'C!' |E uai:T-” Finish H Cancel],4

FIGURE 5-1. The Create SOA Application dialog

118 Oracle SOA Suite 11g Handbook

3. Click Next to go to the Project Name page. Enter the project name, PatientDataService,
and click Next. On the last page, Project SOA Settings, select the composite template
“Composite with BPEL” because we will create a composite application with a BPEL
service component. Accept PatientDataService as the name for the composite. Click
Finish to have the application, project, and service composite application created.

4. The Create BPEL Process dialog appears, as shown in Figure 5-2. Here, we specify
the name of the BPEL process, the namespace, and the template we will use. Enter
PatientDataService as the name of the BPEL process. Enter http://stmatthews.hospital.
com/patient/PatientDataService for the namespace. Select the Synchronous BPEL
Process template because we want to publish the process as a synchronous service—after
all, we do not include human activities (yet) in this BPEL process, nor will we invoke any
asynchronous services. Enter PatientDataService for the service name.

5. Leave the check box Expose As A SOAP Service checked. This will result in the BPEL
component being exposed as a Web Service in the composite application. It also leads to
an SCA composite with the BPEL process component already wired to an inbound SOAP
service binding component. External consumers access the BPEL process through that
SOAP service.

6. Accept the default names for the input and output—we will change these into more
sensible values later on.

7. Click OK.
At this point, JDeveloper will create a bunch of files, including the BPEL process definition

(PatientDataService.bpel) and the SCA composite definition (composite.xml). We talk about all
these files and their mutual dependencies in the online chapter complement.

& Create BPEL Process L x|
BPEL Process |;|

BPEL process is a service orchestration, used to describefexecute a business process {or large grained ﬁ
service), which is implemented as a skateful service,

Mame: |PatientDataService |

MNamespace: |http:,l',l'stmatthews.hospital.cnm,l'patient,l'PatientDataService |

Template: lg Synchronous BPEL Process 'l =]

Seryice Name: |PatientDataService| |

Expose as a SOAP service

Inputs |{http:,l',l'stmatthews.hnspital.com,l'patient,l'PatientDataService}-prncess | q

Cukput: |{http:Il'll'stmatthews.hnspital.cnm,l'patient,l'PatientDataService}-prncessRespnnse | q

l]- OF, I[Cancel J

o
A

FIGURE 5-2. The Create BPEL Process dialog for creating a new template-based BPEL process

Chapter5:

First Steps with BPEL and the Database Adapter

119

| ko (Praa. . |
= [ITFYS YIS
& Fymaain
= [T Pebwrelid stmicn
- [Sk Lo
[ERE= e
[et et
= 3=
2, Patiant DabaSarvirn ol
3 (.
R T
o] rorepmity el
Jh, Pubirilio wmrsice bral

] Pt e ok el
¢ AL B i
b Cabdi Soitiok
¢ Famantly Dparasd Plen

L

o ul

e L T e]

w | e @ S B r-;.—r e | R B |l

B V=

Bt b, e | s

avT

Forines Linke

|

Partraw inks |~ ||l
b R P
" L ety el Comrperi
= kit ard Cospmrants ——
oy BPEL Frocaem
i e Bk
| Uy Human Task
< Peiate
B dabribam
15 Ay
| Bt Eraky
19 Chach cara
Em
| Crestn Enity
(=]
gy
@-M
Mook
Em
Iu-rﬁ
o M By
EM
o
1“'“
| Fxorer Sigrad
g Farevn Eniiey

[o Coatmlind Ficebe I caration, Toar: | 100 5| ——— -A. -;::.“
1'“"'""""""' mlﬂlﬂllm -
FIGURE 5-3. The new SOA project with the PatientDataService BPEL process

The BPEL process editor opens and presents the Design view of the BPEL process (see Figure 5-3).
On the bottom of the editor pane are three tabs: Design, Source, and History. In the Source tab, we
can see the underlying XML content of the process definition. The Design and Source tabs provide
different views on the same source, so changes can be made in either.

The PatientDataService BPEL process contains two activities at this point: Receive and Reply,
as will be the case for all synchronous BPEL processes. The first activity receives the service
request from an external partner—a party outside the BPEL process—and causes a new instance
of the BPEL process to be created. The Reply activity—usually after some meaningful processing
in intermediate BPEL activities that have yet to be added—returns a response to the external

partner.

BPEL processes have two types of external partners: the invokers of the service(s) exposed by
the BPEL process, and the services that the BPEL process invokes itself. The external partners as
seen from BPEL are identified in the BPEL process through partner links, which are nothing more
than the interaction points between the BPEL component and other components in the same

composite.

120

Oracle SOA Suite 11g Handbook

Business Process (Definition) vs. Business Process Instances

When business analysts speak about a business process, what they are referring to is the
definition of the process. When we create a BPEL process, a program to be executed by a
BPEL run-time engine, we also work on the definition of the process. However, what takes
place in an organization is more than that: The business process can be executed many
times per day, even many times simultaneously. And likewise a BPEL engine can run many
instances of the same process at the same time. Just like a Java class file is the mold to cast
Java objects from, the BPEL process is the mold used by the BPEL container to cast BPEL
process instances from—of which there can be many running at the same time, each with
its own instance ID and its own set of data.

The SOA console allows us to inspect running and finished instances of our business
processes—before finally purging them. It will come as no surprise that BPEL process
instances are stored in a database—a process called dehydration. This happens when a
process is finished and may happen also in mid-processing, when it is paused, waiting for a
response to an asynchronous service request or some other event to occur, or when a
Checkpoint activity is executed.

It is important to realize that every call to the service published by a BPEL process will
result in a new instance to be initiated. Note that it is not just an instance of a BPEL process;
it is an instance of the entire composite that contains the BPEL process.

A synchronous or asynchronous BPEL process, like the one we have just created, has one
predefined partner link, called Client. It represents the external party that calls the BPEL process
(or rather the service published by the BPEL process, and possibly exposed by the composite
application). For each service, we will call from the BPEL process; for each external party invoking
this BPEL process, we will add a partner link.

JDeveloper has created two BPEL process variables: inputVariable and outputVariable. These
are used to capture the input received in the service request and specify the output to be returned
as the service response by the Reply activity. Variables in BPEL are based on an XML type or
element—either a primitive type or a custom type or element defined in an XSD document
associated with the project. The two variables created by default are based on the message types
specified in the WSDL for the PatientDataService’s “process” operation. This operation is also
created by default by JDeveloper.

We can create the absolute minimal BPEL process by adding just a single activity that will set
the value of the outputVariable, as we did in Chapter 3 (the BPEL activity used for manipulating the
value of variables is called Assign). The steps to create this minimal BPEL process and to deploy and
run it on the SOA Suite are described and visualized in the online chapter complement.

The PatientDataService BPEL
Process in More Detail

The PatientDataService implemented by our BPEL equivalent of HelloWorld is up and running,
assuming you followed the instructions in the online chapter complement. And although it is
laughably simple, it already has the core elements that underpin much more complex BPEL processes.

Chapter5: First Steps with BPEL and the Database Adapter 121

PatientDataService.xsd

element
PatientDataServiceProcessRequest

PatientDataService.wsdl

element
types PatientDataServiceProcessResponse

import PatientDataService.xsd

message
PatientDataServiceRequestMessage <
PatientDataServiceResponseMessage 4

PatientDataService.bpel

variables
portType ; >
PatientDataService inputVar laPle
o outputVariable
operation
process Receive Reply

partnerLinkType
role
portType partnerLink

'|_[binding - role o

] PatientDataService - partnerLinkType
|

|

service _
' -
i port

|

FIGURE 5-4. The PatientDataService BPEL process and its associated WSDL and XSD files

So by analyzing this trivial example, we get a feel for what constitutes this combination of SCA
and BPEL that is exposed as a Web Service. Figure 5-4 shows the files that make up the composite
application, along with their dependencies.

JDeveloper has created the file PatientDataService.wsdl. This file specifies the interface that
our BPEL process exposes and that the composite application will publish externally (because we
left the check box Expose As A SOAP Service checked when we created the composite):

I <!-- portType implemented by the PatientDataService BPEL process -->
<portType name="PatientDataService"s>
<operation name="process"> <!-- the default name that we ought to change -->

<input message="client:PatientDataServiceRequestMessage"/>
<output message="client:PatientDataServiceResponseMessage"/>
</operations>
</portType>

The Request and Response message types are based on the elements defined in the XSD
document PatientDataService.xsd that was also created for us. Initially both Request and Response
elements consist of a single string.

122 Oracle SOA Suite 11g Handbook

The BPEL process—defined in the file PatientDataService.bpel—contains variables, just like
programs in other programming languages. Some variables contain the messages received from or to
be sent to partners, whereas others contain data required for holding state information or temporary,
local data related to the process and are never exchanged between partners. All variables hold data
in the form of XML.

The variables are defined in the BPEL process through “variable” elements, which specify the
name and the data type or structure of each variable. Variables can be global—accessible throughout
the BPEL process—or local to sections of the process (called scopes and introduced later). A variable
can be based on an XML Schema Simple Type such as string, decimal, or dateTime. Alternatively, a
BPEL process variable can be defined in terms of a message type defined in the WSDL document or
an element in one of the XSD documents.

A special type of variable is the Entity variable. A variable of this type is bound to an SDO
(Service Data Object) published by a Data Access Service (DAS), which could be provided, for
example, by an ADF BC data provider. More on this advanced setup in Chapter 20.

The variables in the PatientDataService BPEL process are in reality not simple strings (like
they are right now) or integers; their structure is defined by WSDL message types. JDeveloper has
created two variables for us: inputVariable, based on the PatientDataServiceRequestMessage
message type in the WSDL file, which in turn is based on the PatientDataServiceProcessRequest
element in the PatientDataService.xsd document. The second BPEL variable is outputVariable,
which is likewise based on the PatientDataServiceProcessResponse element. Figure 5-5 shows the
BPEL variable definition.

-! <variables>

<variable name="inputVariable" messageType="client:PatientDataServiceRequestMessage"/>
<variable name="outputVariable" messageType="client:PatientDataServiceResponseMessage"/>

</variables>

& Edit ¥ariable - output¥ariable i |
[General |

Mame: |outputh‘ariable |

Type
() simple Type | | &
(3) Message Type |{htt|:-:,l',|'stmatthews.hospital.c-:m,l'patient,I'PatientDataService}PatientDataServiceResponseMessage| Q
() Element | | 4
[Entity Yatiable
’:ani'!':—:r!._--'-l-.| | A
[] 500 Capable
| R

p:

FIGURE 5-5. The definition of the variable outputVariable based on the message type
PatientDataServiceResponseMessage

Chapter5: First Steps with BPEL and the Database Adapter 123

Later in this chapter, we will extend the XSD document with a more interesting definition of
the PatientDataServiceProcessRequest element. The inputVariable in the BPEL process immediately
inherits that more complex structure.

Essential BPEL Activities

BPEL is a programming language with its own XML-based syntax, constructs, and dozens of
operations, or activities, as they are called in BPEL. Some will manipulate data, others perform
logic (decision, loop), and a number of activities is involved in interacting with external service
and event providers and consumers. Here we discuss the essential BPEL elements.

Partner Link Type
A very important element in BPEL processes is the link between the BPEL process and the external
world: the services called by the process and the parties external to the BPEL process that access
it. Every type of interaction is represented by a PartnerLinkType element, specified in the WSDL
file of the BPEL process. Note that we see here a special extension to WSDL that BPEL introduces.
The WSDL document created for a BPEL process contains at least one PartnerLinkType element
for the partner that invokes the process. A PartnerLinkType specifies “role” elements. Each role
element introduces a role that either the BPEL process or the external partner can assume in their
mutual interaction: service consumer or service provider. That role is linked to a portType that the
partner playing the role should implement. If the BPEL process is asynchronous, the partner link
type contains two role elements: The partner is initially the consumer of the service sending a
SOAP message to the BPEL process and subsequently the receiver of the response message sent to
the callback interface.

In our very simple PatientDataService, we have just one interaction with the outside world:
the client calling the service and receiving the immediate response. In the PatientDataService.
wsdl file, this interaction is specified through a single partnerLinkType:

<plnk:partnerLinkType name="PatientDataService">
<plnk:role name="PatientDataServiceProvider">
<plnk:portType name="client:PatientDataService"/>
</plnk:role>

</plnk:partnerLinkType>

The role of PatientDataServiceProvider in this interaction with the external client will be
assumed by the BPEL process—the provider of the service. Every party calling this service will be
the client that uses the PatientDataService portType. It is important to realize that the partner we
are referring to is not just a single entity: A service can be (and hopefully will be) invoked by
many different partners—BPEL processes, Java applications, enterprise service bus intermediaries,
PL/SQL programs, and so on. The point is, of course, that they all play the same role—client—in
the exchange with the PatientDataService and are therefore all captured under the same
partnerLinkType umbrella.

partnerLink

The Partner Link types are defined outside the BPEL process in the associated WSDL file. As
stated before, they describe a type of interaction for the process. The BPEL process itself uses
Partner Link elements for every specific interaction between the process and the outside world.
A Partner Link element is an instance of one of the predefined interaction types. A partnerLink
refers to a Partner Link type.

124 Oracle SOA Suite 11g Handbook

The PatientDataProcess contains just a single partnerLink, associated with the PatientDataService
Partner Link type. The attribute myRole is set to PatientDataServiceProvider—this indicates the role
played by the BPEL process in this interaction.

<partnerLinks>
<partnerLink name="PatientDataService"
partnerLinkType="client:PatientDataService"
myRole="PatientDataServiceProvider"/>
</partnerLinks>

Combining this partnerLink with the referenced Partner Link type indicates that the BPEL
process will provide the implementation of the PatientDataService portType.

When we deploy the BPEL process, it is up to the container to bind all partnerLinks to physical
endpoints. In the case of the Oracle SOA Suite with the SCA run time, the partnerLinks will
be exposed as services (for portTypes implemented by the BPEL process) and references (for
partnerLinks identifying external services that the BPEL process needs to call). In our current case,
the client partnerLink in the PatientDataService BPEL process is exposed as a service by the
composite application PatientDataService. Whether these services and references are internal
within the composite—invoked and satisfied by other service components—or whether they are
exposed at the composite level depends on the wiring inside the composite.

Receive and Reply Activities

The Receive activity is present in most BPEL processes, usually at the very beginning. Sometimes it
is used to receive in-flight messages or events in already-running BPEL instances. It is the activity
that receives a request from a partnerLink and in doing so can start a new BPEL process instance.
Receive activities correspond with operations in the portType in the WSDL of the BPEL component.

In our example, the Receive maps to the process operation; a new instance of the
PatientDataService process is created whenever the Receive activity starts handling a new request.
This is specified through the createlnstance attribute on the Receive element. The Receive activity is
associated with the partnerLink from which it will receive a request message. Here, that is the client
partnerLink. The Receive specifies a BPEL process variable that will be populated with the incoming
request message. In this example, the request message is assigned to the inputVariable, which as we
have seen before, is based on the PatientDataServiceRequestMessage message.

Although the associated partnerLink should be enough to tie the Receive to a specific
portType—and indeed the portType attribute is optional—we still need to specify which operation
in the portType is linked to this activity. In this case, it is the process operation for which requests
are to be picked up by this Receive activity:

<receive name="receiveInput" partnerLink="PatientDataService"
portType="client:PatientDataService" operation="process"
variable="inputVariable" createlnstance="yes"/>

When a BPEL process implements a synchronous operation—one with an output as well as
an input, such as the process operation in our example—it needs to contain a Reply activity to
complete the synchronous communication that started with the Receive and send the response
message to the party calling the service:

<reply name="replyOutput" partnerLink="PatientDataService"
portType="client:PatientDataService" operation="process"
variable="outputVariable"/>

Chapter5: First Steps with BPEL and the Database Adapter 125

NOTE
m This is not an offline callback as with an asynchronous service;
! instead, it is just the online synchronous reply.

The Assign Activity and BPEL Variables

In between the Receive and Reply activities, the least interesting step takes place: the Assign.
Although especially not noteworthy in this example, the Assign activity is one of the most
frequently encountered BPEL process steps. Its task, as its name suggests, is to assign values (to
variables or partnerLinks). In that sense, you can regard it like the = operator in Java or the :=
operator in PL/SQL. That should give you an understanding of how important it is.

To extract values from variables, the Assign activity uses XPath expressions. The Assign
activity not only uses XPath for retrieving values; it also uses XPath operands and functions to
manipulate these values and write them to a specific location in an XML target.

In this example, the literal string value ‘John Doe’ is assigned to the outputVariable. To be
more specific: The outputVariable is based on the PatientDataServiceResponseMessage, which
has one part (called payload) that is based on the PatientDataServiceProcessResponse element in
the XSD file. This element is based on a complexType with one child element: result.

The variable definition in the BPEL process is as follows:

<variable name="outputVariable"
messageType="client:PatientDataServiceResponseMessage"/>

Here’s the message definition in the WSDL document:

<message name="PatientDataServiceResponseMessage'>
<part name="payload" element="client:processResponse"/>
</message>

And, finally, here’s the underlying element definition in the XSD document:

<element name="processResponse'"s>
<complexTypes>
<sequence>
<element name="result" type="string"/>
</sequence>
</complexType>
</element>

The “to” element in the following Assign activity specifies that the value ‘John Doe’ is assigned
to the “result” child element under the PatientDataServiceProcessResponse root element in the
“payload” part of the outputVariable:

<assign name="Assign 1">
<copy>
<from expression="’'John Doe’"/>
<to variable="outputVariable" part="payload"
query="/client:PatientDataServiceProcessResponse/client:result"/>
</copy>
</assign>

126 Oracle SOA Suite 11g Handbook

In general, the “from” element in an Assign activity can contain a BPEL variable or a partnerLink
(a special type of variable), an XML fragment, or an XPath expression. Inside the XPath expression
there can be references to multiple BPEL variables as well as literals and XPath functions, of
which there are dozens. The “to” expression can contain a BPEL variable or partnerLink. Note
that when either the to or from element refers to a variable, the element can also contain a “part”
attribute to refer to the message part as well as a “query” attribute that contains an XPath query into
the XSD type on which the message part is based.

To make our life easier, Oracle has defined a number of extensions to the Assign activity as it is
specified in the BPEL standard. These extensions are implemented using the built-in BPEL extension
framework that is part of the standard. The added “append” operation, for example, can be used
to append the contents of a variable or XML fragment—which can be a list of nodes or a complex
XML fragment—to another variable. Other extensions are copyList, insertBefore, insertAfter, and
rename.

The logic that is now implemented in the BPEL process is very simple—and very much like
any old programming language. For example, in PL/SQL, the functionality of this program would
be represented by code like this:

package PatientDataService
function process (p_input in varchar2)
return varchar2

1 result varchar2(2000) ;

begin
1 output:= 'John Doe';
return 1 output;

end;

The Assign Activity and the Use of XPath in BPEL

In the PatientDataService process, we have used the Assign activity to copy data to the output
variable using a very simple XPath expression. XPath is a query language used for retrieving data
from XML documents. XPath is a key element in XSLT, the transformation language used for
converting a certain XML input into a differently structured XML output. Appendix B provides a
little background on XPath.

To illustrate the use of XPath in BPEL processes, as well as to show a little more of what we
can do with the Assign activity, we will first make our BPEL process somewhat more interesting
by enriching the data structures we use.

Extending the Structure of the BPEL Variables

In the PatientDataService.xsd, we create the definitions for the elements PatientDataService
ProcessRequest and PatientDataServiceProcessResponse (see the wiki for the complete sources):

<schema targetNamespace="http://stmatthews.hospital.com/patient/PatientDataService"
xmlns:hospital="http://stmatthews.hospital.com/patient/PatientDataService"
xmlns="http://www.w3.0rg/2001/XMLSchema" >
<element name="PatientDataServiceProcessRequest"
type="hospital:patientIdType" />
<element name="PatientDataServiceProcessResponse"
type="hospital:patientType"/>

Chapter5: First Steps with BPEL and the Database Adapter 127

<complexType name="patientIdType">
<choice>
<element name="patientId" type="integer" minOccurs="0"/>
<sequence>
<element name="firstName" type="string" minOccurs="0"/>
<element name="lastName" type="string" minOccurs="0"/>
</sequence>
</choice>
</complexType>
<complexType name="patientType">
<sequence>
<element name="name" type="string"/>

<element ref="hospital:physicalCharacteristic" maxOccurs="unbounded"/>
</sequence>
</complexTypes>
<element name="physicalCharacteristic">
<complexType>
<sequence>
<element name="dateOfMeasurement" type="date"/>

</sequence>
</complexType>
</element>
</schema>

Next, we make a change in the PatientDataService.wsdl document—we base the payload
parts of the input and output messages on these new element definitions (instead of process and
processResponse):

<wsdl:message name="PatientDataServiceRequestMessage">

<wsdl :part name="payload" element="client:PatientDataServiceProcessRequest"/>
</wsdl :message>
<wsdl :message name="PatientDataServiceResponseMessage'>

<wsdl:part name="payload" element="client:PatientDataServiceProcessResponse"/>
</wsdl :message>

Now both the inputVariable as well as the outputVariable in our BPEL process have a more
complex structure, and can be used for more meaningful things. The inputVariable can contain a
patientld, firstName, and lastName. The latter two are used when the patientld is not known. The
outputVariable contains details about the patient and his or her physical characteristics.

Next, we add a variable called temperatureReading to the BPEL process, based on the
physicalCharacteristic element in the XSD document. We can do this in Source view, in the
<variables> element:

<variable name="temperatureReading"
element="client:physicalCharacteristic"/>

Alternatively, open the Structure window (from the View menu or using the shortcut key
combination cTrL-sHIFT-s) and then open the node Variables under Process, which is in turn
under Variables (see Figure 5-6). Click the green plus sign to open the Create Variable dialog.

128 Oracle SOA Suite 11g Handbook

o

TR u
s Famarla aiaree sl
s I P L
4 Freew
= o Pyt L=l
o Pt e Garge
4 I Vil
H i Freem Harr bempresreed ey
- — R o
L 0 et ik
- o ot i

| Corvlateon Saun L
i T Al [FRETr pay

A oy Prmess - Fabesd Dol ol e

| Proammny . L . shaw fmaptd

-
L T I Ry Vi
1 [e,

5
Ty ke
i | ey L= Lwacal |

FIGURE 5-6. Creating the BPEL variable temperatureReading based on the physicalCharacteristic
element

Specify temperatureReading as the name and select the Element radio button. Click the browse
icon to open the Type Chooser dialog. Open the Project Schema Files node and select the
physicalCharacteristic element from the PatientDataService.xsd file. Click OK in the Type
Chooser dialog and OK again in the Create Variable dialog.

Using XPath in the Assign Activity with More Complex Variables

Go back to the Assign step and remove the existing copy operation. Then create a new copy
operation to assign a value to the new variable. Figure 5-7 shows these steps. On the left side,
choose XML Fragment in the Type drop-down. Add a fragment of XML that describes the body
temperature characteristic and enter the following snippet:

I <client:physicalCharacteristic xmlns:client="http://stmatthews.hospital.com/
patient/PatientDataService">
<client:dateOfMeasurement>2010-12-28</client:dateOfMeasurements>
<client:whatWasMeasureds>body temperature</client:whatWasMeasureds>
<client :measuredValue>38.5</client :measuredvValue>
<client:unitOfMeasurement>Degrees Celsius</client:unitOfMeasurements>
</client:physicalCharacteristic>

Note how we need to include the namespace in order to correctly identify the elements in this
fragment. Without the namespace, the measuredValue element, for example, could be something
entirely different from the measuredValue element as specified in the PatientDataService XSD
document.

On the right side, specify temperatureReading as the target variable.

Add a second copy operation that will set the /PatientDataServiceProcessResponse/name
element in the payload part of the outputVariable. The value is derived from the firstName and

Chapter5: First Steps with BPEL and the Database Adapter 129

s ® al
(Gmraedl | D pnee |l Shig Cerdbe | U ey |
L
Bras L] il Comp g 3 v
£ B e d f Primes
SRR

o LE) Tt e

& Inlipepe
4§ de e ab b
0 e M et
[

=i
b |
-
EHL Pl 2% v
P ETT T T e I g P
nlemrresc Bkl s it o lsvoyt bl s s v il mwii vl v o o P
CEAR 1. kit P Dl o - £ - 2 £ 2 L £ i 0 o v 1 & R:Wﬂ
Pliemi ol baky b rlirw : H_;""'C- = e
B L LT or LG ST DT R A POy PN e T
L e e——— Y TR PR T T 1) Tpra— T
i ppELCalCharectariniic B
e —— .
Gl T M rend

[e St e it
|

l:ntJ i |t

FIGURE 5-7. Copying an XML fragment to a BPEL variable using an Assign/Copy operation

lastName elements in the inputVariable. We will use the XPath concat function to join these
two together.

Select Expression on the “from” end of the Assign/Copy and click the icon for the (XPath)
Expression Builder. This Expression Builder supports constructing XPath expressions from literals,
(nodes in) BPEL variables, and XPath functions, including the Oracle BPEL XPath extensions.
Select the concat function from the functions list after first selecting the String Functions category.
Then click Insert Into Expression. Position the cursor inside the parentheses and select the
PatientDataServiceProcessRequest/firstName element in the payload part of the inputVariable.
Click the Insert button again.

The following function is added to the expression:

B bpws:getVariableData (BPEL variable [,part name [,location path]])

This is one of the most important XPath extension functions you will use in BPEL processes.
Its task is to extract a value from a BPEL variable. When using this function, you specify the
variable from which you want to extract a value and, optionally, depending on the structure of
the variable, a part and (possibly) a location path to a specific node in that part.

In this case, we want to extract the firstName element under the
PatientDataServiceProcessRequest root in the payload part of the inputVariable by using
getVariableData(), like this:

B bpws :getVariableData ('inputVariable'
, 'payload', '/client:PatientDataServiceProcessRequest/client:firstName)

130 Oracle SOA Suite 11g Handbook

s ® S |
&m0
oo e b | R |
AT 4 o P AL o e s
¥ i s 'i'
. o T — |
& [y ee— 'ﬁ'
rdert e i - g P riratam.
: S ey ~— -
w e P | 5 3
O Yk 1§ 1
S L rd Pl 5 e e e
g
" © ey e e m g L 1=
P p— T e
i g Dvvi e kel i i
| 5 it i
TR B ek
v Frroen g
e a
e ey v, g
Foarmie, s b e v T, e
T e & s
8 [meded ki o fulrpeamad || il el
e e g [i
= T B s e
=8
e
o

o0 D
B 00 B i T e ol
i L L i

FIGURE 5-8. Using the XPath Expression Builder to construct the XPath expression for a Copy
operation in an Assign step

Type,’” 4, in the expression editor to add a space between the first and last name. Then insert
the lastName element into the expression, as shown in Figure 5-8.
The complete XPath expression now reads as follows:

I concat
(bpws:getVariableData ('inputVariable'
, 'payload','/client:PatientDataServiceProcessRequest/firstName')

[
’

,bpws:getVariableData ('inputVariable'
,' payload', '/client:PatientDataServiceProcessRequest/lastName')

)

On the right side, specify the name element in the PatientDataServiceProcessResponse in the
payload part of the outputVariable as the target for the Copy operation.

Finally, create a new append operation in the same Assign activity, which takes the
physicalCharacteristic element in the temperatureReading variable and appends it to the child
node list in the PatientDataServiceProcessResponse element in the outputVariable’s payload part
(see Figure 5-9).

NOTE
“ Through “append” we can inject XML nodes into variables that
2 already contain XML data; the Copy operation does not allow this.
Other fine-grained XML manipulation in Assign activities can be done

with operations such as insertBefore, insertAfter, remove, rename, and
copylist.

Chapter5: First Steps with BPEL and the Database Adapter 131

A B Dagreerd

@ s ey b or o mey
B e o Becerd Bern Clpeaions Ay b rana
o O b, RO W T .+ beksed e 10 v ok Dipoien, v) [T o wadml
I P e e A el
T . | o bl
ki & i e o Fap oy
L 4| W i b B by
e o | e
: M] | e T B Ty o e T e N [T T T 1T]

Lty A

FIGURE 5-9. In the Assign activity, appending the contents of one BPEL variable to a node in
another variable

Here it is in plain BPEL code:

"l <bpelx:append>

<bpelx:from variable="temperatureReading"
query="/client:physicalCharacteristic"/>
<bpelx:to variable="outputVariable" part="payload"
query="/client:PatientDataServiceProcessResponse" />
</bpelx:append>

Deploying and Running the SOA Composite Application

When we deploy the modified composite application in the same way as described in Chapter 3
and in this chapter’s online complement and invoke it in the Test Web Service page, the answer
we receive for a request with the firstName and lastName set contains the
PatientDataServiceProcessResponse with a physicalCharacteristic (bodyTemperature) included.

We see the effect of the various operations in the Assign activity that created the
temperatureReading variable based on the XML snippet, appended the entire variable content to
the PatientDataServiceProcessResponse in the outputVariable, and copied the concatenation of the
firstName, a space separator, and the lastName from the inputVariable to the name element in the
outputVariable. This gives us some idea what XPath and the Append activity can accomplish in
manipulating BPEL variables—a combination we will often rely on.

However, it also shows the verbosity and complexity of using the Assign activity. Apparently
simple operations may not be all that simple through an Assign. When we want to initialize a
complex variable, it may be easier to use the Transform activity. This activity uses an XSLT
stylesheet—see Appendix B for some background on XSLT—to produce the XML content of the
target variable based on a source.

132 Oracle SOA Suite 11g Handbook

XPath in BPEL

In addition to the XPath functions concat and getVariableData, which we just used, we have a
huge library of functions at our disposal for constructing XPath expressions in BPEL and other
components of the SOA Suite. These include functions for string and date/time conversion and
manipulation (including making the current date and time available), XML manipulation
(including transformation with XSLT or XQuery), and parsing of a string value to a DOM node.
Other XPath functions support interaction with files, LDAP directories, and even a database
directly—although you may wonder whether it would be such a good idea in terms of decoupling
to directly access such external systems. If all that is not enough, you can extend the XPath
functionality of your SOA Suite instance with custom functions that you implement in Java.

Breaking the Contract
What you may have noticed in the preceding steps is that we changed the interface of the service
quite substantially: Both the input message and the output message are very different from the
previous incarnation of the service. Yet, we did not need to change the most explicit part of
the service contract—the WSDL document. All the changes were in the XSD that describes the
structures of all messages exchanged with the PatientDataService. By changing the XSD, we can
easily invalidate all current clients of the service—clearly not an action that will make us many
friends. It is important to realize that changing an XSD may break clients using our functions.

In such conditions, it is usually a better approach to publish a new version of the service and
leave the old version running during a certain grace period in which clients can move to the new
version. More on this in Chapter 17.

The PatientDataService as SCA Composite Application

The SOA Suite is about much more than just BPEL processes and the BPEL service engine. It
is about composite applications that expose services and possibly references—dependencies
on external services that are to be provided to the composite—and that can easily be
composed into more complex and functionally richer composites. In this section we may
have focused on the BPEL process, but what we have developed is in fact an SCA composite
application, albeit a simple one. The composite application contains a single service
component—the BPEL process—that exposes a single service.

From the outside, the service interface of this composite is the Web Service that is wired
to the BPEL component in the SCA composite. Clients do not interact directly with the BPEL
process—in fact, they have no knowledge about the implementation of the service offered
by the composite application, nor do they need that knowledge. It would not impact any
consumers of the application’s service if we exchange the BPEL component for a service
component that implements the same service in a different implementation language—
Mediator, Java, and so on—running in another service engine.

The content of the composite.xml file describes how the composite application
PatientDataService exposes a SOAP Web Service called “client” with a port called
PatientDataService_pt that is described by the PatientDataService portType in the
PatientDataService.wsdl. Every SOA composite has one, and only one, composite.xml
file describing the general structure of the composite. Chapter 14 explains SCA and the
structure of the composite.xml file in more detail. The chapter complement on the wiki
discusses the details of the PatientDataService composite application.

Chapter5: First Steps with BPEL and the Database Adapter 133

Implementing PatientDataService as an Asynchronous Service

The BPEL process PatientDataService is implemented as a synchronous process. Given the
current functionality in the process, that is a logical choice. However, many processes will
be asynchronous, for example, because they include potentially long-running actions, calls
to asynchronous services, or human tasks. We will now briefly discuss what would change
in the BPEL process itself, the WSDL, and the SCA configuration if PatientDataService were
to go asynchronous.

In order to receive the response from an asynchronous service, the partner that calls the
service must provide a callback interface: a service implemented by the partner that the
BPEL process can send the response to. This is reflected in the partnerLinkType definition in
the WSDL document:

<plnk:partnerLinkType name="PatientDataService"s>

<plnk:role name="PatientDataServiceProvider">
<plnk:portType name="client:PatientDataService"/>

</plnk:role>
<plnk:role name="PatientDataServiceRequester">
<plnk:portType name="client:PatientDataServiceCallback"/>
</plnk:role>

</plnk:partnerLinkType>

In addition to the role PatientDataServiceProvider—which we already had in the
synchronous case—we now have the role PatientDataServiceRequester that refers to the
partner calling to the asynchronous service. This role is associated with a new portType in
the WSDL—an abstract functional interface that is also added now that the service has
become asynchronous. This portType describes the interface to be provided by the partner
in order to receive the service response:

<portType name="PatientDataServiceCallback">
<operation name="onResult"s>
<input message="client:PatientDataServiceResponseMessage"/>
</operation>
</portType>

Note that there has also been a change in the original portType PatientDataService.
Before in the synchronous situation, it had both an input and an output; in the
asynchronous case, it no longer has an output. The output is now returned via the callback
to the PatientDataServiceCallback portType.

For the BPEL process, not much changes. Synchronously, the process concludes with an
“online” Reply to the partnerLink that started the “conversation” with the initial request
picked up by the Receive step. In an asynchronous process, we cannot reply because the
partner is no longer online. Instead, we have to make a call to the callback service that the
partner has made available. Making a call to a partnerLink—when it is not a synchronous
Reply—is done through the Invoke activity, just like any other normal service call:

<invoke name="callbackClient" partnerLink="PatientDataService"
portType="client:PatientDataServiceCallback"
operation="onResult" inputVariable="outputVariable"/>

(Continued)

134

Oracle SOA Suite 11g Handbook

The Invoke step specifies the partnerLink—which is the same PatientDataService that
we used for the Reply because we are still conducting communications with the same
partner in the same context as before—and therefore we use the same Partner Link type.
Only this time the portType is different from the Reply in the synchronous case: We call the
operation onResult on the callback portType PatientDataServiceCallback, published by the
partner. Note that it is up to the BPEL and SCA run time to determine where the physical
location (endpoint) is for that callback service. Usually they leverage the WS-Addressing
information found in the service request as sent by the partner.

Accessing the Database from a BPEL Process

Even though we have implemented a perfectly valid BPEL process, it will not necessarily make
anybody happy. At St. Matthews, the PatientDataService is supposed to facilitate people such as
Margaret by making real patient data available—data that is currently stored somewhere deep
down in the database Frank’s team controls. In order for this BPEL process to implement the
service for real, it will need access to that database. In this section, we will first see how we can
use the database adapter to configure a service that accesses Frank’s database. Then we will have
the BPEL process call this database service to retrieve real patient data.

The database adapter in SOA Suite 11g helps to expose data and operations from relational
databases in a service-compliant fashion. The database adapter connects to any relational
database using JDBC. Other adapters are available for nonrelational databases and mainframe
systems. The database adapter uses Oracle TopLink 11g for database interactions, itself based on
the Oracle-sponsored open-source project Eclipselink, an advanced Java Persistence framework
for relational-to-object mapping.

The database adapter allows us to declaratively configure services to interact with a database
for virtually any operation you may need: data manipulation (Insert, Update, Delete, Merge), data
retrieval (Select, Query by Example, Poll for new or changed records), and stored procedure calls
with simple and complex parameters (possibly based on user-defined database types). These
services are published as Web Services with their own WSDL and XSD files, and are treated by
the BPEL process like any other external service or partner link that is invoked.

We will create two database adapter services for use in the PatientDataService process. One
is to select the patient ID from the PATIENTS table, based on the first name and last name in the
request for a situation where the patient ID is not known. The second service will call the Patient_
Data_Service APl—a PL/SQL package created by Frank and his team—to retrieve different types
of patient records. We will invoke a function in this package that takes the patient identifier as
input and returns a complex database object type with information on the patient, his physical
characteristics, and hospital visits.

A Simple Select Service to Retrieve the Patient Identifier

Let’s start our introduction of the database adapter with a simple select against a single table.
(Obviously in the real world, Frank would never allow this direct prying into his database. We
only want to show how a Select service is created in the SOA Suite. To that same effect, we
naively pretend that patients are uniquely identified by the combination of their first name and

Chapter5: First Steps with BPEL and the Database Adapter 135

last name.) Suppose the database with all the patient data we are interested in has a table called
PATIENTS. This table has, among many others, the columns ID, FIRST_NAME, and LAST_NAME
(the wiki contains the SQL script to create this table). We need a service to find us the value of
the ID of the patient for whom we have the first name and last name.

In the composite editor for PatientDataService, we drag a Database Service Adapter from the
SOA Component Palette and drop it in the External References swimlane, as shown in Figure 5-10.

The Database Adapter Configuration Wizard appears so we can configure this service (see
Figure 5-11). Enter RetrievePatientldentifier as the service name. On the next page, select the
database connection to use in the development environment. When we deploy the service, we will
configure an instance resource adapter connection factory and a data source on the application
server to use instead of these hard-coded connection details. By providing a value for the location
field, we determine the JNDI name of the database adapter connection factory on the application
server this service will hook up with: eis/DB/FranksPatientDatabase.

NOTE
m We assume here a database connection called PatientsDatabase has
1

already been created to Frank’s database schema with the PATIENTS
table and the API. See Appendix C for details on creating a database
connection in JDeveloper, as well as configuring the database
resource adapter, a connection factory, and the associated data source
on the WeblLogic Server.

= B =—rre

FFRLEERD BANATD Corgosts: PaieviielaSardce || 35

I Eprace] Servican CompreTi e I=imnal Helar snces

| Cpan 3
e 5 Fofa

Service bl
Entxe g Jovsion Fera
Sprvee Typn Dodabanie Bdapior

S My Bl | il

-

FIGURE 5-10. Adding a Database Adapter Service in the composite application

136 Oracle SOA Suite 11g Handbook

& Adapter Configuration Wizard - Step 3 of 4 =

Service Connection

& Database Connection is required o configure this adapter. Select a database conmection already defined in your
project or create a Mew Conneckion.

Connection: [FranksF‘atientDatabase V] 9 F Q
User Mame: frank.
Drriver: oracle,jdbc, OracleDriver

Connect String: jdbcioracle:thin:@localhost: 1521 orcl

Specify the JMDI name For the database, Mote: The deployment descriptor of the Database adapter must associate
this JMDI name with configuration properties required by the adapter to access the database,

JMDT Mame; |eis,l'DB,I'FranksPatientDatabase |

I = Back IH_ﬂext:s || Firiish |I Cancel ‘,s

FIGURE 5-11. Specifying the connection details for the Database Adapter Service

Next, we specify the database operation this service will provide. We need to perform a
query against a table, so we choose the Select operation (see Figure 5-12). We could have picked
Query by Example; however, that operation is used when a varying set of search criteria is used.
Because we know that the service we want to add right now will always query by first name and
last name, we do not want to bear the additional performance penalty for that flexibility.

& Adapter Configuration Wizard - Step 4 of 5

Operation Type

Select the Operation Type and click Mext to continue defining the operation,

Operation Type: () Call a Stored Procedure or Function
(=) Perfarm an Operation an a Table
[l i B o)
[] Insert Only
[] Update only
[] Delete
Select
[] Query By Example
() Pall Far Mew ar Changed Records in a Table
() Execute Pure SGL

hronous Posk to

EL (Allowss Tn-Crder Delivery)

| <Back || Mext > I| Firisl

|| Cancel Lz

FIGURE 5-12. Selecting the operation type in the Database Adapter Service Configuration Wizard

Chapter5: First Steps with BPEL and the Database Adapter 137

In the next step—Select Table—we select the PATIENTS table. We can then specify
Relationships—for the case when we have multiple tables we want to join together, or a table
with self-referencing relationships. We ignore this step for now. In the Attribute Filtering step we
can deselect the attributes we do not need queried from the database. By excluding information
we do not need, we lower the load on both the database, network, and the SOA Suite run time.
In this case, we are only interested in the 1D, so we deselect the other attributes, except for the
first_name and last_name attributes that are needed in the where clause for this query.

On the Define Selection Criteria page, shown in Figure 5-13, we create two parameters:
firstName and lastName. These parameters will determine the structure of the request message
type that is the input for this service.

Using the Query Expression Builder we create the where clause for the query against the
PATIENTS table:

I WHERE ((UPPER (FIRST NAME) = UPPER (#firstName))

AND (UPPER(LAST NAME) = UPPER (#lastName)))

Note that the parameters are identified using the # character in the where clause.

& Adapd e D esdgid ated Wirand - Soeg ol 18
Drefine Solection Criteris

i o oo ela e B SELEST duiry o this v e D (piapnc ol Koo
e evpeiiiy ek the B, b, T g i dme e Selet 501, e
g, : h

LT E TR ST
b b

e SELEET I, PIBST_MAME, LAcT_RAPE, MR Tri_DATE, GIADOR, SO08LSE, [‘
PRI ADDEDEE, CTTY, TPCGiE, “SIATE", TELRHOMEALER, TN
5 _PeRin i £

- Lroke o [0 & Toph ink [aaeestian

e Lk thes Dpraadion Bildes s rass o medip Noplink sopessonds for qusrss
pe o]
2 larFhmra UL [GMORE: CAZE bnffiers ,_AElote)

T
P Becgprme: P Tooored fapurand
EW-I. R AR i 'l L] Lpardd

iy

Ty Ky (3] B e
[] | (T

FIGURE 5-13. The TopLink Expression Builder for specifying the query selection criteria

138 Oracle SOA Suite 11g Handbook

We can skip the Advanced Options page and leave the defaults for now. On the last page,
click the Finish button. The Database Adapter Service is now created. This means that a number
of artifacts is generated by JDeveloper:

B RetrievePatientldentifier.wsdl Contains the functional interface for the Database
Adapter Service with a portType that includes a RetrievePatientldentifierSelect operation,
message definitions, and an import of the XSD.

B RetrievePatientldentifier_table.xsd Contains the element definitions for the request
and response messages. Note that we will have to deal with these structures in the BPEL
process that invokes this service.

B RetrievePatientldentifier-or-mappings.xml and RetrievePatientldentifier-ox-mappings.
xml The TopLink mapping files that specify how relational tables are mapped to Java
objects and those, in turn, to XML types. The records read from the database tables
have to be turned into XML data structures that the service consumers such as the BPEL
process expect, according to the XSD. TopLink is used to query the database; TopLink
maps relational data to Java objects using the mapping instructions in the or-mappings.
xml file. These Java objects are then converted to XML structures following the Object-
to-XML (ox) mapping definition specified in the ox-mappings.xml file.

In addition to these new files, the composite.xml file is updated: A reference element is
added—a service that can be injected (wired) as a reference into other components.

Wiring the Database Adapter Service to the BPEL Component

In the composite editor, we can now wire this new RetrievePatientldentifier reference to the BPEL
process to make it available as a partnerLink that can be invoked. Drag a wire from the reference
to the component, as shown in Figure 5-14.

S E
FFhaaaXD | Y ddFe gt AR LI BV
Erpased Sereces CoarEmEnl s Exieinal Nefemereas i
|- o5 Paticaiitataseraoe
o | ®EL Preacsom
= Fabenbla sereEn
= | Sevares
s Pt e Dl i
= |_J Felermrcan
Eji Ririviesvedatiaatllentiles
i | Teok Sudes
= L Sarsm
e (il Paberhbuk sk e o _ip
?E_: B Ad ooy
PablaifiseaSa. 'ﬁ“ﬂll’l’””h‘lr
" (i

o i,

FIGURE 5-14. Wiring the RetrievePatientldentifier reference to the PatientDataService
component

Chapter5: First Steps with BPEL and the Database Adapter 139

That in turn makes the RetrievePatientldentifier partnerLink available in the BPEL process:

B <partnerLink name="RetrievePatientIdentifier"
partnerRole="RetrievePatientIdentifier role"
partnerLinkType="nsl:RetrievePatientIdentifier plt"/>

The partnerLinkType in this case is specified in the RetrievePatientldentifier.wsdl:

| <plt:partnerLinkType name="RetrievePatientIdentifier plt"s>
<plt:role name="RetrievePatientIdentifier role">
<plt:portType name="tns:RetrievePatientIdentifier ptt"/>
</plt:role>
</plt:partnerLinkTypes>

In order to call the RetrievePatientldentifier service, we only need to add an Invoke activity in
the BPEL process that accesses the RetrievePatientldentifier partnerLink.

Extending the PatientDataService BPEL Process Using the
RetrievePatientldentifier Service

We are now all set to leverage this new RetrievePatientldentifier service in the BPEL
process. However, the process does not always need to call the service: Sometimes the
PatientDataServiceProcessRequest will already contain the patient identifier. Only when it
does not should we invoke RetrievePatientldentifier. Time to add a little process logic! That
gives us a good opportunity to introduce another important BPEL activity: Switch.

The Switch activity—not surprisingly somewhat akin to the Java switch statement and also
similar to the PL/SQL case statement—is used for making choices in the flow of the process.
Which of the paths should be taken? The switch contains one or (usually) more mutually
exclusive branches, only one of which can be executed. Each branch (except the otherwise
branch) has a case condition associated with it, and only when the Boolean XPath expression in
the condition evaluates to true is the branch executed. Only one branch can be executed—the
first branch in the switch whose condition is satisfied.

In our case, we want to invoke the RetrievePatientldentifier service when the inputVariable
does not contain a patient identifier. To achieve that, we add a Switch activity and set the
condition for the first branch to test for the presence of the patient identifier:

I count (ora:getNodes

('inputVariable'

, 'payload’
'/client:PatientDataServiceProcessRequest/patientId’

)
)=0
or
bpws:getVariableData ('inputVariable', 'payload’
,'/client:PatientDataServiceProcessRequest/patientId') = '

Add an Invoke activity in the first branch (the branch that is executed when the request
does not contain the patient identifier). We connect this Invoke with the RetrievePatient
Identifier partnerLink. In the Invoke dialog that appears, we can specify the name for the

140 Oracle SOA Suite 11g Handbook

[- Ei =
-l g .- e |l [1R A
& Cartagr ik [.] I
::I | ikl L)
|7 o

= 1 w L3 P L
" — — o b)) Vel e

Srvain i

r' - -l:_-| B]
= T rel e - et i i ol
kulijal B raver, Byt weerlvrrien
-] (maate | P e e L]
F e S Py
.5:- HEd e] et e TR T T e Y
rr—r——— ol i g | g P il = | = LA
P i ok Mroee v e
e 2 i il e e et
= =
- Tt e e i
fruia ke Al
el A B e . o

® et T e +

g [TETHE R S S P Ty
irama e Ererrriuieirife_fetreeFaies

[E=S e R e e e el e
e,

B e S - i —arabin ol Skl
- = a]
By 23 e [=][cwcrg
il [

FIGURE 5-15. Adding an Invoke activity to the first branch of the Switch

Invoke—Invoke_RetrievePatientldentifier—and the variables to use for input and output. By
clicking the green plus icon, we have JDeveloper conveniently create new variables of the
correct message types as specified in the RetrievePatientldentifier WSDL. Choose local rather
than global as the scope for these variables (see Figure 5-15).

The configuration of the input variables and the call to the partner link have now been taken
care of. What to do with the outcome of the call? JDeveloper has created the BPEL variable
Invoke_RetrievePatientldentifier_RetrievePatientldentifierSelect_OutputVariable based on the
PatientsCollection_msg message type defined in the RetrievePatientldentifier.wsdl. This variable is
populated during the Invoke activity with the query results. However, we want to have the value
of the patient identifier available in a global variable throughout the BPEL process—one with
a proper name at that. Therefore, create a new BPEL variable called patientldentifier of type
xsd:integer. Then add another Assign activity, immediately following the Invoke activity, to copy
the value of the patient identifier from this generated variable to the global BPEL process variable
patientldentifier. Remember, the condition for this branch checked that the patientld element was
initially empty. Figure 5-16 demonstrates how the Assign activity is added and how it is configured
with a single copy operation.

The PatientsCollection element in the generated XSD file RetrievePatientldentifier_table.xsd
on which the PatientsCollection_msg is based is defined as a collection of one or more Patients
elements. We assume for simplicity’s sake that the query will either return a single record or none
at all, so the collection will never have more than one element. In the XPath expression we use to
extract the value of the id element from the Patients element, we do not need to include the array
index because we will get the first element in the array even if we leave it out. However, | do
consider it good practice to explicitly include the index in the array:

I | /ns5:PatientsCollection/ns5:Patients[1]/ns5:id

Chapter5: First Steps with BPEL and the Database Adapter 141

£ =l
L. (e e (F500 ®
a4 i =
ah |= FF e Py
h * BPEL éetities and Cony
@ | T
ot e x|
'H
T
® =
MRl el e e
- 1 ¥ ¥
— : J | b Sy 1T e (8 o vl ' | i e
deo e Pustatvebaare il) e et rvte (] Tromsder Webyimochdird vl
A = [Pacebress st fel
E = el i T
= el e
% i
B D el dretia
Tresb_H sty i O rad dued Harsy
’ i 5 i ¥
3 - ;.F L] S st e il L] S st e i
EPatk: | inad: Feciencalellactionfral: Facianes| L] fmadsid E'ﬂ‘lr]
L]
T [[][]
22 L

FIGURE 5-16. Copying the patient identifier returned from the service call

The square brackets with the index have to be typed in manually in the Copy operation editor
because there is no visual declarative support for it.

NOTE
- An even better practice would be to explicitly communicate the
i number of elements required (consumer) or returned (provider) in the

service interface. Alternatively, the BPEL process should explicitly
check for the number of elements returned before starting to access
them—Dbecause now we may run into exceptions for accessing
nonexisting nodes.

In the “otherwise” branch of the Switch activity, we need to include an Assign activity that
sets the patientldentifier variable based on the value in the inputVariable. Add an Assign activity
to the otherwise branch. Specify a Copy operation that takes the value from the patientld element
in the PatientDataServiceProcessRequest node in the inputVariable and copies it to the variable
patientldentifier.

At this point in the BPEL process, we know we have a patient identifier—either from the
RetrievePatientldentifier service or received in the original request message. It is time to call upon
the database to make the patient data available to us. We will first need to create another Database
Adapter Service and then invoke it from the BPEL process.

142 Oracle SOA Suite 11g Handbook

Creating the RetrievePatientRecord Database Service

Several years ago, Frank’s team started work on a PL/SQL-based API for making patient records
available. Before that time, other departments came into the database through database links,
ODBC, and JDBC connections from all over the place, and performed queries directly against the
tables. This became an undesirable situation, for several reasons. For example, data-authorization
rules were hard to enforce, but even more importantly, changes to the table layout were virtually
impossible because of all the direct dependencies.

The RetrievePatientRecord database adapter service Frank is about to publish will be based
on this PL/SQL API. The function GET_PATIENT_RECORD in the package PATIENT_DATA_
SERVICES takes patient id (a number) as input and returns an object type: PATIENT_T. This is a
complex type that includes a table of PHYSICALCHARACTERISTIC objects, based on the
PHYSICALCHARACTERISTIC_T type. The database adapter can work quite well with such types;
in fact, it is probably the easiest way of returning nested data structures with data from multiple
records and several tables in a single roundtrip.

To create the Database Adapter Service, we go to the composite editor and drag a Database
Adapter component from the palette to the External References swimlane. Then we specify the
name—RetrievePatientRecord—and set the database connection and the JNDI location of the
Database Adapter instance in the same way as for the previous Database Adapter Service.

Then, on the next page, we select the Call a Stored Procedure or Function operation type.
Click Next. In the next step, we select the get_patient_record procedure (see Figure 5-17).
Continue to the end of the wizard—accepting all the defaults—and then click Finish.

At this point, JDeveloper generates more or less the same bunch of files as before: WSDL,
XSD, and JCA configuration. The XSD file contains the representation of the PATIENT_T type.

In the composite editor, we need to wire the new RetrievePatientRecord service to the
PatientDataService component, as shown in Figure 5-18.

Just like we have seen before, the wire adds this partnerLink in the BPEL process that now
allows us to add an Invoke step in the BPEL process to the RetrievePatientRecord service. Create
an Invoke activity immediately after the Switch activity. Have the variables generated for this
Invoke, just like before. Add an Assign step just before the Invoke activity to copy the value of the
variable patientldentifier to the input variable used in the Invoke step.

e athon Tapes

-\.hdﬂlrbhl =L e e A O T |

Arencily Siored Procedre

Ldi o e P’ i,
F O s i T T e e [-3]
el . B 1 g, O Dl 0RO AT, ik D b Ecvil el B O T Dcileg, Tl
. ik "
e R Ty — =
[T T T Ty e——— Froclue. PETENT [WFd SRWAELGET PETERT BDCOE] | | i
LemvadnFers B3 o .
A Tris [Fomdem
FRTEnT (o L
= PRSI HEmIE H 1
Lt wpe | Hee | =1

FIGURE 5-17. Selecting the get_patient_record function in the Patient_Data_Service package

Chapter5: First Steps with BPEL and the Database Adapter 143

& d | e Dakatar e gl =
FFROBRD AT IFD Cowprsie PalieniaSendce

i
= E ratmaDelaser e
=123 96, Procestes
= Ju PalientDatatmrvice
- e
4 ek Dk b e
=] Fafwrerean

Iy Retrieefothent | dentibies
[Batiiavabatatfecaid

H] Tani Sum
S
0y PatiemtDakagmrvice g
= | Ambwranca
= [i etHevePationt] feniifier
FatemiDaia5e. . AstrinvafatmatAnoard
" Lpmra o
—

FIGURE 5-18. External reference RetrievePatientRecord wired to the PatientDataService
component

Invoking the RetrievePatientRecord service returns a fairly complex XML document. The data
from this document should be copied into the outputVariable that populates the response message.
We can do so using the Assign activity. However, that would require a substantial number of
operations and a lot of work to put together. As an alternative to such a complex Assign step, we
can use a Transform activity that leverages XSLT to map one XML document to another, processing
many nodes at once rather than assigning them individually.

Drag the Transform activity to the composite editor and drop it after the Invoke of the
RetrievePatientRecord partnerLink, as shown in Figure 5-19. Then enter RetrievePatientData
RecordOutput2OutputVariable.xsl as the name for the Mapper file. Select the OutputParameters
part of the Invoke_RetrievePatientRecord_RetrievePatientRecord_OutputVariable as the source for
the transformation. Set the payload part of the outputVariable as the target. Click the Apply button
to save the changes and bring up the Mapper file editor.

The Mapper editor provides a visual way of editing an XSLT stylesheet that transforms one
XML document into another. See Appendix B for some background on XSLT, an XML language
for transformations of XML.

On the left (source) side, you see the structure of the patient data record that is returned by the
RetrievePatientDataRecord service. On the right is the XSD structure of the outputVariable. The
mapping (and therefore the XSLT transformation) is created by connecting nodes from the source
with the corresponding nodes in the target. Connect the nodes for initials, gender, and birth date.

The target has a name node, whereas the source offers a first name and a last name node. We
will use a function to combine the two input nodes to a single destination node, as illustrated in
Figure 5-20. Drag the concat function from the String Functions section on the Component Palette to
the center section of the mapping editor. Connect its output to the name node in the target. Connect
both the first name and last name node in the source to the input of the concat function. Double-
click the concat function to edit its parameters. Click the Add button and add a parameter with the
static value * (a space between single quotation marks). Click OK to close the concat editor.

144 Oracle SOA Suite 11g Handbook

-JH

[[[o]|

FIGURE 5-19. Adding a Transform activity to the BPEL process to populate the outputVariable
with the patient data record

|fmnmu“-uuamm_m_mm:mn_“
' Mot LB
Hiln (] ik GET _RETIENT BEC LENT HiNT
| o Dot e A Rk T R s " BECERL/da] prer—
[T ——
[iam af iz ciring |]
M [ODOEN FNLg] A5 FEDg. BIAET AN e,) J
| [T | | [T |
o

FIGURE 5-20. Mapping the PatientDataRecord to the outputVariable

Chapter5: First Steps with BPEL and the Database Adapter 145

"'-1 R S T | TR i e 1= HflCenposal Pabitts u
< TRAM PATICNT BaTA SRADTS GIT BATICHT BIOOAS s | WELT By Mot e ral | Cormra
(o S | e (B0
o o L e dant - -
- BT _PATIEHT DAL sl | T o b Comyrmnn Farahorg
B s 1 ikl 0 b Ui Fanony

B e EET e
Bl i
B b B EET D
B b B

b Bl i COADG |
v b q:u_-:m THINIES

i b Lol P bos
wila b Pl o

] B AAST Pl 1 o g b i
Bl T D | J CE=a#o
o Bl o 1 Sproshymcsurschen i W &
| ot e e a1
: o e ed 0
[Poasaedioden 1
| B P e ot Bl

ok B 5 |
T el P AT A
gl v
P mbcaaatd m
masprandope 1
- TR, A ACTIN I TR o i e i
B s al
T Pl e AT N B BT
b B P A A |
-l (MR S B I ALE |

a1 e e PITORSE R R AT —————— -

-

FIGURE 5-21. Configuring the mapping of the collection of physical characteristic items

In order to properly transform all physical characteristic items, we have to drag the for-each
construct from the XSLT Constructs section in the Component Palette to the physicalCharacteristic
node in the target. Next, we connect the db:PHYSICAL_CHARACTERISTIC_ITEM node in the
source to the for-each node that was just added to the target. Finally, we connect the child nodes
under db:PHYSICAL_CHARACTERISTIC_ITEM to the corresponding nodes in the target tree under
client:physicalCharacteristic. These steps are illustrated in Figure 5-21.

This completes the mapping as well as the BPEL process (see Figure 5-22), and even the entire
composite application. We are now ready to see it in action.

NOTE
m If you still have the Assign activity that we created in the previous
2 section to assign some dummy data to the outputVariable, you should
now delete that activity from the BPEL process.

Deploying and Running the Composite Application
Deploy the composite application to the SOA Suite run-time infrastructure in the same way as in
the first section of this chapter. Now invoke the PatientDataService from the SOA Console’s Test
Web Service page. It may take a little bit longer than before, because we now have a process that
does some real work: It communicates with the database—once or twice—and has some XPath
querying and XSLT manipulation to perform.

As Figure 5-23 shows, it is interesting to take a look at the information about the composite
instance we can learn from the SOA console.

146 Oracle SOA Suite 11g Handbook

Hcomposite.xml | g PatientDataservice.bpel

v-A-9-5-0@M W

Partner Links =

smmh_paiemmahasgsdmw
| -

LN
)

N

) (oot) (R ot))

®

MoPatientldentificePresent

v

Assin Patient

Assign_inputF icntldentifice

v

Invoke_RetrievePatiertIdentFier

hd

=l

Aesign_Patientldentier ToVarisble

romInput|

\
Ascign_PatientIdentifier

PatientDataService

Invoke_RetrievePatientRecard

&

Transform_PatientRecordToOubputiariable

l
2

rephyCutput

RetricvelatientRe. ..

FIGURE 5-22.

The complete PatientDataService BPEL process

We can get a visual presentation of the flow in this process instance, very similar to the BPEL
process design in JDeveloper; however, this one is the visualization of a real process instance, not
just the design or mold the instances are created from (see Figure 5-24). By clicking the various
steps in the instance, we can learn about the variables involved at each step. It is very much like
debugging a program—after it has already run. Chapter 16 delves deeper into the console and the

trace information it can provide us with.

For more background on the database adapter, see Chapter 9 of the Oracle Fusion Middleware
User’s Guide for Technology Adapters in the online FMW documentation library.

T

Th i bl ol L et o) el] e
e weagrey |

[(- (e Swe

-, ﬂ-wmﬂ-«_u dk: Trreny i o Compleivd Sy HL R
T e S i oF Compleied ey H 308

[O TN Y Wishiwree o Compleied doy L 3

[O e I Wisewree o Compleied Loy B

B e i 6

L

| 3=

@a
| Emratasar

Lo

FIGURE 5-23. Fusion Middleware Control—SOA console’s overview of the flow of messages

resulting from a single service call

Chapter5:

First Steps with BPEL and the Database Adapter

147

Flos Traos o Fetance of Patienii oS vice

LInstance of PatientDataSeruics &

[vata Rt By LOL 830 1586456 DREST D

Tmpummummmms.ﬂ Fretaree D Bpel2 s

At Trel | Figey :Pu'm"ld.m:l rnh|

recmivalrput
i

@

Bwitch

Fwkchiipos (39)
-+

&)

Aunign_inpubF...

e e e

Bcsign_Patien)

Inucka_Ratris...
[

Traretamm_Pat..

=]

raphnfuiput
4

o

Sartad Aug LI 2008 124545 Pl

%

31t rlarrlt- 'l-a'rlua-l' =TT S b H:l'p'uf.l'

DiataSar-1icaPr Ragus ©

jpﬂl-lntll'ﬂ'lhlrﬂl:lﬂ.llrlll:l

i b o Rl e FI
Pl SRR Y 1)

icafr F

—

Boages

Hy e e it b P
mmt- HEII‘-E'.I-H“.IIImtldtntlrltfﬁtlt:LlnHtFthtrﬂ
RetrievsPatientldens fars ket Freinme
Fratidame > Lac s = fir et

el iems - lsfi{ames

FrfrevePabem

st InpEParam ey

..... proplart Aretlseres [amthlsrm sl red o s F s

ke EmtrieysFsh e derbfie
P atrias aPabant]derkifiar b mr{icka i o

mme-'Paql-ml::{ alection” -rr-ln-s b hqtplf_.flﬂu-r 1-3 m;
n e co="hitp; f F wew o doarygy 2060 KL

AetrisvesRatisrEldertferssismt [Fon

Hanis
FL=

Firs s rLowons < T tH A0 e

IaETNETE ~Eel] w6

InipHAraT

_||'I=E'l' Pl'l'I:EH'I' Hltﬂﬂ[lli'

T NamE="]-puﬂawn:m; -:n-lns 5 Inw.rwuw.u]:.nu.rﬂu i %ML chema-insta
InpukPery -:n'ulr- =" it p f o e o e e be coen f gechp el f ol o ples i S FRAKE SPATTE
ignldl: e

FATIENT 1D

,’.;‘_ art nama- I:Il.ﬂ'pq:l:l’wrll-rt-rr: '-'mlrl-' :-'51-1T|:Il-|.l'|'w.r-.llr3 u-u..' zI:III.l"l'HLEth-am IPI'-I'

cmilnm: i ="hetp: § vemom oo rgyd 2 001 Fx sk

.I'. FEL
T ki

i moamr< /FIRST NOMNE
= e L !

Fl3EA -0 I.'.l'l'II 0 EE. A0DHE: B |_CETE:

TELA-BT-LET G 90 F, 00 E-02: b
R WA TWASHMEATIRE
HEASLIEEDL

- i - - Ii‘l'ﬂ a0 i, iiirit ﬂ DATEOFMER'S
HaRemriindniy

DATEOFMEA=SLIPEME!

FIGURE 5-24. Flow trace in the SOA console of a BPEL process instance

148 Oracle SOA Suite 11g Handbook

Summary

This chapter introduced one of the important implementation languages for service composition
and orchestration: BPEL, the Business Process Execution Language. As the name suggests, BPEL
can be used for the implementation of business process flow logic—we will see more of that in
the next chapter. BPEL's ability to coordinate calls to external services, process and manipulate
the XML messages and variables flowing in and out of these services, and deal with asynchronous
services and synchronous services alike make it also very suitable for the implementation of
composite services. An example is the PatientDataService we have discussed in this chapter.

External services such as the Database Adapter Services into Frank’s patient database that we
created in this chapter can easily be wired to BPEL processes using the SCA composite definition.
The database adapter is a powerful instrument to make all kinds of operations into relational
databases available in our SOA infrastructure as normal Web Services. Chapter 7 will illustrate
the use of the database adapter in conjunction with the Mediator component to further decouple
BPEL processes and other database services consumers from the database. Besides the database
adapter, Oracle SOA Suite ships with a variety of other adapters, such as the EJB/RMI adapter,
File adapter, and AQ adapter.

In this chapter we used the XML, XSD, and WSDL foundation that was laid down in the
previous chapter to build real services. All services in this chapter are described through the
WSDL document and all messages involved by the accompanying XSD files. The XPath language
is used to both retrieve and manipulate XML nodes, and is especially important in Assign
activities. We will see more of XPath in our discussion of XML transformations in Chapter 7.

So far, the flow logic of our BPEL processes has been limited. The activities discussed do not
take us beyond the most elementary programming steps: Receive and Reply to start and end a
process instance’s execution, Assign to manipulate variables, Invoke to call out to external services,
and Switch to choose between execution branches. The next chapter will add some interesting
programming constructs, such as loops, parallel flows, and basic event handling. Chapter 10 will
add the human workflow, notifications, and exception handling.

We concluded the chapter with a brief discussion of the deployment of composite applications
in a stand-alone SOA environment. Deployment is only complete when the required resources
(such as data sources for database connections) have been made available and run-time parameters
(such as the endpoints for external services) have been configured appropriately. Part lll—and
especially Chapter 17—will discuss deployment and other administration aspects.

CHAPTER

Process-Oriented BPEL

150 Oracle SOA Suite 11g Handbook

he previous chapter introduced BPEL as one of the prominent implementation
languages for service components in the SOA Suite. BPEL is good for creating

. components that call upon multiple Web Services, that may be asynchronous in
nature, and whose combined results are used to achieve some business purpose.
A BPEL process can resemble both a short-running composite service that
combines several automated elementary services as well as a business process, especially when
it is configured to have parallel activities, has a state that runs for longer than a subsecond,

and also involves notifications to and tasks performed by human participants. This chapter
introduces some of the more advanced BPEL concepts—especially the parallel activities, calling
asynchronous services, and handling events and exceptions. Chapter 10 will go into the
integration with human tasks, and Chapter 11 discusses workflows and links BPEL to BPMN as
another service component language that allows us to model and program business processes
in service components.

Note that three terms used more or less interchangeably in this chapter are associated with
BPEL: process, service, and component. In an attempt to make things a little clearer, you can
think of a BPEL process as a unit of compilation and encapsulation. As developers, we create or
program BPEL processes. These processes expose a Web Service interface through which they
can be instantiated. A BPEL process can be one of the (service) components in a composite
application.

This chapter works toward the implementation of the parts of the patient appointment process
(see Figure 6-1). Chapter 2 introduced this process at St. Matthews.

Each step in this business process can be further drilled down into in order to describe the actual
operational steps and their implementation. Several BPEL processes with many BPEL activities,
including a number of service calls, are required to put the Appointment process into motion. In this
chapter, we will take a closer look at a number of additional pieces of BPEL functionality that are
valuable in further specifying and implementing the parts of the Appointment process.

Keep

Register Schedule Prepare Notify |
. » Cancel
patient appointment instruction patient J
4
! ___________
Cancel &
"| reschedule

A4

FIGURE 6-1. The patient appointment process, where patients miss, keep, or cancel (and
perhaps reschedule) appointments

Chapter6: Process-Oriented BPEL 151

We will see how we can structure a BPEL process—similar to how we can structure a Java
method into multiple methods and even multiple classes, or split a single PL/SQL procedure into
multiple program units and packages. We also discuss the concept of parallel (strings of) activities
in BPEL processes through the Flow activity. An important concept, introduced in the previous
chapter, is asynchronous services. We will see how BPEL can deal with calling asynchronous
services—and receiving their responses. And we have our BPEL process publish an asynchronous
service interface itself.

In this chapter we will see how a single BPEL process instance can receive multiple messages
during its lifetime. The initial request typically initiates the instance. However, as the BPEL
process instance continues running—potentially for hours, days, or even months—it not only can
call out to many services, it can also be called by partners that want to feed additional data into
the process or request information from the running instance. Correlation is the mechanism used
for routing such calls to the correct process instance. This chapter describes the correlation
mechanism and demonstrates what you need to do in order to make use of it. We will discuss this
notion of receiving additional requests in a running instance to allow inquiries into the state of
the appointment by external parties.

Another facet of BPEL is event handling: capturing events published external to the BPEL
process instance and processing them in a meaningful way. Note that events can arrive and be
handled parallel to normal process execution. We will deal with “cancel appointment” events
that need to reach the correct BPEL process instance to properly terminate it after releasing the
resources it has reserved. BPEL components can receive events through incoming WebService
calls—discussed in this chapter—and also in a more decoupled fashion from the Event Delivery
Network (EDN) in the SOA Suite. This EDN is discussed in Chapter 9. BPEL uses the Pick
activity—to explicitly wait at some point in line, in the normal process execution for an incoming
message to arrive—and eventHandlers that run parallel to normal processing, to capture messages
that arrive at random moments.

NOTE
“ The online complement to this chapter contains more fine-grained
; step-by-step instructions, additional screenshots, and detailed code
examples for the steps discussed in this chapter; this will be helpful
if you want to work through the examples yourself, which I strongly
recommend because learning through your fingers is probably the

best way of thoroughly absorbing the material in this and the coming
chapters.

The Start of the Appointment Process

The appointment process is started when the patient’s referral to the hospital is received—directly
entered into the system by the general practitioner or more usually in the form of a handwritten
document. It contains the patient’s identification, potentially some insurance plan details, a
priority code that indicates the urgency, a summary of the doctor’s diagnosis of the patient’s
condition, and the type of appointment that is required: which type of medical specialist, which
lab tests, and a consult with an extended duration. Based on the referral, a new instance of the
Appointment application is started (see Figure 6-2).

152 Oracle SOA Suite 11g Handbook

aPatientAppointmentService.bpel |
v-l-9-5-0@ &

Partner Links

: ®
- l
-@

receiveReferral

® ; = @
PatientAppaintrie. . :; s .
ReqgisterPatientData

[T T |

schedulehotifyandiait

w———t
-

FIGURE 6-2. The first part of the appointment as implemented as a BPEL process (note the
scopes used for RegisterPatientData and ScheduleNotifyAndWait).

The first step—register patient data—consists of verifying whether the patient is already
known at St. Matthews. If the patient is already known, his or her record (in Frank’s patients
database) is updated; otherwise, a new patient record is created.

In a later iteration of this process design, we may determine that if the patient is already
known, there can be circumstances that prevent the creation of an appointment, such as serious
debt owed to the hospital by the patient, past bad behavior by the patient, or litigation by the
patient versus the hospital.

When the patient is registered and the required information is available, we can send the
synchronous reply to whoever invoked the Appointment Service. This reply acts as the confirmation

Chapter6: Process-Oriented BPEL 153

that the appointment will be scheduled, and it also includes the appointmentldentifier. This
identifier can later on be used to retrieve additional information or cancel the appointment.

Scope and Sequence

Figure 6-2 illustrates the use of scopes in BPEL process definitions. A scope is a named container
inside a BPEL process that can be used to structure the process, similar to the way methods are
used in Java classes or procedures are used in PL/SQL package bodies.

At the level of a scope, we can define local variables that are only used and are visible within
the scope itself. We will see later in this chapter how we can create a compensation handler and a
termination handler in the context of a scope. These handlers are executed either to undo all
changes made in a scope that has successfully been completed—when, for example, a subsequent
phase in the process failed and all previous steps need to be rolled back—or to handle the forced
termination of an executing scope.

A scope is created in the BPEL editor by dragging a Scope activity from the Component
Palette into the BPEL process. Existing activities or new ones can be dragged inside the scope and
dropped in it to become part of the scope. Conversely, activities can be moved out of a scope, for
example, to another scope. Variables can be defined at the scope level in the same way as at the
process level, as we did in the previous chapter.

We have seen in the previous chapter how we use specially typed input and output variables
for calls to partnerLinks. These variables are usually only meaningful in the context of the Invoke
activity that uses them and in the Assign steps just before and after the invoke. An Invoke along
with these Assign steps and the required variables are suitable candidates for a scope.

Despite its similarity to Java methods or PL/SQL procedures, scopes cannot be called directly.
A scope is—or rather the activities inside a scope are—executed when the flow of the BPEL
process hits the scope. It makes no difference for the execution whether the activities are inside a
scope or not. Only for accessing local, scope-level elements such as variables or partnerLinks, or
for handling exceptions, does it matter whether or not an activity is inside a scope.

Scopes are quite useful when developing large BPEL processes in a structured fashion. Scopes
can be nested to any level. They allow clustering of related activities with meaningful labels,
making the BPEL process diagram much easier to understand. You can open or collapse scopes in
the visual BPEL editor, which allows you to focus on details where you need to and stick to a
high-level overview where that is more appropriate. Scopes also help with a top-down design of
the BPEL process, as we see in Figure 6-2. At this point, none of the scopes have been defined in
detail, yet we have the abstract outline of the process in place. Finally, when multiple developers
are working on a BPEL process, allocation of development tasks and merging of changes is
typically done at the scope level.

Another structured BPEL activity is the Sequence activity. A sequence contains one or
(usually) multiple BPEL activities that are executed sequentially. A sequence can be named and it
can be expanded or collapsed in the visual editor, just like a scope. Unlike a scope, a sequence
does not have its own variables or handlers—all it has are the sequentially executed activities.
Sequences are frequently used for grouping activities inside containers, such as Scope and Flow,
that do not allow multiple direct child activities.

When the scope RegisterPatientData is done—which includes a call to the PatientDataService—
and all data about the patient is available, the process will send the synchronous response to the
client by returning the processldentifierld. The complement to this chapter shows how the scope is
to be implemented to call the PatientDataService service that we have developed in the previous
chapter.

154 Oracle SOA Suite 11g Handbook

Ll

5 - %
[} L
e "
i <_:|-/ .-'\}} .1
i g g
= | * '
HOH . _
= =chechiasprointment Freparsinstnuctions r F-LJ
o et ipnoinimseniDet shsAng. ek
L}
"
o pFatant

L}
-
hg:l

Wt ForCanc el ationd v e HoShov

FEE R TP T
- -

FIGURE 6-3. Using a flow to process Preparelnstructions and ScheduleAppointment in parallel

The reply tells the client that the patient’s referral is now accepted by the appointment
process for further processing. The value for the processldentifierld is the client’s key to further
interaction with the process—for example, a request for the appointment details or an indication
of the appointment’s cancellation. The value of this identifier can be derived from some unique
number generator. Options to derive this value include a database sequence or one of the XPath
functions generateGUID(), getInstanceld(), or getConversationld().

At any time—from the synchronous reply until the completion of the process instance—the
appointment details can be requested. Such a request is responded to in the HandleGetAppointment
DetailsRequest scope and is processed parallel to the ScheduleNotifyAndWait scope by an
onMessage event handler. You can see this event handler on the right side of Figure 6-3 (the
envelope icon attached to the entire ScheduleNotifyAndWait scope). The event handler is discussed
later in this chapter.

Flow for Parallel Execution of BPEL Activities

The BPEL process will continue after the reply has been sent to the client. At this point, two
actions are performed in parallel. Based on the type of appointment and some patient details, the
preparation instructions for the patient are compiled. At the same time, the AppointmentScheduler
is invoked with some key details on the patient, the type of appointment, the desired doctor

(if the patient is already undergoing treatment), and the scheduling preferences.

Chapter6: Process-Oriented BPEL 155

The original process design—as discussed in Chapter 2—does not have this parallel step
because it was not considered necessary. However, with the two steps processed in parallel, the
patient receives her response faster—sometimes considerably faster, depending primarily on the
response time from the Scheduler service. Furthermore, the hospital wants to prepare for the
situation where the instructions may need some human intervention in special cases before being
sent to the patient. Even though that is currently not part of the process, the very real possibility of
that coming to pass is another reason for introducing the parallel steps in the process.

Parallel activities are realized in BPEL processes through the Flow activity. A Flow contains
two or more Sequence activities that are executed concurrently (see Figure 6-3). This means, for
example, that in two branches in the Flow activity an asynchronous call to an external service can
be made with both branches waiting for a reply at the same time. Obviously this is more efficient
than having to wait for the first response to come in before the second request can be sent out.
With a flow, the time it takes for the slowest service to respond determines the processing time of
the overall flow, not the times of all calls added together.

The current thinking at St. Matthews is that the instructions for the patient with regard to the
preparation for the appointment do not need to include the details of the appointment itself—such
as the date and time and the name of the doctor. The preparation can be created from the
information available from the referral and the RegisterPatientData step. The service that will
prepare the instruction does not have to wait for the ScheduleAppointment service—or the other
way round. Therefore, these two service calls are performed in parallel, using the Flow activity.
When the instructions should be more tailor-made—for example, instead of stating “Do not eat
anything solid 12 hours prior to the appointment,” the instructions might be “Do not eat anything
solid from 8.30 p.m. on August 30th until the appointment”—the Preparelnstructions step would
have to wait for the ScheduleAppointment step to complete and we would not use a Flow activity.

When both the instructions and the appointment schedule itself are in, the flow completes
and the next step—NotifyPatient—is executed. This will inform the patient of the scheduled
appointment by whatever means apply to the patient (e-mail, mail, telephone, and so on).

BPEL in SOA Suite 11g comes with various activities for sending notifications: Email, SMS,
VoiceMail, and IM (instant messaging or chat). These activities are Oracle-specific extensions to
BPEL—in the BPEL source code these are recognizable from their “bpelx”: namespace identifier.
SOA Suite 11g leverages the User Messaging Service (UMS) that was installed into the SOA
domain. UMS is configured through the Enterprise Manager Fusion Middleware Control to work
with the e-mail server, chat server, and SMS provider of your choice. Appendix C describes the
configuration of UMS for e-mail and chat; the complementary chapter provides instructions for
adding a call to the notification service to the process to send word of the appointment to the GP.

In practice you may want to (also) send notifications through a printed letter—a real one, on
paper—or have a telephone call conducted by a human staff member. In the latter case, this
would be done via a human workflow—more details in Chapter 10.

After sending the notification, the PatientAppointmentService process instance can sit back
and relax: Unless the appointment is cancelled, the process instance will wait for the patient to
arrive, shortly prior to the appointed time. For a no-show event, the patient does not arrive at all
for the appointment, as shown in Figure 6-4. We will consider the appointment a “no show” if
the appointment is four hours overdue and neither a cancellation nor a patient arrival has been
fed into the process instance.

156 Oracle SOA Suite 11g Handbook

NOTE

n It may be better design to not have our PatientAppointmentService
process wait for days or weeks for the arrival of the patient, but
instead create a separate SOA application that handles the process
that starts with either the patient arrival or a request for cancellation
or rescheduling. Resource usage and administrative flexibility are
among the design considerations. We will leave that very meaningful
discussion for another time.

If the patient wants to reschedule the appointment, she can call or e-mail the hospital to
change the appointment. This is treated as a “cancellation with reschedule” request. If an
appointment is cancelled—Dby the patient, the doctor, the insurer, or the hospital staff—the
appointment should be removed from the doctor’s schedule. In other words, the effect caused by
scheduling the appointment through the call to the scheduler service needs to be undone. In
BPEL terminology, this is called “compensating,” and BPEL has dedicated compensation handlers
that can be invoked to undo the effect of scopes that were earlier completed in a BPEL process
instance. These are discussed later in this chapter. Note that compensation is not achieved
automatically. Developers need to define and implement the compensation using the various
BPEL activities available.

!
* @

MakifyPatient

l
©

a @&, & &

E!@ m@ EJ

PatientarrivesForAppoinkrsnt Cancelation Mashow

FIGURE 6-4. After notifying the patient of the appointment, the process waits for one of three
events using a Pick activity.

Chapter6: Process-Oriented BPEL 157

Invoking a Synchronous Web
Service: Prepare Instructions

The first of the two parallel activities in the ScheduleNotifyAndWait scope (refer to Figure 6-2) is
a call to the ConsultPreparationinstruction service.

Depending on the type of appointment, scans that could be performed, and the lab tests that
may be run, a patient may need to prepare in a special way for an appointment. He or she may
be required to refrain from eating during the 24-hour period preceding the appointment. Or the
patient may need to bring a stool or urine sample. The patient could also be asked to fill out a
questionnaire or bring specific documents (for example, with regard to inoculations or findings in
external examinations). In the past a lot of time has been wasted—and a lot of aggravation
caused—Dby not providing patients with the correct instructions for this preparation. Mary and her
staff have been very careful in explicitly defining this step in the Appointment process.

The instructions are prepared based on the referral that starts the process and some additional
patient details. The fairly simple ConsultPreparationInstruction Web Service can be used for
gathering these instructions. It is invoked with a request message that specifies the type of
appointment, several patient details (when available, such as age, [most recent measurement of]
weight, and gender), and the urgency label. The service returns a response with the instructions
for the patient, retrieved from St. Matthews’ content management system, which also provides
documents for “St. Matthews-online.” Some images may be included as Base64-encoded content.

The call to this (or any) Web Service is added to the BPEL process through a few simple steps
(assuming we have the WSDL for the service).

1. Open the BPEL process editor.

2. Drag a WebService Adapter to the external reference lane in the BPEL editor.
In the pop-up, configure the WebService binding by setting the name to
ConsultPreparationInstructionService and browsing for the WSDL file (from the file
system, the deployed Web Service on the SOA Suite, or the WSDL resource in the MDS
Repository—more on MDS in Chapter 18).

Open the Preparelnstructions scope in the Flow activity inside ScheduleNotifyAndWait.

4. Drag an Invoke activity from the palette to the Preparelnstructions scope. Link this activity
to the ConsultPreparationInstructionService partnerLink.

5. Configure the Invoke activity in the dialog that appears when you create the link to the
reference. Have local variables created by clicking the green plus icon for both variables
and checking the Local Variable radio button.

6. Add an Assign activity prior to the Invoke activity. Configure it to set the local variable
used as input for the call to the ConsultPreparationlnstructionService.

7. Add an Assign activity following the Invoke activity. In this activity, we should take the
relevant parts in the result from the call to ConsultPreparationinstructionService, which is
stored in the local variable, and copy it into a global variable.

See the online chapter complement for more detailed instructions and screenshots of the steps
described here.

158 Oracle SOA Suite 11g Handbook

Invoking an Asynchronous Service:
Calling the Appointment Scheduler

One of the crucial steps in the Appointment process obviously is picking a specific date, time,
room, and doctor for the patient’s appointment. The hospital has defined a service interface for
this action—an asynchronous service that can be invoked by any party in the hospital, including
the new Appointment process that we implement in the context of the eAppointment project.

It is not necessarily clear to Margaret and her staff whether there is an automated facility—
some fancy, smart scheduling tool—that implements this service or if there are some staff
members tasked with scheduling appointments, and they do not need to know either—that is
encapsulation and decoupling for you.

Whatever the case, the Appointment process leverages this Scheduler service and is thereby
relieved from the responsibility of updating the central resource schedule where doctors’ agendas,
as well as schedules for rooms and equipment, are maintained. It is also the scheduler’s responsibility
to try to schedule multiple appointments for a patient adjacently during the day, thus saving the
patient additional trips to the hospital as well as too-long episodes in waiting rooms.

The Scheduler service is called with the appointment identifier, the patient identifier, an
indication of the appointment type, the identifier for the doctor if this is a follow-up appointment,
an urgency specification, and possibly preferred date/time combinations.

The Scheduler service is an asynchronous service. After the request is made, it can be
anywhere between several minutes up to more than a day before the service makes the return call
with its results, although it is fair to say that most requests are responded to within the hour. The
essence of an asynchronous service, as we discussed previously in Chapter 5, is that the service
and its caller perform a little handshake where they both have to play the role of caller and
callee. The SchedulerService publishes an inbound and an outbound portType. The first one is
implemented by the Scheduler itself, whereas the latter is actually implemented by the caller
because that is where the SchedulerService will call to deliver its response. So in summary, in a
synchronous call, the service client invokes the service that returns the response to the client in
the same call; in the meantime the client is blocked. In an asynchronous call, the service client
invokes the service, resumes its flow (is not blocked), and at some point waits for the service to
call the service client with the result.

Implementing the (Mock) Asynchronous SchedulerService
Let’s take a closer look at how to deal with asynchronous services. We will employ a simple
“mock” implementation of the SchedulerService. It takes an appointmentld, a patientld, and a
type of appointment as input. Based on that information, it comes up with a date and time for the
appointment, as well as a free-format text element with the name of the doctor and the location
where the appointment takes place.

An asynchronous BPEL process is easily created with these steps:

1. Create a new SOA project, called SchedulerService.
2. Select the option Composite With BPEL.

3. Choose the Asynchronous BPEL Process template.

Chapter6: Process-Oriented BPEL 159

The BPEL process is now created with the necessary setup in the WSDL, with two portTypes
and two PartnerLinkTypes:

I <!-- portType implemented by the SchedulerService BPEL process -->
<portType name="SchedulerService">
<operation name="initiate">
<input message="client:SchedulerServiceRequestMessage"/>

</operation>

</portType>

<!-- portType implemented by the requester of SchedulerService BPEL process
for asynchronous callback purposes -->

<portType name="SchedulerServiceCallback">
<operation name="onResult">
<input message="client:SchedulerServiceResponseMessage"/>
</operations>
</portType>

The SchedulerServiceCallback portType is the special one. It basically describes the service
interface that any client of the SchedulerService should implement in order to be asynchronously
called back with the response from the SchedulerService.

The partnerLinkType definition in the WSDL document is also special: Instead of a single role
element, we now have two. The SchedulerService interacts in two ways with external partners.
One way—the familiar one—is via the SchedulerService portType; this interaction is associated
with the role of SchedulerServiceProvider. At this point we do not explicitly state who will
assume this role, although it is likely in this case to be the SchedulerService itself.

The other interaction—the special one that is introduced because of the asynchronous nature
of the service—is via the callback portType SchedulerServiceCallback. This portType has to be
implemented by the external partner. This interaction is associated with the role Scheduler
ServiceRequester. The asynchronous callback to the requester is handled by the SOA Suite using
WS-Addressing to help determine the callback address.

The SchedulerService BPEL process has a partnerLink based on that special PartnerLinkType, for
the role SchedulerServiceProvider, that is used in the Invoke activity that returns the asynchronous
response. Later on, in the consuming AppointmentProcess BPEL process, we will again create a
partnerLink based on these PartnerLinkTypes; however, this time with myRole set to Scheduler
ServiceRequester because that partnerLink will then be used to the SchedulerService from the
AppointmentProcess.

Figure 6-5 shows the visual presentation of the BPEL process definition.

We can deploy the SchedulerService process to the SOA Suite and test it in the Fusion
Middleware Control. However, even though the tester will call the service, it will not handle,
receive, or show the asynchronous response. We will only be able to inspect the response by taking
a closer look at the message flow trace for the tested instance of the SOA composite application.

Calling the Asynchronous SchedulerService

Now that we have deployed and tested the SchedulerService, we need to call it from the
AppointmentService. Calling an asynchronous service is not at all straightforward from most

160 Oracle SOA Suite 11g Handbook

SchedulerService AssignPlanningDetails ToC allbackMassage

& SchedulerService.bpel I =
V-1-9-5-0@ &

Partner Links

:)L & BDEL][Moritor | 3] @

Partner Links |

B ®
l
-@

receivelnput

l

uew M

l
@

callbacklient

|
®

FIGURE 6-5. The asynchronous SchedulerService

programming languages and environments. Making the call is not the challenge, but receiving
the response is, however. The difficulties include:

Where can the response be sent to?
What will the program do while it is waiting for the response?
How is a certain response fed to the proper process thread (Java) or session (PL/SQL)?

When do we conclude that no response will be coming and what should be done in that
case?

BPEL, in comparison, makes it almost trivial to call an asynchronous Web Service and subsequently
receive the response. We will see this in action when we add a call to the SchedulerService in the
PatientAppointmentService.

With the PatientAppointmentService SOA application open in JDeveloper, we drag a
WebService Adapter to the External References lane in the composite editor. Type SchedulerService
as the name, browse for and select the WSDL for the SchedulerService (for now, just from the file
system), and select the SchedulerService and SchedulerServiceCallback, respectively, for the port
types. Next, wire the SchedulerService reference to the PatientAppointmentService BPEL component,
as shown in Figure 6-6.

Chapter6: Process-Oriented BPEL 161

e ot gt et e bl [| =
FALIBERD @R OFD Cuamnde gl Rpprad el S e

Pkl pl ppiest
(S
-
il gl

FIGURE 6-6. Associating the SchedulerService reference with the PatientAppointmentService
BPEL component

Now open the BPEL editor for the PatientAppointmentService and create a new variable at
the level of the ScheduleNotifyAndWait scope. This variable is called AppointmentSchedule and
is based on the SchedulerServiceResponseMessage.

Drag an Invoke activity from the Component Palette and drop it in the ScheduleAppointment
scope inside the Flow activity. Connect this Invoke activity to the SchedulerService PartnerLink.

Have the input variable created as a local variable—that is, inside the current scope. The
output variable field is disabled, and that is about the only clue as to the asynchronous nature of
the partner link: There is no—synchronous or immediate—output from this call.

In order to receive the asynchronous response from the SchedulerService, we need to add a
Receive activity to the scope ScheduleAppointment following the Invoke activity (see Figure 6-7).
The Receive is associated with the processResponse operation in the SchedulerService—the
operation in the special SchedulerServiceCallback portType we discussed earlier. If we wanted,
we could add activities between the Invoke and Receive activities to execute logic that could be
done in parallel to the scheduling.

This is the first time we have seen two Receive activities in a BPEL process. Until now,
Receive was always the first BPEL activity, the starting point for the process. And now we see a
second purpose for Receive: handling the asynchronous response to an earlier Invoke activity,
without creating a new instance of the BPEL process. The check box Create Instance controls
whether upon execution of the Receive activity a new BPEL process instance should be created.
In this case, the check box should be unchecked: No new BPEL instance and no new composite
instance are created.

162 Oracle SOA Suite 11g Handbook

b

bas M

1~ @auaEn|
m
o

L

PreparelnputFor ScheduleService

3.

= ReguestAppointmentSchedule

l

=1
ReceiveschedulerResponse
|

:
MokifyPatien
= Q@

‘WaitForCancellationOr Arri

Preparelnstructions

SchedulerService

General

ame: |ReceiveScheduIerResponse

— Interaction Type: @ Fartner Link ™

My Role Web Service Interface

Partner Link: |Schedu|erService

Operation: [Ty processResponse

Wariable

Yariable: |App0intment5chedule

XN

| [Create Instance |

[apply || ox

|| Cancel J

b

=4

FIGURE 6-7.
SchedulerService

Sending Notifications from the BPEL Process

Invoke and Receive activities to complete the handshake with the asynchronous

By the time the Flow activity is complete and the NotifyPatient activity is executed, the
AppointmentSchedule variable contains the result from the ScheduleService and the variable

Preparelnstructions holds the instructions for the patient on preparing for the appointment. That
means we have all the information required to send an e-mail or some other form of notification

to the patient to inform her about the appointment.

Chapter6: Process-Oriented BPEL 163

The online chapter complement demonstrates how the BPEL process can use the Email
activity to send such notifications.

Receiving Request Messages
in Running BPEL Instances

BPEL has a unique capability among all the service engines and languages in the SOA Suite: a
BPEL process can receive even after it has started running—and this goes beyond processing
synchronous or even asynchronous responses to service invocations. Most computer programs
are initiated by an original invocation and return a result once they are complete—they cannot
easily or at all be accessed from the outside while they are running. A BPEL process can expose
multiple operations—one of which will initiate the instance while others feed messages into a
running instance.

We have already seen how BPEL processes can continue to run after they have returned a
response message. To this special behavior we now add the capability of receiving subsequent
messages—either by explicitly waiting for them to arrive or by handling them as unsolicited
events. In both instances, the key ingredient to this functionality is a BPEL mechanism called
correlation—the ability to match an incoming message with one of potentially many running
instances.

Receiving messages into a running instance can be done using a Receive activity—as we saw
for the reception of the asynchronous response from the SchedulerService. Another method is
through an onMessage event handler that we can attach to a scope in the BPEL process. An event
handler specifies an asynchronous agent that runs for as long as the scope is running and can do
one of two things: wait for a specific moment in time and then act, or receive an incoming
message of a specific type and act on it. We will use this latter capability to handle requests for
information about the appointment.

A third method for a running BPEL process instance to deal with incoming messages is inside
the Pick activity. A BPEL Pick activity is included in a sequence like any other BPEL activity. It, too,
deals with events: It instructs the BPEL engine to pause the BPEL process instance until one of
potentially many events occurs. The events, as in the case of the event handlers, are either the
elapsing of a certain time duration or the reception of a specific message. Unlike the event handlers
that sit idle in the background for the entire lifespan of the scope, impacting the BPEL process only
when the event they are listening for occurs, the Pick activity stalls the process—or at least the
branch in which it lives, because there can be other branches in a common Flow parent—until one
of the events for which it is configured takes place. No activity that follows the Pick activity is
executed unless one of the Pick events occurs. Figure 6-4, earlier in this chapter, shows how a Pick
activity controls the flow in our process after the appointment has been scheduled.

It contains three alternative continuations of the process—of which only one will actually
take place in any process instance. Each alternative is either associated with a time event
(onAlarm) or with the arrival of a message—or more specifically, in the invocation of an
operation on a parterLink’s portType.

The onAlarm event handler has been specified in this example. It will trigger—if neither of the
two onMessage event handlers has been triggered—four hours after the start time of the appointment.
The add-dayTimeDuration-to-dateTime XPath function has been used; it first retrieves the start time
of the appointment and adds a dateTime duration that is specified in the string POYOMODT4HOMOS,
which means four hours.

164 Oracle SOA Suite 11g Handbook

One of the other candidate paths is the cancellation of the appointment—associated
with the cancelAppointment operation in the PatientAppointmentService portType on the
PatientAppointmentService partnerLink. This path should be executed when a cancellation
message is received for the appointment.

Consuming an Asynchronous Event: Handling a Cancellation

A cancellation of a scheduled appointment can arrive at St. Matthews in a variety of ways. It can
come in through the regular mail, by fax, or through e-mail; or it is communicated by telephone.
A cancellation can arrive in a batch from an insurer or can be entered directly in a web
application by a family doctor. Finally, an appointment should be cancelled when the “death of
the patient” event is received. A cancellation can be accompanied by a request to (re)schedule—
although obviously not in the last case. An appointment can be cancelled by various parties for
several reasons. The patient can cancel because the physical symptoms have disappeared, the
schedule time does not fit the patient’s agenda, the patient has found another healthcare provider,
or the patient’s financial situation does not allow for the hospital visit. The appointment can also
be canceled by the insurer because it is not covered by the policy or by the hospital because
either the required facilities or the doctor is not available.

The cancellation can arrive at any time, from the moment the appointment was scheduled until
the time it takes place. It enters our SOA infrastructure as a Web Service request that should be fed
into the BPEL process instance that was created and is still running for that particular appointment.
The BPEL process instance receives the request in the relevant event handler within the Pick activity
and should then either complete the instance entirely or return to the “schedule appointment” step
in case a request to reschedule was part of the cancellation request. In both cases, the reason for
cancelling the initial appointment should be recorded because it may provide clues as to how to
improve the appointment process and/or optimize the use of resources at St. Matthews. The
cancellation should also be reported to the automated Appointment Manager Service, which will
notify the doctor and update the resource schedules.

The cancellation Web Service request needs to specify exactly which appointment has to be
cancelled—just like we would have to do when we cancel the appointment by telephone or
e-mail. The appointment is identified by the identifier that was determined early on in the BPEL
process and returned in the synchronous response sent from the reportAppointmentProcess
Identifier activity. This same identifier is used by the SOA Suite run time to associate the incoming
cancellation request with the correct running SOA composite application instance. A precondition
for this is that the used identifier should be unique across all process instances. The mechanism
that makes this match between an inbound request and an existing instance is called correlation.

Correlation for the PatientAppointmentService

Correlation in general deals with the following scenario: A request message arrives at the SOA
Suite. It is not intended to start a new composite application instance. Instead, it needs to be routed
to an already running instance. It is up to the engine to find the correct instance to hand the
message to. In this case, the request to cancel an appointment needs to be handed to the instance
that was created for that particular appointment. Refer to Figure 6-8 for an illustration of this.

Of course, the engine needs to be able to extract some sort of identifier from the request message
to correlate that message with a running instance. In our example, the PatientAppointmentService
was initially invoked on behalf of a patient who needed an appointment. The service responded with
a message containing the appointmentldentifier. Requests for additional information with regard to
that particular appointment request should contain this identifier, and each running instance of the

Chapter6: Process-Oriented BPEL 165

Appointment
identifier #361 SOA Suite

® PatientAppdii...

Cancellation

request ' Patier?l%ppoi...

&
e
&

PatientAppoi...

812

FIGURE 6-8. Correlation between an incoming message and running composite application
instances

PatientAppointmentService, too, should be identifiable through that identifier. It is the linking pin to
correlate new request messages with running instances.

Correlation of instances of composite applications is built on the correlation of BPEL process
instances; a composite application without a BPEL service component does not support
correlation. The message that needs to be correlated to a running composite application instance
needs to be sent into the BPEL component—and therefore be sent to a service exposed by the
application that is wired to the BPEL component.

In order to make the correlation mechanism work, we have to configure the BPEL process to
recognize the appointmentldentifier as that correlation key.

An instance of a BPEL process can be identified for correlation using a correlation set. Such a
correlation set is a combination of one or more properties, in a way that is very much like a
composite primary or unique key database constraint. Properties are defined at the process level,
are of a certain type, and are mapped to values in the messages sent from or received by the
process. A BPEL process can have multiple correlation sets—just like a database table can have
multiple unique keys.

The PatientAppointmentService has a single correlation set that consists of a single property. Let’s
call this set the appointmentldentifierSet. We can create a correlation set from the structure window
by clicking the green plus icon with the Correlation Sets node selected, as shown in Figure 6-9.

The single property we require in this correlation set is called appointmentldentifier and is of
type String. The property, too, is created in the structure window.

Next, we can add the property to the correlation set and thereby specify that instances of the
PatientAppointmentService BPEL process can be uniquely identified by the value of this property
(see Figure 6-10).

However, what is the value of that property? When and how is that determined? How does the
property relate to the variables in the BPEL process or the messages sent to or from the process?

Correlation always takes place in the context of a message exchange. Either when the BPEL
process is receiving a message (onMessage and Receive activities) or when it is sending a message
(Invoke and Reply) does correlation come into play. And only at such times does the engine need to
establish the values of the properties in the correlation set that is attached to the message exchange.

166 Oracle SOA Suite 11g Handbook

“ZpatientAppointment.. | | Thumbnai =)
4
7 @ & K

53., PatientAppointmentService, bpel
ED Partrer Links
E} 3 variables

E Correlation Sets

(= ﬁgi Process

] appnlntmentldentlﬁerSet
IE . Scope - RegiskerPatientData

: B . Scope - Schedulefabifyandi ait

Iﬂ 23 Activities

E.} E Propetties

f -[] appointmentIdentifier

E} D Property Aliases

I_-T-j |:t Message Tvpes

E}I:E Schemas

[] show Detailed Mode Information

Source | BFEL

FIGURE 6-9. The correlation set appointmentldentifierSet and the appointmentldentifier
property for the PatientAppointmentService

E’Epal;ienthppointment,;... I & Edit Correlation Set - appointmentIdentifierSet) x|
B
- Mame: |appointmentldentifierSet |
.\? “ m Ei i Propertizs
ﬁgl Patientappointment Service.bpel ,;l}, / ®
-7 Partner Links
-3 Variables Narm.a = WFE
DEf} Correlation Sets] appointmentdentifier string
& g Process

223 Correlation Sets

"l § appointmentIdenti o

[&] Scope - RegisterPatientData

EI--- Scope - SchedulehotifyAndiwait oK J [Cancel
-3 Activities v
=[5 Properties
ek |j appointmentIdentifier
D---D Property Aliases

["] show Mamespace LRIs

FIGURE 6-10. Editing the correlation set—specify which properties together uniquely identify an
instance of the BPEL process

Chapter6: Process-Oriented BPEL 167

The value of a property is associated with the content of the messages sent to or from the
process at such exchange moments. For example, the appointmentldentifier property gets its
value from the outgoing PatientAppointmentServiceResponseMessage that is returned from the
process in the first, synchronous Reply activity. When the cancellation message exchange takes
place, the property will get its value from the incoming AppointmentCancellationRequestMessage.

These associations between the property and a particular message exchange are specified
using property alias definitions. A BPEL process can contain one or more property aliases that
map a property to a specific message part—and to be precise, a specific XPath expression to
extract a value from within that message part. This message part is used in the exchange through
one of the partnerLinks in the process.

In the case of the PatientAppointmentService, we will eventually have four property aliases,
because the appointmentldentifier is associated with four message exchanges (initial appointment
request, cancellation, status request, and patient arrival). This is shown in Figure 6-11.

The identity of the process instance (the values in the correlation set) is established only
once—obviously, because that cannot change later on. Establishing the identity takes place through
initialization of the correlation set and capturing the values of the properties in the set at that
moment in time. In our case, this happens when the PatientAppointmentServiceResponseMessage is
sent by the synchronous reply operation labeled reportAppointmentProcessldentifier. The value of

ff:Patienl:ﬂppuintmenEe}:vice.hpd - Structure] i - Thumbnail =]

Y@@ +7 R

g PatientAppointmentService, bpel
B3] Partner Links
E.}D Yariables
E-[23 Correlation Sets
E‘ﬁg. Process
E}Eﬂ Correlation Sets
% appointmentIdentifier Set
E} Scope - RegisterPatientData
&-[B] Scope - SchedulshotifyAndy i
-0 Activities
=23 Properties
D appointmentIdentifier
E‘Eﬁ Property Aliases

= Property: appointmentIdentifier
Message Type: PatientAppoinkmentServiceResponseMessage
Part: payload
Query: [dlient : Appointment ServiceProcessResponse dient ;. appointmentIdentifier

@ B Query: ,i'cl.ient:.C\ppointmentStatusRequest,l'.client:appointmentldentifier

@ B Query: ,i'cl.ient:Patient.ﬂ.rrivaIFUr.ﬂ.ppuintmentRequest,l'-client:appointmentlﬂentifier :

@ Tuery: foient: AppointmentCancellationRequest)client: appointrmentIdentifier

B[] Message Types
B3 Schemas

FIGURE 6-11. The correlation definitions for the PatientAppointmentService: the correlation set,
the property, and the four property aliases

168 Oracle SOA Suite 11g Handbook

the appointmentldentifier element in the AppointmentServiceProcessResponse element in the
response message is read and set as the value for the appointmentldentifierSet—a value that will
never change for the instance of the BPEL process.

On each subsequent message exchange, the identification of the process instance, as
determined in the correlation set, can be compared to the value as extracted from incoming
messages. That allows the engine to link the incoming message to the instance with the same
value for the correlation set.

Figure 6-12 illustrates the steps in the correlation processes that are described as follows:

1.

The synchronous Reply activity initiates the correlation set, and the value is extracted
from the response message and used to set the instance identifier.

The value for the appointmentldentifierSet correlation set is extracted from the incoming
Status Request message based on the property alias defined for that message and
compared with the identifiers for all running instances to find the matching instance.

When the PatientArrival message comes in, the property alias definition is used to
extract the correlation set value that is then used to find the matching instance of the
PatientAppointment service.

Appointment identifier #763
Property: appointmentldentifier
Message type: PatientAppointmentServiceResponseMessage
Part: payload
Query: /client:AppointmentServiceProcessResponse/client:appointmentldentifier

SOA Suite

PatientAppoint
mentService

Request
Cancellation 5%%
request (®Patient Ppoi...

¢ PatientA 0i.,
pp &
Status request Patierf%ppoi... o

Patient arrival

Appointment identifier #763
Property: appointmentldentifier
Message type: PatientArrivalForAppointmentRequestMessage
Part: payload
Query: /client:PatientArrivalForAppointmentRequest/client:appointmentldentifier

FIGURE 6-12. The steps in the correlation process

Chapter6: Process-Oriented BPEL 169

We have to specify the four property aliases and indicate for each one—for each message
exchange that will work with the correlation set—how the value is derived from the incoming or
outgoing message.

To create a property alias (refer to Figure 6-13), select the node property aliases in the structure
window. Click the green plus icon to add a new property alias. A pop-up window appears in
which we first of all need to select the property for which we want to define a property alias:
appointmentldentifier. Next, we have to select the message type and part for which we want to
define the property alias. Select the payload part in the PatientAppointmentServiceResponseMessage.

& Create Property alias il

Properky: [E appointrentIdentifier v] I:Di

— Interaction Type: @ Message Type ™

Type Explorer

q Type Explorer
-3 Message Types

-[53 Partner Links
Elfﬁ PatientAppointmentService
El PatientAppointmentService . wsdl
2153 Message Types

= PatientAppointmentServiceResponseMessage
-]
AppointmentStatusRequestMessage
AppointmentCancellationRequestMessage
AppointmentStatusResponseMessage
AppointmentCancellationResponseMessage
PatientArrivalForAppointmentRequestMessage

- | PatientAppointmentServiceRequestMessage

E}--D Imported Wwahl
G-id PatientDataService
EJ---@ ConsultPreparationInstructionService
-4 SchedulerService
-7 Project 'WSDL Files

Tvpe: |{htt|:u:,I',I'stmatthews.hospital.cnmIl'patient,l'.ﬁ.ppnintmentPrncess}paonad

[show Detailed Mode Information

Query:

folient: App0intmentServiceProcessRespnnse,#blient: appointmentIdentifier

@ chent:appointmentldentifier Element

I Ok “ Cancel]

o

FIGURE 6-13. Configuring the property alias for the appointmentldentifier property mapped to
the PatientAppointmentServiceResponseMessage payload part

170 Oracle SOA Suite 11g Handbook

In the Query field, we must specify the XPath expression to retrieve the value for the property. Hint:
Pressing CTrRL-sPACEBAR brings up a list of available XML elements to add to the XPath expression.

The final step in making correlation work is to configure the activities that send (Reply) and
receive (onMessage handler) the messages that need to be correlated.

First of all, the Reply activity. This activity is special because it needs to instantiate the
correlation set. Open the editor by double-clicking the Reply activity. Go to the Correlations tab.
Click the green plus icon to add a correlation set that is associated with this message exchange.
Select the appointmentldentifierSet. JDeveloper will populate the properties column for us. You
need to set Initiate to Yes to indicate that this Reply step is the moment when this correlation set
is instantiated and the identifier for this process instance is set. Figure 6-14 illustrates these steps.

ﬁgi PatientAppointment Service, bpel

| A-3- &fﬂ@'“@

Partner Links = ;

=
3
D
5
@
receiveReferral
- oy
Reply ®
:
Correlations 2eqisterPatientData

&/ R

Set Initizte Froperties

appointmentIdentifierset ves ns4:appaintrmentIdentifier
............................. - ssignProcessIidentifier
[]5haw Namespace URTs|
x l
Apply J Loos i I Cancel J W
. A q

reportAppointrientProcessIdentifier

& 4 l
PatientAppaintme... #

InitializeWariables

i
@

FIGURE 6-14. Configuring the correlation set appointmentldentifierSet and its initiation for the
Reply activity

Chapter6: Process-Oriented BPEL 171

Through this definition, we have ensured that when this Reply activity is executed, an
instance of this BPEL process is assigned an identity that can be used for correlation purposes.

As an aside, a BPEL process can have multiple identities through multiple correlation sets
that have different properties and different values, and can be established at different points in
time. The PatientAppointmentService, for example, could have a second correlation set that also
identifies the appointment through a combination of the patientldentifier and the date and time
of the appointment.

Correlation for the Appointment Cancellations

We have laid the foundation for the capability to receive a cancellation request for a scheduled
appointment. We have configured a correlation set and ensured that the instance identity is
determined when the synchronous reply takes place.

Next, we have to add an onMessage event handler in the Pick activity to handle reception of
an AppointmentCancellationRequestMessage when the cancelAppointment operation is called on
the PatientAppointmentService. Then we need to configure this onMessage handler to support
correlation for this message exchange.

In the BPEL design editor, find the Pick activity and click the Envelope icon to add an onMessage
branch. A new branch is added to the pick. Drag a scope from the Component Palette and drop it on
this branch. Call the scope Cancellation. Double-click the onMessage icon to configure the message
exchange it will implement. Figure 6-15 illustrates these steps.

The partner link involved in the onMessage activity is the PatientAppointmentService. The
relevant operation in the port type associated with this partner link is the cancelAppointment
operation. Specify the input variable as locally created.

.-g__

& -

u
"? Prosracion T ﬂnﬂm Lk
it e, [Putiasbippuinimas-tarvicn

a R

| i
I i
| !
i]
! |
¥ n-:-u:_. E { B in ek gl lu. L""
T vl W
| e | contErwa il
| .- | — = = .
; | ' | e ook ([s
! i -
| ¥ i o awed]
i il ! G4 s
; Canbewd mrecaler | L "SI —
g rer=er] sppaniseritidertierlst o e agreirirant] doriher
| | hos Fsrapars LR RO
|t] Lihr J| ot J| oo J

FIGURE 6-15. Configuring the message exchange and correlation for the onMessage branch that
will handle the cancellation requests

172 Oracle SOA Suite 11g Handbook

Next, click the Correlations tab. The only correlation set that is involved with this onMessage
activity is the appointmentldentifierSet. It should not be initiated, because that already happened
through the outgoing message sent from the Reply activity. For cancellations, we will use the
value assigned to the property in the correlation set at that time to correlate with the incoming
cancellation message’s property value.

If you have not already done so, now would be a good time to create a property alias for the
appointmentldentifier property, mapping it to the incoming AppointmentCancellationRequestMessage.
Select the property and click the edit icon. This will take you to another editor window where you can
create the alias with its XPath expression against the message. The XPath expression for this property
alias should query the appointmentldentifier element in the AppointmentCancellationRequest.

Cancelling the Appointment: Introducing the While Loop

When the appointment is cancelled, it can be with a request to reschedule. Otherwise, the
appointment should just be removed from the hospital’s schedules and the doctor’s agenda, and
the PatientAppointService instance will stop. When the appointment should be rescheduled, the
instance should live on and return to the beginning of the ScheduleNotifyAndWait scope.

BPEL does not have the concept of method calls or goto activities—one area where BPMN
allows for more flexibility in the process design than BPEL (see Chapter 11 for an introduction of
BPMN). However, BPEL has a While loop that we can use in this case to introduce some level of
iteration into the BPEL process. BPEL 2.0—which is supported by SOA Suite 11g—has added the
loop constructs For Each and Repeat Until.

The PatientAppointmentService has a fairly large chunk that can be reiterated when the
appointment gets canceled with a reschedule request: everything from gathering preparation
instructions, scheduling the request, and notifying the patient, to waiting for the patient’s arrival
needs to be repeated after the reschedule request—and is therefore inside the While activity (see
Figure 6-16). The While activity is configured with a Boolean expression. As long as that expression
evaluates to true, the activities inside the While will be executed. The PatientAppointmentService
contains a global Boolean variable called needToSchedule. The value of this variable is tested in the
While activity and determines whether or not another iteration should be made in the While loop:

I <while name="ScheduleAndIfNecessaryScheduleAgain"

condition="bpws:getVariableData ('needToSchedule') ">
<scope name="ScheduleNotifyAndWait"s>...</scope>
</while>

The variable needToSchedule is initialized as “true” to ensure that the ScheduleNotifyAndWait
scope is executed at least once.

When the Cancellation message is received, it is inspected to see whether it contains a
request to reschedule. If it does, the variable needToSchedule is left at true; otherwise, it is set to
false. In the latter case, the While loop is terminated.

Using the Replay Fault to Return to the Beginning of a Scope

Instead of using the While activity (or another iterator construct), we can use a special BPEL fault
to replay a scope: When the fault is thrown, for example, under certain conditions at the end of a
scope, then that entire scope is executed again. The online chapter complement describes this
fault and shows how we can redesign the PatientAppointmentService, without the While, using
this replay fault.

Chapter6: Process-Oriented BPEL 173

While Meed to Schedule

B =
Mame: |Whi|e_Need_t0_ScheduIe

Label: |Whi|e Meed to Scheduls |

= <|_> Condition:
|bpws:get\-‘ariabIeData('needToScheduIe') = truel)

Parallel _Preparalnstructions |
[]

)

B¢

Reschedul=Oriot MoShow

B

SetCancellationConfirmation

L f)
E |

ConfirmCancellation
|

FIGURE 6-16. The While loop and the onMessage branch handling the cancellation request

Correlation and Asynchronous Service Calls

Correlation is the primary mechanism used by the SOA Suite run time to match up
incoming messages with existing instances of composite applications. Yet we did not
discuss correlation when we introduced the implementation of our calls to asynchronous
services, even though the response from an asynchronous service such as the
SchedulerService is returned in the form of a service call to the callback portType in the
PatientAppointmentService.

The reason for this is that the BPEL engine handles this automatically under the covers
using the WS-Addressing standards. In other scenarios we have to implement/configure this
ourselves because the components we interact with are not BPEL components. We do not
need to make any changes to the BPEL process, the composite definition, or the WSDL file
in order to leverage the WS-Addressing method for correlation between BPEL process

(Continued)

174 Oracle SOA Suite 11g Handbook

instances and the asynchronous services they invoke. The BPEL engine run-time framework
will add headers to the SOAP message that is sent when an asynchronous Web Service is
invoked. These headers—based on the WS-Addressing specification—contain the endpoint
location (reply-to address) that specifies the location at which a BPEL client is listening for a
callback message and the Conversation ID, which is a unique identifier for the BPEL
process instance that sent the request.

When the asynchronous service sends the response by invoking the callback service, it
can use the information from the WS-Addressing headers to target the response at the right
client. When the asynchronous service is itself a BPEL process, like our SchedulerService,
the headers are leveraged automatically by the BPEL engine, completely transparently to us
as developers.

There are several situations where the built-in, default WS-Addressing correlation
mechanism does not suffice when we invoke an asynchronous service. One of those is the
case where the asynchronous Web Service provider does not support WS-Addressing and
correlation is required to map the response message to the process instance. Another case is
a more complex conversation pattern that involves more than two communication partners
and a final response that is not returned by the partner that received the original call that
started the conversation, as illustrated by Figure 6-17. In this case, the BPEL process should
initiate a correlation set and make sure that its value is passed along all services
participating in the conversation and returned in the eventual response that is sent to the
callback port of the BPEL process.

See the FMW documentation for more information about WS-Addressing, the way it is
used in the BPEL engine, and ways to inspect the contents of the SOAP message (and the
WS-Addressing headers) using an OWSM logging policy or TCP Listener.

&

PatientAppo...

o\
— 4

0 Se| ‘\),’_

rviceB

FIGURE 6-17. Complex conversation pattern that requires custom correlation. The initial request
is sent to ServiceA and the final response is sent by ServiceB to the callback port.

Chapter6: Process-Oriented BPEL 175

Request Appointment Details from the
PatientAppointmentService Instance

BPEL process instances can use another asynchronous way of accepting incoming messages next
to Receive activities and the onMessage branches of Pick activities. We can attach event handlers
to any scope in the BPEL process as well as the main process itself. These handlers are active
during the entire lifetime of the scope they are attached to—Ilistening all the while for either the
onAlarm event to happen or messages to arrive. An event handler does not impact the scope it is
associated with—it runs in a parallel thread while the scope is executing. When an event handler
is triggered, it can, however, decide to halt the execution of the scope.

In the PatientAppointmentService process, we make use of the event handler mechanism to
listen for status request messages—an example of a common-use case where a BPEL process
allows clients to inquire after its current status, progress, and variables. Such requests are typically
handled by event handlers attached to a fairly high-level scope or even the main process. These
handlers frequently use several global variables to retrieve status values from several global
variables to return to the caller.

To configure the getAppointmentStatus event handler, locate the scope ScheduleNotifyAndWait.
Click the Add onMessage Branch icon in the scope’s menu bar; refer to Figure 6-18. A new
onMessage event handler is added in the diagram. Now drag a sequence from the Component Palette
and drop it in the onMessage branch. Call the new sequence HandleGetAppointmentDetailsRequest.

5 + . __.\@
i} st |
o

9 9 "o

FIGURE 6-18. Configuring the getAppointmentStatus onMessage handler for the
ScheduleNotifyAndWait scope

176 Oracle SOA Suite 11g Handbook

Double-click the envelope icon to bring up the onMessage editor. Select the partnerLink
(PatientAppointmentService) and operation (getAppointmentStatus) in this editor and have the
input variable created as a local variable. Next, go to the Correlations tab and select the
appointmentldentifierSet correlation set. If you have not already done so, create a propertyAlias
that maps the AppointmentStatusRequestMessage to the appointmentldentifier property.

Next, we should flesh out the sequence in which the work takes place that should be performed
when a request for the appointment status is received. Add a Reply activity to this sequence, linked to
the getAppointmentStatus operation in the PatientAppointmentService partner link. No correlation
settings are required for this outgoing message exchange because it involves a synchronous
invocation. Have the output variable created as a local variable because we only use it in the scope of
the event handler. Then add an Assign activity to the sequence, right before the Reply step. Copy the
relevant values to the ReturnAppointmentStatus_getAppointmentStatus_OutputVariable that is
returned to the client asking for the appointment status. These steps are illustrated in Figure 6-19.

Note that event handlers can perform actions on behalf of the scope they are attached to, in
reaction to messages or the reaching of specific moments in time. The handlers can send responses,
make service calls of their own, and both read and write the values of variables local to the scope
or defined in higher-level scopes. Their most far-reaching prerogative is the termination of the
scope—using the Terminate activity. However, while the event handler is still running, the scope
also continues to execute activities.

By the way, in the case of the PatientAppointmentProcess, we have used an onMessage
branch in the Pick activity rather than an onMessage event handler to process an incoming
cancellation request. In this case, that choice is fairly arbitrary—both approaches would be able
to achieve the same effect.

s R - (= | i Componan: Pein
e - - 5- 0k W .- [Tl | R () | [
E Anpy o

Il
Lgrgs Pgoprdaparorgeidomy
®
'y — et Ty Eir'qbq-l.ri'i
i a; M. Bae el fiervn e i me
Wabsily Fiorsd i Dt e Fwra L-t-'mw-nlu-n. 5y
N o | "';
= o & x B [y . e b O,
r | Famll (o
; i @ a
Fuilel_Syepw ey atond_hedue Aopoat mant [P
3 Lol Pt
r =
1 ifr.l
]]
fa b
= -

FIGURE 6-19. Returning the Appointment status from the onMessage event handler

Chapter6: Process-Oriented BPEL 177

Other BPEL Activities

This chapter and the previous one have introduced and applied the most common BPEL
activities. However, there are several more that can be used in BPEL processes. These are
shown in Figure 6-20 and briefly discussed here. Some activities listed here are Oracle’s
extensions to BPEL that you will not find in other BPEL engines. The BPEL language has a
standard way for vendors to add nonstandard extensions to the language. Oracle has used
this extension mechanism to add a number of useful activities that developers can embed in
their BPEL processes to run on Oracle’s BPEL engine. Other engines would simply ignore
those unknown extensions—however, they would consider the process definitions valid.
Needless to say, such extensions on the one hand add possibly valuable functionality while
limiting the cross-container portability on the other.

Terminate is a powerful activity: It immediately ends execution of the process instance,
performs no fault handling or compensation, returns no replies to consumers, and completely
concludes the instance. The Exit activity—introduced in BPEL 2.0—replaces Terminate.

Empty is not powerful at all—it does what its name suggests, which is nothing at all.
Empty is a no-operation instruction (like null; in PL/SQL) and can be used when you want
nothing to be done but need an activity, for example, as a temporary placeholder for
activities that will be added later on or as the contents of a fault handler.

Wait instructs the BPEL engine to halt processing for a certain specified period or until a
certain deadline is reached. Note that the wait only applies to the branch it is in; processing
can continue in parallel branches.

BPEL 2.0 has added many new elements to the BPEL language, including RepeatUntil,
ForEach, If, Exit, Validate, ExtensionActivity, and Rethrow. It also introduces a very useful
repeatEvery feature to onAlarm event handlers and a TerminationHandler.

FlowN is an Oracle extension to BPEL that allows a dynamically determined number of
parallel branches to be executed on all elements in a collection. FlowN is similar to the
BPEL 2.0 ForEach activity that can also execute a dynamically calculated number of steps,
either sequentially or in parallel. ForEach is functionally richer—it not only can do either
sequential or parallel processing, but also can end as soon as an indicated minimum
number of parallel branches has completed. The latter would be useful, for example, if we
want to solicit quotes from a number of vendors and as soon as we have at least three
quotes in, we can continue with the process.

Validate explicitly validates the contents of one or more variables in the BPEL process
against their XSD definitions. When a violation is detected, the BPEL engine will throw a
bpelx:invalidVariables run-time fault. Note that Validate was added as a standard activity to
the BPEL 2.0 specification.

Java Embedding allows us to add Java code to a BPEL process—typically small snippets
of Java that may call out to more complex objects living in the same JVM as the SOA Suite
or through remote EJB calls, even to objects external to the JVM. The Java code has access
to the variables of the BPEL process. Exceptions thrown in the Java code are translated to
BPEL faults and can be handled using the BPEL fault-handling mechanism. Java Embedding
seems especially useful for nonreusable complex calculations, special validations, or
additional logging. The ADF-BC and EJB Service Adapters also allow interaction between
BPEL processes and SDO-enabled Java objects, whereas the Spring Java component
supports simple interaction with POJOs (Plain Old Java Objects). Chapter 12 in this book
discusses the interaction between SOA composite applications and Java in more detail.

(Continued)

178

Oracle SOA Suite 11g Handbook

Signal and ReceiveSignal are Oracle-specific extensions to BPEL for the coordination
between Master and Detail processes. This coordination is much like a lightweight
alternative for correlated asynchronous services. The book’s wiki describes how these
activities can be used.

Create Entity, Bind Entity, and Remove Entity are activities that provide support for
entity variables in SDO (Service Data Objects) format that are bound to an underlying data
service provider—for example, an ADF-BC SDO-enabled Web Service or an EJB. An entity
variable acts as a data handle to access and plug in different data provider service
technologies behind the scenes. During compilation and run time, the BPEL engine
delegates data operations to the underlying data provider service. When dehydrating the
BPEL process instance, only the unique key that is needed to link up with the data service is
stored, not the current values in the variable. See Chapter 21 for more details on SDO.

Phase is not really a BPEL activity—it is the representation of a BPEL design pattern
using two layers of process design and implementation: the first layer is the abstract
description of a certain step in the process, including the scopes, and the second layer is
the specific implementation of that step.

Transformation is not really a BPEL activity either, even though it looks that way in the
Component Palette. It is a specially configured Assign activity with a developer-friendly
editor that helps us specify XML transformations (XSLT) for variables in the BPEL process, as
we saw in the previous chapter. A transform assigns null values to target parts of the
variables that aren’t included in the transformation. Assign doesn’t have this behavior.

— BPEL Activities —
|45l Bind Enticy
|%| Check Poink

|-@.| Create Entity

@ Email

|:| Ernpky

@ Flow
Bm

@| Java Embedding

@ Phase

lll’_'uJ Receive Signal
@ Removye Entity

l‘&J Signal
SMS
Terminate

@ User Motification
Yalidate

@ Woice

[T wait

FIGURE 6-20. Miscellaneous BPEL activities

Chapter6: Process-Oriented BPEL 179

Dealing with and Compensating
for Exceptional Circumstances

Although, of course, we would like to think that everything in our BPEL processes always happens
according to our plan for a happy flow, in actual practice that is unlikely to happen. Several types
of faults and exceptions are bound to occur and should be catered to. Sometimes we can recover
from exceptions—by retrying an operation after a little waiting time or through an alternative
execution path. However, some exceptions we have to accept as irrecoverable. For a process
instance that runs into such an exception, we may need to roll back some of the work that was
already done by the process before it failed with the exception. In BPEL terminology that is called
compensation.

Handling Exceptions in BPEL Processes

We can discern a number of exception categories—from fairly technical to more functional and
business process-oriented.

At a rather technical level, we have to prepare for the unavailability of infrastructure components
or other technical problems with services invoked from the BPEL process.

The external references may also return (predefined) business exceptions in response to the calls
from our process, in the form of SOAP faults as specified in the WSDL for the service. Business
exceptions are normal situations in business processes, ranging from “the product on order is sold
out” and “credit card payment is not validated by the card issuer” to “the type of appointment
requested is not available at St. Matthews.”

Between these categories is the type of fault that is returned due to validation errors (“the XML
request message does not comply with the XSD definition”) and security issues (“the authentication
failed” and “you are not authorized to invoke this service”). Our BPEL process can also cause
faults because of programming errors (for example, by performing erroneous XPath operations).

Finally, the last category of exceptions is the type of exception we willingly throw to cause
the current scope to be immediately terminated—almost a programmer’s trick for want of a break
activity in BPEL.

If one of the exceptions described previously occurs in a BPEL process—and we do not catch
it—the process instance ends up in a faulted state. If the instance is synchronously invoked by a
partner, the partner will receive a SOAP fault as a reply. If the instance is part of an asynchronous
conversation, its invoker will continue to wait for the response message because there won’t
be one.

Let’s see how we catch faults in a BPEL process—to prevent faults from causing a process to
fault out.

Catching Faults

The main process activity, as well as every scope in a BPEL process, can have a faultHandler
associated with it that contains one or more Catch activities that can each handle a specific
type of fault (or all faults) when it occurs in the scope they are defined against—or in one of
that scope’s descendants or nested scopes. Each fault type in a BPEL process is identified
through its name. Catch activities specify the fault type they want to catch through that name.
Here’s an example of a Catch for the standard fault selectionFailure (defined in the namespace

180 Oracle SOA Suite 11g Handbook

http://schemas.xmlsoap.org/ws/2003/03/business-process/, represented here by the prefix
bpws), which is thrown, for example, when an XPath expression has returned an empty result:

B <faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>
<empty name="HandleSelectionFailure gracefully"/>
<terminate name="Terminate_ process_isNOTgraceful"/>
</sequence>
</catch>
</faultHandlers>

The BPEL 1.1 standard specifies 11 standard faults, all in the same namespace: selectionFailure,
conflictingReceive, conflictingRequest, mismatchedAssignmentFailure, joinFailure, forcedTermination,
correlationViolation, uninitializedVariable, repeatedCompensation, and invalidReply. All these faults
are typeless, meaning they don't have associated messageTypes and a Catch activity for these faults
should not specify a fault variable.

Other faults have data associated with them—for example, the run-time faults thrown by the
BPEL run-time engine as the result of problems with the running of the BPEL service component
or the Web Services it invokes. A number of such run-time faults is predefined: bindingFault,
remoteFault, and replayFault. These faults are included in the http:/schemas.oracle.com/bpel/
extension namespace. They are associated with the messageType RuntimeFaultMessage, which
contains three parts—each of type string—called code, summary, and detail, respectively.

A Catch activity for a fault that has associated data can specify a faultVariable that will be
initialized with the fault’s data when the Catch is activated. Figure 6-21 shows the RegisterPatientData
scope with a number of fault handlers defined against it. One of them is the following Catch that is
defined to intercept a remoteFault. The RemoteFaultMessage variable used here needs to be defined
based on the message type associated with the fault. In this case, we need to add the RuntimeFault.
wsdl with the required messageType to our project:

I <scope name="RegisterPatientData"s>
<variables>
<variable name="RemoteFaultMessage"
messageType="bpelx:RuntimeFaultMessage"/>
</variables>
<faultHandlers>
<catch faultName="bpelx:remoteFault"
faultVariable="RemoteFaultMessage">
<empty name="HandleRemoteFault butHow"/>
. additional BPEL activities that handle the
they can access the fault’s details in RemoteFaultMessage
</catch>
</faultHandlers>

In addition to fault-specific Catch elements, we can make use of the catchAll—similar to
“when others” in PL/SQL and “catch(Throwable e)” in Java. When no fault-specific Catch is
around to take care of the current fault, this all-purpose safety net steps in to handle it. We can
find out the name of the fault our catchAll is dealing with using the Oracle BPEL-specific XPath
function bpelx:getFaultAsString(), which we can use, for example, to assign the name of the fault
to a local variable.

Chapter6: Process-Oriented BPEL 181

B g Vo«
= | | |
3 1
& i
5 CopyPatienthameToLocalvariable ! o 0 ¢
4 l] hpekesremntaFanlt hpws: calertinnF alire |
]
: l l B |
| ,
1
= RetrlevePatientData 1 L—J L—J [:]
: HandleRemoteFaulk_butHow HandleSelectionFailure_Grakuly Cakchall
i
]

Terminate_process_is_MOT_graceful

o

. ‘ ch
> {20 OO | I ; | ‘
' i

¥

Thirow_PaticntNotFoundFault

k.

A=

FIGURE 6-21. BPEL scope RegisterPatientData with FaultHandlers

So far we have discussed faults that originate in our external partners or in the BPEL run-time
engine. There is another category of faults: The faults defined in our own process and thrown in
our own logic. These faults are used to control the flow in the BPEL process. By throwing a fault,
we interrupt the execution of a scope and hand control to a fault handler for that type of fault.
Thus, we can make out-of-line jumps across the process that can be very useful. So in reality, it is
more of a control (or flow) type of activity than an exception in the meaning we discussed before.

We use the BPEL Throw activity to instantiate a fault of a specific type. The type of the fault
thrown does not need to be predefined in the WSDL or BPEL process—we can just throw any
fault (name) we like. We can associate data with the fault by specifying the faultVariable attribute:

<scope name="RegisterPatientData">
<variables>
<variable name="localFaultNameString"
messageType="client:PatientAppointmentServiceFaultMessage"/>
</variables>
<faultHandlerss>
<catchAll>
<sequence>
<assign name="RetrieveFault"s>

182 Oracle SOA Suite 11g Handbook

<copy>
<from expression="concat ('the original fault', ora:getFaultName())"/>
<to variable="localFaultNameString" part="faultPayload"/>
</copy>
</assign>
</sequence>
<throw name="Throw_PatientNotFoundFault"
faultName="client:PatientNotFoundFault"
faultVariable="localFaultNameString"/>
</sequence>
</catchall>
</faultHandlers>

The variable used as the fault variable needs to have been defined earlier in the scope or
on some higher level. It needs to be based on a message type—not a simple or complex XML
element—in one of the WSDL documents associated with the application.

Faults that are thrown like this can be caught by higher-level faultHandlers. In this example,
the PatientNotFoundFault fault is thrown in the catchall handler of the RegisterPatientData scope.
The fault is handled by a Catch action at the process level:

B <process name="PatientAppointmentService"
<variables>

<variable name="faultNameString"

messageType="client:PatientAppointmentServiceFaultMessage"/>
</variables>

<faultHandlers>
<catch faultName="client:PatientNotFoundFault"
faultVariable="faultNameString">
<empty name="CatchFaultThenNothing"/>
</catch>
</faultHandlers>

When we run the PatientDataService and feed unknown patient data in, the PatientNotFound
fault will be thrown because of the RemoteFault that occurs when the PatientDataService returns
a fault. That fault is then caught at the process level. Figure 6-22 shows the results in the run-time
console.

Sometimes we can recover from the faults—Dby retrying an operation after a little waiting time
or through an alternative execution path. However, some exceptions we have to accept as
irrecoverable. The best we can do for such faults is ensure that we turn them into meaningful
faults as specified in the WSDL, with relevant associated data, and inform the consumer of the
BPEL process. The latter is done in one of two ways, depending on whether the BPEL process was
invoked synchronously or asynchronously. In the synchronous case, the fault is returned via the
Reply activity:

I <faultHandlers>
<catch faultName="client:PatientNotFoundFault"
faultVariable="faultNameString">

Chapter6: Process-Oriented BPEL 183

@

rocarea Brtorsl

i@ P ahor Mo ordlipts

)

CagyPatmmibg..

= nma—"paplaad or I'...

="hitk e ff s rea . e g f 0000 FAriLSchame-instancs”
Segaent arrdsp e REp:f fstmeabthews Baspitel. com fpatiant) PetisekD sta Fory
LA P
mkism™ rizahle

[S-E | ¥ [l
P wm etk Fschomesaraclocombpelfcubension”
- T BT m " T AP

Ratrinvafsbia... 1
gty warishlefesprarwion rooalf .
I AFath VErishin or SEFTIFELER

J petotal @ lia 429 .'J...u:nlnl.uuml:u:mm'u::!nl.uu [4]/RELILE LE SNpLF

= o port miren = "l kel "

|] Ewakkdmrss: | Ckkdg: S dackenss . e 5 50 A i R0 b sedseed -prscesss eelesctlend nd Luwa b

Cakrhall

i
wa bt xmilre=" hvitg: 7 hespmaloem)
Iﬁpp-mlmtmhu: #EE”
3 nlrnl-'Flnlﬂﬂ'll-ld
1 1 arvdag | dete WD s wew, o 340 D00 FEMUSCRE E"
l$l Cpfites dEFISTAN" o1 i1 00 m O A CI'I:I.I':'LIJI.”""'L'"! EEima-
in H-!Mv' Eha cebgleal foslitvomstolaali

FIGURE 6-22. Throwing and catching a business fault, defined inside the BPEL process

<reply name="reportAppointmentFault"
partnerLink="PatientAppointmentService"
portType="client:PatientAppointmentService" operation="process"
faultName="client:PatientNotFoundFault"
variable="faultNameString"/>
</catch>
</faultHandlers>

In the case of asynchronous conversation, the BPEL process sends a response to the consumer
by calling an operation on the callback portType. If the process wants to communicate about faults
with asynchronous consumers, it should specify the callback portType to include an operation that
deals with such messages. Note that a third way to communicate a fault in a service is through a
notification—an e-mail or chat message to a human operator or an event on the Event Delivery
Network.

SOA Suite Fault Management Framework

Outside BPEL processes and SOA composite applications, at the level of the Fusion Middleware
Control, we can use the Fault Management Framework to also catch faults that occurred in BPEL
processes or other service components. This framework allows us to define fault policy bindings

184 Oracle SOA Suite 11g Handbook

that prescribe automatic actions to be taken when a certain fault occurs. Such automated actions
include retrying the faulted operation, executing Java logic that may provide an alternative
workaround, and engaging a human administrator to handle the exception. The Fusion
Middleware Control provides insight into all exceptions and allows the administrator to recover
from recoverable faults. You will read more on this functionality in Chapter 16.

Undoing BPEL Scope Results Through
Compensation Handlers

BPEL processes can run for fairly long times—from less than a second to hours, days, or even
months. And in such a long period, many things can happen—things that may have an impact on
the running process. An example is the PatientAppointmentService: In the early stages of the BPEL
process, an appointment is scheduled for a patient through a call to the SchedulerService. That
service takes care of allocating resources such as a room and a doctor for the appointment and
recording the appointment in the agendas of all people involved. The patient is then notified—for
example, via e-mail—and the process goes into hibernate mode until the time of the appointment.
However, that happy flow may be interrupted when a cancellation request is sent to the process
instance. When that happens, some of the results produced earlier on in the process by scopes that
have already been successfully completed may need to be undone. In this case, we cannot—nor do
we need to—undo the notification that was sent to the patient. However, the allocation of resources
and the agenda entries created by the SchedulerService should be undone. We need to free up
those resources to make them available for other engagements.

For situations like this—when at some stage in a BPEL process instance we find out that we
need to roll back the changes caused by earlier actions in the process—the BPEL specification has
the concept of compensation. Through a compensation handler that we create for a certain
scope, we program the logic that should be executed to undo the side effects produced by that
scope. For every scope that makes changes, calls services, and causes transactions to occur, we
should consider implementing a compensation handler that undoes those changes or at least
takes the appropriate action. Note that an appropriate action to execute when a scope needs to
be compensated could consist of sending an e-mail to an administrator instructing her to make
certain manual service calls or even database changes in those cases where the services that were
called do not expose a compensate or rollback operation.

It is important to realize that a compensation handler is only ever executed for a scope that
has been completed successfully. Compensation handlers are executed automatically for scopes
that have been completed successfully and are nested in a parent scope that contains another
nested scope that caused the compensation itself (for example, by means of an exception). Scopes
that already have completed may have committed transactions themselves or invoked services
that completed transactions. Compensating for those local or remote transactions is not a simple
technical rollback but usually a functional challenge that requires from external services that they
publish compensation operations (unhire car, unallocate doctor, and so on).

We can also explicitly invoke compensation handlers through the compensateScope activity,
which we can execute for a specific scope from a faultHandler or compensationHandler on the
parent scope.

In the case of the PatientAppointmentService, we want to compensate for the appointment that
has been scheduled when that appointment is cancelled (see Figure 6-23). The appointment needs to
be unscheduled—the scheduler service needs to know that the appointment is cancelled and the
allocated resources are freed up. The actions that need to be performed for the compensation are
defined in the compensation handler that is defined against the scope that schedules the appointment:

Chapter6: Process-Oriented BPEL 185

<scope name="ScheduleAppointment">
<variables>...</variables>
<compensationHandler>
<sequence name="UnscheduleAppointment">

<assign name="AssignValuesForCallToUnschedule">...</assign>
<invoke name="InvokeUnscheduleService" .../>
</sequence>

</compensationHandlers>

The parent scope contains a fault handler that catches the appointmentCancellation fault.
When that fault is caught, the ScheduleAppointment scope is explicitly compensated. That results
in that scope’s compensation handler being invoked by the BPEL engine.

The onMessage branch in the Pick activity that listens for cancellation messages will throw
the appointmentCancellation fault that indirectly results in the appointment being scheduled (see
Figure 6-24).

Note that a compensateScope activity will only execute the compensation handler for the
scope it explicitly targets. The compensation handlers for the nested scopes are not automatically
called as well—these should be called by the compensation handler in the parent scope.

£

il agpindrascC sncnlstion

a '?:I L 4

ifedet gl S, y |Frreinncon =

_—
i i S i

o= JF——I——-——I——I——I-F—-——J. 3
P = ..

*

B

P

Ly D i s e

FIGURE 6-23. The compensation handler defined on the ScheduleAppointment
scope and invoked from the fault handler for the appointmentCancellation fault on the
ScheduleNotifyAndWait scope

186 Oracle SOA Suite 11g Handbook

RescheduleOriot Mashow

_l

SetCancelationConfirmation

v
&

ConfirmCancellation

Fl

'r
[}
i
I

o

=Thr0w.|'-\pp0intmentcancelledFauIt

......... e ——————

FIGURE 6-24. An appointmentCancellation fault is thrown when the appointment is cancelled.
This fault is caught at the ScheduleNotifyAndWait scope and compensated for.

Summary

In this chapter we looked at some more advanced BPEL activities that help us to create coarse-grained
composite services that invoke various finer-grained synchronous and asynchronous services. These
activities are also helpful when we use BPEL to implement a longer-running business process that
involves human actors as well as automated services. Chapter 10 will discuss the integration of human
tasks in BPEL processes.

Correlation is an important BPEL mechanism that we discussed in this chapter. Correlation
is used by the BPEL engine to direct incoming messages to already-running instances of BPEL
processes. This allows consumers to update or interrupt existing instances or retrieve specific
information about them.

The last part of the chapter introduced fault handling in BPEL processes and discussed the
concept of compensation handlers that can be triggered upon business exceptions. These
handlers are used to undo the business effects produced by specific scopes in the BPEL process
instance that have already been executed.

The online chapter complement demonstrates in great detail and through step-by-step instructions
how the BPEL processes outlined in this chapter are to be created, deployed, and executed.

CHAPTER

Mediator Service
for Straight Talk and
No Nonsense

188

Oracle SOA Suite 11g Handbook

ow that we have introduced BPEL as a service component type, we will move on
to another SCA component type that often works together with BPEL components:
. the Mediator. This is an important component in the SOA Suite that takes on

| some of the core responsibilities described in Part | for the enterprise service bus.

Under close scrutiny, one could argue that all that is happening in SOA composite applications
is a more or less constant flow of XML messages—for example, the incoming request message that
flows to a service component, one or more messages from that service component that flow to
adapter services or other service components, and eventually a response message that flows back to
the invoker. Mediator components facilitate these XML message flows in composite applications—
by performing validations, transformations, both content- and header-based routing and filtering on
messages, as well as adaptation from synchronous to asynchronous, and vice versa, and various
other operations.

In this chapter, we will see how to use the Mediator in composite applications. The Mediator
will help us connect mutually incompatible components and services. We will also see how the
Mediator component is the perfect way to introduce entry points as well as exits to our composite
applications through the use of adapter services, without creating dependencies between the adapter
services and the service components in our application.

The file adapter is one of the technology adapters that is typically used in conjunction with a
Mediator component. It can read incoming files as well as initiate new instances of composite
applications to process the contents from these files. It can also write message out to files. This
chapter introduces the file adapter and demonstrates how it can be used together with the Mediator.

Note that the online chapter complement available on the book’s wiki contains detailed
instructions and more screenshots illustrating individual steps in the examples outlined in this
chapter.

The Mediator: From the Real World
to the World Inside the SOA Suite

St. Matthews interacts with the outside world (patients, suppliers, healthcare providers, and so on)
using hundreds of requests and events every day—people calling, e-mailing, writing letters,
faxing, or visiting in person with specific questions, commercial offers, or complaints. They want
to speak to doctors, managers, lab staff, IT specialists, or other hospital staff. The hospital has a
pool with secretarial staff trained in handling these requests. They perform a number of very
important functions, for both the callers and the professionals that will eventually deal with the
request. These functions include:

B Screening crank calls and rejecting requests that are irrelevant, disallowed, incomplete,
or impossible to deal with; they will make a log entry of each call.

B Dealing with callers from many different backgrounds, different terminologies (doctors,
chiropractors, dentists, ambulance drivers, teenage mothers), and various languages; the
switchboard acts as the first point of contact for external parties as well as between staff
from different departments inside the hospital.

B Ensuring that all required information is assembled before the request is passed on, to
enable the professional who will have to process the request to do this as efficiently and
effectively as possible.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 189

B Routing the request to the right professional at St. Matthews in the internally agreed-upon
way. Depending on the type of request and the professional it is forwarded to, that might
mean using a certain paper form, entering the request into an internal application, or
e-mailing a free-format message.

B Possibly following up on the request. The caller may have held the line, waiting for an
answer. Alternatively, the requester can be called, mailed, e-mailed, or faxed back with
a response to the request. Note that the response is sent in the format prescribed by the
communication protocol of St. Matthews; this frequently means substantially rewording
the reply from the hospital professional.

The pool is staffed at least from 7 a.m. until 8 p.m., thus making the hospital much more
available than any individual professional could ever be. Outside these hours, a voice response
system is active that allows recording of requests. Multiple requests that end up with the same
professional can be handled simultaneously by different members of the pool.

One important consequence of the pool is the insulation it provides between external parties
requesting services from the hospital and the professionals in the hospital ultimately rendering
those services. The internal workings of the hospital can remain invisible to the caller—he does
not need to know or understand them, and when they change, it will have no effect on his next
call. Besides, the specialists will have more time left to do what they do best: treat patients instead
of making appointments and so on. This insulation makes life so easy that many professionals
working in the hospital also use the pool to request services, rather than approaching their
colleagues themselves.

The Mediator Inside the SOA Suite

A Mediator performs a similar role in the SOA Suite as this hospital switchboard: It is the ultimate
messenger boy. Incoming requests to the services published in the hospital’s business domains
can be dealt with in very much the same way as the requests are processed by the pool of
secretarial staff.

Mediators can help provide a friendly interface for consumers: They can transform incoming
XML messages in a consumer-friendly format to the usually more specific, formal, strict format
mandated by some internal service that the messages are routed to. The responses can also be
transformed by the Mediator to a format that is easier for the client to understand before being sent
back—very much like the hospital switchboard rephrasing patients’ requests and doctors’ replies.

Frequently we have little or no control over the XSD of one side of message exchanges (that
is, of the external services we call). For example, when adapter services such as the database
adapter, file adapter, or AQ adapter either initiate the exchange or are at the receiving end, the
XSD representation of the message structure is typically generated for us. The same is the case
with messages sent from the composite application to external services: We do not always control
the XSD for the messages accepted by those referenced services. An important function of the
Mediator is to provide a mapping between the (canonical) model used within the composite
applications (or even within the enterprise) and the various event and message structures
delivered or required by services outside the composites.

The Mediator can receive XML messages, validate them, and route them based on their
contents to the appropriate target service at the current endpoint for that service. The Mediator
can also call one or more other services using as input a combination of the original request
message and the responses received from earlier service calls. It implements the so-called VETRO
(Validate, Enrich, Transform, Route, and Operate) pattern.

190 Oracle SOA Suite 11g Handbook

The Mediator can call both synchronous/asynchronous and fire-and-forget services and
provide a bridge between these two. It provides its own operations either synchronously/
asynchronously or as fire-and-forget, as desired. A Mediator component can also process business
events in addition to receiving service invocations—more on events in Chapter 9—and route the
event payload to the appropriate service provider. Instead of routing messages to other services, it
can also broadcast business events.

Mediators work well with adapter services that support alternative means of initiating service
execution than from formal invocation alone. Adapter services can feed data into the composite
application picked up from external sources such as files on the file system or an FTP server, from
e-mails, from new or changed database records, from queues or topics in MQ Series, Oracle
Advanced Queuing, or Java Messaging Service (JMS). Execution of the Mediator is not started in
this case because of externally originated service calls but by the adapter service that was
triggered to process some data from an external source. For example, the arrival of a file in a
designated directory may trigger the execution of a composite application. In a similar way,
Mediators work with adapter services to feed data to external targets, such as a file, database,
e-mail, or queue.

Mediator components can be used to implement a variety of integration patterns, such as
service virtualization, service aggregation, publish and subscribe, fan-in, and fan-out. The
Mediator plays an essential role in achieving decoupling and flexibility as well as reuse—the
essential ingredients for a successful SOA implementation.

Enterprise Service Bus: Mediator vs. Oracle Service Bus

Oracle SOA Suite contains two components that implement many characteristics of what
the industry has dubbed the enterprise service bus (pattern). An enterprise service bus (ESB)
provides decoupling between senders of service requests and the service providers. Among
the operations that we typically associate with an ESB are reliable messaging (receive and
send onward—do not hang on to a message any longer than you need to ensure it is
delivered), VETRO (Validate, Enrich, Transform, Route, Operate), service virtualization, split
and merge messages, queuing to handle unavailability of the service provider or throttle
peak loads, error handling, support for various message exchange patterns, and providing
some adaptation, for example, from an asynchronous provider to a synchronous requester.

The ESB pattern can be applied at various levels in the organization. We can discern,
for example, between the application level (for the message flow between components of
the same application), the domain level, the enterprise level, and the external level (for
message exchanges with parties outside the corporation).

Oracle SOA Suite 11g contains the Oracle Service Bus (OSB), the next incarnation of
BEA’s Aqualogic Service Bus (ALSB), as well as the Mediator component, the next
generation of the Oracle Enterprise Service Bus (OESB) that was introduced in the 10.1.3
release of the SOA Suite.

The Mediator is tightly integrated into the SOA Suite. It is primarily an intracomposite
mediation component that is deployed within a composite. OSB is often used to connect
multiple domains within the enterprise as well as to provide a service interface with
external parties.

This chapter discusses the Mediator component. In Chapter 13, we will take a close
look at the Oracle Service Bus.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 191

Note that the execution of a Mediator (instance) is typically very lightweight when compared,
for example, with a (stateful) BPEL process instance.

In short, the Mediator service engine provides a lightweight framework to mediate both at the
data and protocol levels between various producers and consumers of services and events within
the SCA service fabric and on its boundaries. It is the “man in the middle” between adapter
services, service components such as BPEL and Human Task, and external parties.

Note that the use of Mediator as man in the middle is not required per se by SOA Suite.
However, it is a best practice and provides several benefits that are discussed in this chapter.

Processing Files with Appointment Requests

Some family doctors will send the requests for appointments for their patients once per day in a
single file with comma-separated records. This file can be uploaded via a website or sent as an
e-mail attachment to a central e-mail address at St. Matthews. These files are collected in a shared
directory and need to be processed. The individual appointment requests that possibly arrive in
batch files need to be turned into calls to the Patient Appointment Service we discussed in the
previous chapter.

Introducing the Mediator and the File Adapter:
Routing and Transformation

Using the file adapter, we can create services with the capability to read incoming files and turn
the records in these files into XML messages—or that write files in various formats based on
inbound XML messages. The File Adapter Service we will create reads from files. It is wired to a
Mediator component that routes incoming messages fed in by the file adapter to consuming
services. The File Adapter Service could also start BPEL process instances; however, consider it a
best practice to link adapter services to Mediators that perform forwarding and transformation of
the XML messages produced by the adapter services.

The Mediator, in this case, routes the appointment requests retrieved from the files to the
Patient Appointment Service. It will have to perform some message transformation because the
structure and some of the data elements in the files are not perfectly matched with the Patient
Appointment Service interface.

The file format was specified many years ago and is used by several hundreds of doctors. The
format is a given, and is nonnegotiable. The service interface for the Patient Appointment Service
was specified in the previous chapter. It was not specifically designed with these doctors and
their files in mind, but we will work with it “as is.” The Mediator will help us bridge this gap.

For our discussion here, we will assume a much simplified format for both the CSV file and
the input message for the Patient Appointment Service.

NOTE
“ On the book’s wiki, you will find the screenshots for all steps
; described in this section. The most important ones are included here
as well.

File Adapter Service for Reading the Files with Appointment Requests

Creating the File Adapter Service is a simple wizard-driven process. Let’s first run JDeveloper and
create a new SOA application with an empty composite. Next, drag and drop File Adapter in the
SOA Component Palette to the Exposed Services lane on the left side of the Composite Editor.

192 Oracle SOA Suite Mg

The Adapter Service Conf

Handbook

iguration Wizard opens, as shown in Figure 7-1. It lets us configure a

service based on the file adapter, described by a WSDL and supported by an XSD.

Obviously, the CSV files uploaded by the doctors do not adhere to an XSD specification.
Fortunately, the file adapter can be configured to take files in CSV format and produce XML
messages from the records in the files that can then be picked up by a Mediator for further
processing. Note that in this case the Mediator is not invoked by an external party but rather
triggered by the File Adapter Service that itself is kicked off whenever polling reveals a new file
present to be processed. Also note that a single file can trigger the instantiation by the File
Adapter Service of multiple instances of the composite application in the case of a file that

contains multiple records,

where each record results in an XML message that triggers a composite

instance. This pattern—one file is dissected to trigger multiple instances—is called debatching.
The specific file format of the incoming file does not need to dictate the request message
structure specified for the BPEL process that the contents of the file eventually are fed into, because
the Mediator will do the mapping or transformation between the two structures. If the file structure
changes, or if it turns out that the BPEL process can only handle selected records from the files,

L o

il
HFLANED RRATS

Pepmed S e

i s Crdios whion Aricerd - Hnp 2ol 8
T b

LL R e

i
w—- e oL el gl Al

Campciin i Ry

Cragpmand s Irimrai Bnemmras

e

Soap Aol 4

s mdsprrr o mrdp g, W wE

o stor Bepec Pie Hckaptar A I foe
e R | | i 2 arad d
— e T Bmmdand Dplarsly, U mlysie el e ey b dbeed by ey messdig 'R
Lt g y %
Frowrbaea: (@ PPy
) . i T AL
T Nl Bigd = wrpnt v T i I b b
S rvl-.-l-“:h | iy !.FT"
i 1o h s e
P T s T
ey Py
0 frereorenn End Pin
£ i Pl
| w vt N e
i b sy
[g, eyt
o I = . I Rt | Lo |
FIGURE 7-1. Adding an inbound file adapter service to the composite application

Chapter 7: Mediator Service for Straight Talk and No Nonsense 193

or if we decide that we want to audit or log the records that we process from the file, we can add
those capabilities to the Mediator without having to modify the BPEL process. In general, anything
we can do with a Mediator is probably best done in a Mediator, rather than in, for example, a
BPEL process. A Mediator is faster and lighter weight in terms of resource usage.

The File Adapter Service is configured through the wizard (see Figure 7-2). We have to
specify the structure and format of the file—single message or multiple messages (debatch or not),
single record type or multiple record types. In this case, the file contains multiple messages
(records) of a single record type. Next up are the location (directory) from where the service
should read the files as well as the name pattern for the files to process. This name pattern is used
as a filter that determines which of the files in the directory should be processed by the File
Adapter Servicer. Both “.” (single character) and “*” (any number of characters) can be used as
wildcards in the name pattern. We can also use regular expression operators to create more
complex filename filter expressions.

We should specify a logical directory name, rather than a physical directory path, as to not
couple the service definition to a deployment characteristic. In the composite.xml file or through
the environment-specific configuration plan (or even at run time through the Fusion Middleware
Control), we can specify the physical directory with which the logical directory is associated.
More on this in Chapter 17. We can indicate that files in subdirectories should be processed as
well—by marking the check box Process Files Recursively.

We typically do not want the file adapter to start processing immediately when the file first
appears: It may take some time before the file is completely transferred, especially when it is
large. By setting a wait interval, we instruct the file adapter to postpone the processing of the file
until that interval has passed.

EL

e romes e apevded i [Wl Wl 1 el b

Carmer e e Py e e

s, Vo e ey e 0T e r]

Filr Fillerineg
| P e e m

o i s g o s g b Py

v A e

B PO SRS PET BRI _BRCHIFL DS TIRT| i1 i i
") B L e, B
2 A A Ryl S

5 Ireer Ve o e P Tre
e |

o ke s A P -
Fobinh Hema s = Eibwr ol |1 E e
E

iy b b el o e by e el e e

indea lasd fa = ""-"':l.
e ':_..__

e

[-|-|-||-|E::| cwad |

FIGURE 7-2. Configuring the File Adapter Service

194 Oracle SOA Suite 11g Handbook

Files that have been processed by the File Adapter Service are usually removed from the
directory where they were uploaded; this behavior is configured through the check box labeled
“Delete Files?” If desired, we can have all files that have been processed archived to another
directory for which we can again specify both the physical or the logical directory. Be careful not
to archive into a subdirectory of the receiving directory and configure the adapter to recursively
process f