

PB Oracle SOA Suite 11g Handbook

®

Oracle SOA Suite
11g Handbook

ii Oracle SOA Suite 11g HandbookAbout the Author
Lucas Jellema is CTO at AMIS, an Oracle, Java, and SOA specialist based in Nieuwegein, The Netherlands.
He works as a consultant, architect, and instructor in diverse areas such as SQL and PL/SQL, Java, Oracle
ADF and WebCenter, and SOA Suite. The running theme through most of his activities is the transfer of
knowledge and enthusiasm.

Lucas is an author at the AMIS Technology Blog (http://technology.amis.nl/blog), for Oracle Technology
Network, and for international magazines. He is a frequent presenter at international conferences, including
Devoxx, JavaOne, Oracle Open World, ODTUG, UKOUG, OBUG, AUSOUG, and Oracle University
Celebrity Seminars. He was nominated Oracle ACE in 2005 and ACE Director in 2006.

Before joining AMIS in 2002, Lucas worked for Oracle Consultancy in The Netherlands, where he
was a member of the Internet Development Center of Excellence—working on classic products such as
Oracle Designer and Forms and the productivity boosters Headstart, CDM RuleFrame, Echo, Repository
Object Browser, and JHeadstart.

About the Contributors
Edwin Biemond is an Oracle ACE and solution architect at Whitehorses, specializing in messaging with
Oracle SOA Suite and Oracle Service Bus as well as ADF development with Oracle JDeveloper,
WebLogic Server, and Security. His Oracle career began in 1997 when he was a database developer
and administrator. Since 2001 Edwin changed his focus to integration, security, and Java development.
Edwin was awarded with Java Developer of the Year for 2009 by Oracle Magazine and has a popular
blog called Java / Oracle SOA blog, which can be found at http://biemond.blogspot.com.

Lonneke Dikmans lives in The Netherlands with her husband and two children. She graduated with
a degree in cognitive science at the University of Nijmegen, The Netherlands. She started her career as
a usability specialist, but went back to school when she lived in California to pursue a more technical
career. She started as a J2EE developer on different platforms (Oracle, IBM) and specialized in integration.
She now works as an architect, both on projects and as an enterprise architect. She has experience in
different industries: government, financial services, and utilities. She advises companies that want to set
up or improve a service-oriented architecture, and is responsible for her company’s SOA/BPM practice.
She speaks regularly at conferences in Europe and the United States, and publishes frequently on the
Internet and in magazines. Lonneke became an Oracle ACE Director in 2006.

Ronald van Luttikhuizen is a senior consultant and information and solution architect at Approach,
a Netherlands-based ICT consultancy focusing on SOA and Business Intelligence. Ronald has an MSc in
computer science from Utrecht University. He has experience in ICT in various roles, such as coach, (lead)
architect, (lead) developer, teacher, and team lead. In the last few years, Ronald had focused on architecture
and security in BPM and SOA environments. He has in-depth knowledge of Oracle Fusion Middleware.
Ronald is a speaker at (international) conferences such as Oracle OpenWorld and regularly publishes
articles on Oracle Technology Network (OTN), Java Magazine, Optimize, and more. In 2008, Ronald was
named Oracle ACE for SOA and Middleware, and in 2010 he became an Oracle ACE Director in that area.

About the Technical Editors
Jeff Davies is a senior principal product manager at Oracle, specializing on the Oracle SOA Suite
product. He is the author of The Definitive Guide to SOA: Oracle Service Bus. Jeff has over 25 years of
experience in the software field and has developed retail applications such as Act! for the Windows
and Macintosh platforms and a number of other commercially available applications. He has worked
as an architect and developer and ran his own consulting company for some years. Now, at Oracle, Jeff
is focused on the practical application of Oracle products to create SOA solutions.

Mike van Alst is an independent architect and Oracle ACE Director. Active within the IT industry
since 1984, Mike focuses on the added value that ICT should bring to an organization. Mike has done
several successful SOA projects in The Netherlands using Oracle Fusion Middleware. He runs his own
blog on SOA at http://soamastery.blogspot.com.

ii Oracle SOA Suite 11g Handbook

®

Oracle SOA Suite
11g Handbook

Lucas Jellema

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-160898-5

MHID: 0-07-160898-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160897-8,
MHID: 0-07-160897-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of
any information included in this work and is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, spe-
cial, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

Contents at a Glance

PART I
Introducing SOA, St. Matthews, and the Oracle SOA Suite

 1 A Typical Case of SOA: Introduction of St. Matthews Hospital Center 3

 2 Introduction to Service-Oriented Architecture . 15

 3 Oracle Fusion Middleware and SOA Suite 11g . 45

PART II
Developing Composite Applications

 4 XML and Web Services Fundamentals . 85

 5 First Steps with BPEL and the Database Adapter . 113

 6 Process-Oriented BPEL . 149

 7 Mediator Service for Straight Talk and No Nonsense . 187

 8 Rules Rule—on Decision Services . 233

 9 Event-Driven Architecture for Super Decoupling . 271

 10 The Missing Link: The Human Service Provider . 301

 11 Business Process Management with BPEL and BPMN . 341

 12 Leveraging Java in Composite Applications . 381

 13 Enterprise-Level Decoupling with Oracle Service Bus . 419

 14 Service Components and Composite Applications According to SCA 461

v

 Oracle SOA Suite 11g Handbook

PART III
Administration, Security, and Governance

 15 For Your Eyes Only . 481

 16 What Is Going On: Monitoring SOA Composite Applications 521

 17 Lifecycle Management: Testing and Dealing with Environmental Change 551

 18 Tactical Management and Governance . 587

PART IV
Beyond the Basics

 19 From Live Data to Real-time Insight and Action Using
 Complex Event Processing and Business Activity Monitoring 611

 20 ADF as UI Glue (and More) in FMW . 673

 21 The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 709

 A Migration from SOA Suite 10g to 11g . 727

 Index . 743

vii

vi

Contents

Foreword . xvi
Acknowledgments . xviii
Introduction . xx

PART I
Introducing SOA, St. Matthews, and the Oracle SOA Suite

 1 A Typical Case of SOA: Introduction of St. Matthews Hospital Center 3
Introduction to St. Matthews Hospital Center . 4

History . 5
Trends in Healthcare and Hospitals . 5

The Hospital from an Architectural Point of View . 6
Business Architecture View . 7
Information Architecture View . 10
Technical Architecture View . 12

Summary . 13

 2 Introduction to Service-Oriented Architecture . 15
Service-Oriented Architecture (SOA) . 17

SOA from a Business Point of View . 19
SOA from an Architectural Point of View . 23
SOA from an Implementation Point of View . 38

Summary . 42
The eAppointment Pilot Project . 42

 3 Oracle Fusion Middleware and SOA Suite 11g . 45
History of Middleware and SOA in Oracle . 46
The Mists of Time—Until 2001 . 46
Industry Standards: From 1998 until Now . 48
Not Invented Here (2001–2008) . 54
Complete, Open, and Integrated—2009 and Beyond . 57

vii

viii Oracle SOA Suite 11g Handbook Contents ixviii Oracle SOA Suite 11g Handbook

SOA Suite 11g: The Key Components . 60
Adapters . 61
Event Delivery Network . 62
Oracle Service Bus . 63
Business Activity Monitoring (BAM) Server . 63
Fusion Middleware Infrastructure and WebLogic Server 11g 64
Design Time . 66
Related Suites and Products in FMW 11g . 66

Getting Started with SOA Suite 11g . 68
Installation of SOA Suite 11g . 68
Create and Run the “HelloWorld” of Service Composite Applications 75

Migrating from SOA Suite 10.1.3 . 79
Summary . 80

PART II
Developing Composite Applications

 4 XML and Web Services Fundamentals . 85
Kicking the Tires on the eAppointment Project . 86
Introduction to XML . 91

XML Documents . 92
Data Design for XML—XML Schema Definitions (XSD) 93

The Service Contract: Introducing WSDL . 102
Analyzing the Service Interface According to WSDL . 103
Demo: Create the Simplest Web Service Implementation 108

Summary . 111

 5 First Steps with BPEL and the Database Adapter . 113
Introducing the Business Process Execution Language (BPEL) . 114

BPEL Ingredients . 115
Implementing the Composite PatientDataService . 117
The PatientDataService BPEL Process in More Detail . 120

Essential BPEL Activities . 123
The Assign Activity and the Use of XPath in BPEL . 126

Accessing the Database from a BPEL Process . 134
A Simple Select Service to Retrieve the Patient Identifier 134

Summary . 148

 6 Process-Oriented BPEL . 149
The Start of the Appointment Process . 151

Scope and Sequence . 153
Flow for Parallel Execution of BPEL Activities . 154

Invoking a Synchronous Web Service: Prepare Instructions . 157
Invoking an Asynchronous Service: Calling the Appointment Scheduler 158

Implementing the (Mock) Asynchronous SchedulerService 158
Calling the Asynchronous SchedulerService . 159

viii Oracle SOA Suite 11g Handbook Contents ixviii Oracle SOA Suite 11g Handbook

Sending Notifications from the BPEL Process . 162
Receiving Request Messages in Running BPEL Instances . 163

Consuming an Asynchronous Event: Handling a Cancellation 164
Request Appointment Details from the PatientAppointmentService Instance . . . 175

Dealing with and Compensating for Exceptional Circumstances 179
Handling Exceptions in BPEL Processes . 179
Undoing BPEL Scope Results Through Compensation Handlers 184

Summary . 186

 7 Mediator Service for Straight Talk and No Nonsense 187
The Mediator: From the Real World to the World Inside the SOA Suite 188

The Mediator Inside the SOA Suite . 189
Processing Files with Appointment Requests . 191

Introducing the Mediator and the File Adapter: Routing and Transformation . . . 191
Sending the Appointment Requests to the Patient Appointment Service 205

Adding Flexibility Using Filtering and Transformation of Messages 210
Content-based Routing for External Appointment Requests 210

Moving to Canonical Messages Using Domain Value Maps . 221
Value Mapping with Domain Value Maps . 222
Alternative Means for Value Translation . 225

Appointment Requests via a Web Application . 227
Opening Up the Composite to a New Message Producer 227

Decoupling the Database Adapter Service . 229
Decoupling the PatientAppointmentService BPEL Process 229

Summary . 231

 8 Rules Rule—on Decision Services . 233
Deriving the Type of the Appointment . 235

Creating a Business Rule Service Component . 235
Separating Out Business Logic Using Business Rules . 248

The Rationale Behind Business Rules . 248
Business Rule Architecture . 249

System Parameters and Global Formulas . 251
Setting Up the Central Library of System Parameters . 252
Adding Formulas to the Central Library . 255

Using a Decision Table to Establish the Appointment’s Priority 256
Introducing the Decision Table at Starbucks . 256
Logic for Determining the Appointment’s Priority . 257

Summary . 270

 9 Event-Driven Architecture for Super Decoupling . 271
Event-Driven Architecture for Super Decoupling . 272

Introducing the Event Delivery Network . 274
First Round with EDN: Consuming Events . 277

Synchronizing Patient Data Using the Event Delivery Network 277
Creating Picky Subscriptions Using Filter Expressions . 284

x Oracle SOA Suite 11g Handbook Contents xix Oracle SOA Suite 11g Handbook

Publishing Patient Details Change Events . 287
Publishing Database Events via Advanced Queuing . 288
Publishing EDN Events from BPEL Components . 289

Event Delivery Network in SCA and BPEL . 293
Analyzing the SCA Configuration Around EDN and Events 293

Decoupling Two-way Services Using the Discussion Forum Approach 296
Introducing the Discussion Forum Pattern . 296
A First Stab at the Decoupling from a Two-way Service

Using the Discussion Forum Approach . 296
The Discussion Forums Pattern in Action . 297
Extending the Event-based Patient Data Service . 298
Judging the Discussion Forum Pattern . 298

Summary . 300

 10 The Missing Link: The Human Service Provider . 301
Introducing the Human Task Service . 302

Architecture of the Human Task Service . 303
Exploring the Task Service in Detail . 305

Defining the First Human Task—Approve Highest Priority . 306
Steps for Implementing the Human Task ArbitrateHighPriority 306
Extend the Task ArbitrateHighPriority with Notification

and Group Assignment . 315
The Scheduler Service—Beyond Mere Decisions . 323

Tasks with Complex Outcomes . 323
Acceptance of New Patient: Complex Task Routing . 330

Accepting a New Patient . 330
Integrate the Task in the PatientDataService BPEL Component 335
See Some Action: Requesting an Appointment for a New Patient 336

Advanced Features for Human Tasks . 336
Business Rules for Task Allocation . 337
Java and WebService API for Human Workflow Services 337
Todo List Service Portlet in WebCenter . 338
Database Views for Inspecting Task Details . 338
Using Excel as an Alternative Worklist Application . 339
Human Task Callbacks . 339
Custom Task Allocation and Escalation Mechanisms . 339

Summary . 340

 11 Business Process Management with BPEL and BPMN 341
Business Process Management (BPM) . 343

BPM from an Architectural Point of View . 344
Design Guidelines . 346
Tools to Facilitate BPM Efforts . 346

Implementing Business Processes Through BPEL and Human Tasks 347
“Accept New Patient” as a Multitask Process . 348

x Oracle SOA Suite 11g Handbook Contents xix Oracle SOA Suite 11g Handbook

Introducing BPMN Service Components . 353
Comparing BPMN and BPEL . 353
Auxiliary Applications for BPMN Processes . 354
Designing the “Treatment Approval” Workflow Using BPMN 354
Simulate the Execution of the Business Process . 359
Implement the Treatment Approval Process . 362
Run the Business Process and Track Its Progress . 371

Revising the Business Process . 373
Online Redefinition of the BPM Process Through the Process Composer 374
Running the Revised Business Process . 377

Summary . 378

 12 Leveraging Java in Composite Applications . 381
Java Integration in Various Ways . 382

JMS Adapter Services . 383
EJB Service Adapter and ADF Binding . 384
Socket Adapter . 384
Spring Context Component . 384
Java Inside . 384
BPEL Entity Variables Bound to Service Data Objects . 385
Invoking SOA Suite from Java . 386

Using the JMS Adapter to Loosely Couple with Java Applications 386
Using the JMS Adapter to Integrate with the Finance

Department’s Java Application . 387
Embedding Java Logic in BPEL Processes . 394

Using Embedded Java in a BPEL Process . 397
The Spring Context Service Component for Custom Java Service Components 399

Using the Spring Context Service Component . 401
Leveraging the Outbound EJB Binding . 409

Create the EJBs and Configure the EJB Adapter Reference 409
Exposing SOA Composite Applications as EJB . 414

Inbound EJB Binding . 414
Inbound ADF Binding . 415

Summary . 416

 13 Enterprise-Level Decoupling with Oracle Service Bus 419
Introducing the Oracle Service Bus . 420

Functions Performed by the Oracle Service Bus . 421
OSB at St. Matthews . 427
Oracle Service Bus Product History and Architecture . 427

Sending Invoices to Patients Who Had Appointments . 429
Decoupling Between Business Domains . 429

The PatientAppointmentService and External Parties . 437
Adding a Virtualization Layer . 437

xii Oracle SOA Suite 11g Handbook Contents xiiixii Oracle SOA Suite 11g Handbook

Requesting the Appointment Status via E-mail . 446
Inbound and Outbound E-mail Transport in OSB . 446
Implementing the RequestAppointmentStatusPerEmail Proxy Service 450
Service Result Caching for the Retrieve Appointment

Status Business Service . 452
Requesting the Appointment Status via REST . 453

RESTifying OSB Services . 455
Parallel Processing of Appointment Requests Using Split-Join . 456

Parallel and Batch-wise Processing in OSB . 456
Choosing Between OSB and SCA Composites (and Mediators) 457

Rules of Thumb for Choosing Between OSB and SCA Composite 457
Summary . 459

 14 Service Components and Composite Applications According to SCA 461
Artifacts According to the SCA Specification . 462

Service Components . 463
Service Composites . 464

The SCA Way of Designing and Developing Applications . 468
Reuse of Service Components and Composites . 468
Nested Service Composites . 469

Granularity of Service Composites . 471
Service Composites Are the Unit Of… . 472
Splitting or Merging Service Composites . 474

Summary . 478

PART III
Administration, Security, and Governance

 15 For Your Eyes Only . 481
The Case for Security . 482
IT Security . 483

Security and SOA . 483
So What Exactly Is IT Security in a World of Services? 484
Best Practices for Applying IT Security . 488
Transport Versus Message Security . 491
Agents and Gateways Pattern . 495

Security in Oracle Fusion Middleware 11g . 496
Security Overview . 497
Oracle Web Services Manager (OWSM) . 499

Case: Securing SOA Composites . 504
Inspecting the SOA Composite . 504
Identity Administration . 505
Authentication Using WS-Security . 507
Authorization Using WS-Security . 511
Ensuring Integrity and Confidentiality Using Transport Security 514

xii Oracle SOA Suite 11g Handbook Contents xiiixii Oracle SOA Suite 11g Handbook

Monitoring Access to the BPEL Component . 516
Applying Security Using JDeveloper . 518

Summary . 519

 16 What Is Going On: Monitoring SOA Composite Applications 521
Monitoring Instances of Composite Applications . 522

Dashboard and Aggregate Metrics . 522
Instance Inspection . 526
Enriching the Composite Instance Audit Trail . 528

Responding to Exceptions in Composite Execution . 536
Policy-based Fault-Handling Framework . 537
Rejected Messages . 545

Managing Composite Instances . 546
Deleting Composite Instances . 547

Summary . 549

 17 Lifecycle Management: Testing and Dealing with
 Environmental Change . 551

Building and Deploying SOA Composite Applications . 552
Pre- or Post-Deployment Operations . 553
Compiling, Building, and Deploying from JDeveloper 553
Building and Deploying from the Command Line . 555
Deploying Through the Enterprise Manager Console . 558

Environmentally Friendly Customization Using Configuration Plans 559
Creating Configuration Plans . 559
Applying a Configuration Plan During Deployment . 565

Automated Unit Testing for Composite Applications . 568
Automated Testing . 569
Unit Testing in SOA Suite 11g . 569

Embracing Change . 575
Dynamically Adjusting Application Behavior . 575
Changing Composite Applications . 581

Summary . 584

 18 Tactical Management and Governance . 587
Introducing Governance . 589

Implementing Governance . 590
MDS Repository for Managing and Reusing Shared Artifacts . 592

Using MDS with SOA Suite 11g . 592
Administration of MDS Repositories . 598

Service Inventory for Gathering and Publishing . 600
DIY Service Registry . 600
Oracle Service Registry . 601
Oracle Enterprise Repository . 602

Summary . 606

xiv Oracle SOA Suite 11g Handbook Contents xvxiv Oracle SOA Suite 11g Handbook

PART IV
Beyond the Basics

 19 From Live Data to Real-time Insight and Action Using
 Complex Event Processing and Business Activity Monitoring 611

Sorting Out the Real-time Data Avalanche . 612
Complex Event Processing . 613
Event Processing and Monitoring in the SOA Suite . 616

Analyzing Continuous Data Streams Through Complex Event Processing 617
Data-rich Business Areas, Ready for the Harvest . 617
The Product Architecture of Complex Event Processor 619

Monitoring Temperature Sensors . 620
Getting Started with CEP . 621
Creating the CEP Application TemperatureReadingsProcessor 623
Test Run: Pinpointing a Malfunctioning Sensor . 625

Promotion from a Simple, Anonymous Signal to a Business Event 627
Integrating CEP with SOA Composites . 627

Oracle BAM: Real-time Business Activity Monitoring . 633
Business Scenarios for BAM . 633
The BAM Product Architecture . 634

Feeding the Output from the Complex Event Processor into the
Business Activity Monitoring . 636

Reporting on Temperature Sensor Readings . 636
Producing an Alert upon Fierce Temperature Deviations 645

Integrating SOA Composites into Business Activity Monitoring 647
BAM Adapter: Monitoring New Patient Appointments 648
Sending Appointment Status Updates to BAM . 651
Creating the St. Matthews Appointment Dashboard . 653
BAM Detecting the Scheduling Non-Event . 658

Fine-grained BPEL Tracking Using BAM Sensor Actions . 661
Introducing the BAM Sensor Action . 661
Monitoring the Service Level of the Patient Data Service 662

Tracking BPEL Process Execution Using Business Activity Monitoring
and the Monitor Express . 665

Applying Monitors to the PatientAppointmentService BPEL Process 666
Seeing Monitor Express in Action . 670

Summary . 671

 20 ADF as UI Glue (and More) in FMW . 673
Very-High-Level Architecture of ADF . 674
Custom User Interface to Request an Appointment . 677

Developing the Web Application Using ADF . 677
Creating a Custom Human Task Form for ScheduleAppointment 684

Developing Custom User Interfaces for Human Tasks . 684

xiv Oracle SOA Suite 11g Handbook Contents xvxiv Oracle SOA Suite 11g Handbook

Creating Real-time Dashboards Based on BAM in Custom ADF Applications 689
Implementing the Appointment Dashboard as a Custom ADF Application 689

ADF Business Components Feeding Events into the EDN . 692
Publishing the PatientHasMoved Event from ADF Business Components 692
Creating a SOA Composite Application to Consume

PatientHasMoved Events . 697
Improving the Efficiency and Elegance of the PatientDataService Using

SDO-Bound BPEL Variables—Tighter Data Integration for BPEL Processes 698
BPEL Entity Variables Bound to Service Data Objects . 699
Infusing the PatientDataService Application with SDO Interaction 701
An Entity Variable Has a Live Connection with the SDO 703
Implementing the Retrieve Patient Operation . 704

Summary . 707

 21 The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 709
Integration at the User Interface Level . 710

Alternative Methods for User Interface Integration . 711
Software as a Service and SOA Across the Cloud . 717

Concerns, Risks, and Challenges . 718
Requirements for SaaS Applications . 721

Summary . 725

 A Migration from SOA Suite 10g to 11g . 727
Overview of the Migration . 728
Run-time Environment . 730
Software Running on OC4J . 730

Web Services . 730
Moving from Different Standards and Technologies to SCA . 732

Historical Proliferation of ESB and BPEL Components . 732
Reusability Is the Key! . 732

Migrating ESB and BPEL 10g Projects . 733
Upgrading SOA Suite 10g Projects Using JDeveloper 11g 734
Upgrading SOA Suite 10g Projects Using Ant . 734
Comparing 10g and 11g Project Files . 739

Summary . 741

 Index . 743

Foreword

Oracle Fusion Middleware 11g is an extraordinary release in the rich history of Oracle. It
provides the foundation for Fusion Applications as well as a complete, open, and integrated
platform for the development and integration of modern as well as legacy applications by
organizations around the world. FMW provides the tools that enable Service-Oriented
Architecture (SOA), Business Process Management (BPM), and Event-Driven Architecture
(EDA), based on all the relevant industry standards. Business agility and adaptability is
the primary objective, achieved through reuse, encapsulation, interoperability, and loose
coupling. Oracle SOA Suite 11g, in conjunction with various other key products in the FMW
stack, helps organizations design and build, test and deploy, secure, administrate, and govern
composite applications according to these architectural guidelines.

This book provides a wealth of information to different types of readers interested in
Fusion Middleware and specifically the SOA Suite. Although developers are probably the
primary audience for this book, it would seem that IT management staff and business
analysts, as well as administrators and testers will find a lot of useful content from the
perspective of their respective jobs. The book provides a comprehensive background on the
business objectives and potential benefits of introducing Service-Oriented Architecture as
well as a concise historical overview of the evolution of both industry standards around
services and the Oracle technology that implements those standards, giving great insight in
the evolution of the SOA Suite and its role in Oracle’s Fusion Middleware stack. It goes into
the details of creating BPEL processes and making optimal use of the Mediator, Business
Rule, and other service components and adapters. But it also describes how to deploy,
secure, administer, and do governance for SOA composite applications. The last part goes
beyond the basics, touching on advanced topics and integration between many different
parts of Oracle FMW—including ADF and WebCenter—and concluding with a glimpse
into the future.

xvi

Foreword xvii

The publication of this book comes at a good moment—at the time when Fusion Applications,
as the biggest proof point of Fusion Middleware to date and the best example of applying SOA Suite
11g, has started its rollout. And at a time when key components such as BPM 11g, OSB 11g, OER
11g, CEP 11g, and Spring Java have all been integrated with SOA Suite 11g. The book manages to
discuss all these components—and their application to address real business challenges in an
imaginary hospital. And although this fictitious St. Matthews Hospital may not be an exact duplicate
of your own organization, it possesses many characteristics that will be similar enough as to make
the examples in this book useful sources of inspiration for your business environment.

Another aspect of this book is quite close to my heart. Back in 2004, Oracle launched the Oracle
ACE and ACE Director program, which formally recognizes Oracle advocates with strong credentials
as evangelists and educators in their communities. Since that day, some 200 Oracle ACEs have been
nominated as well as close to 100 ACE Directors, across all the various technologies and product
lines that are relevant to Oracle and its customers. It is great to see that no fewer than seven ACEs
and ACE Directors have collaborated on this book in some form, with many more of them making
smaller contributions along the way. It shows how a strong community has evolved among these
highly professional individuals and how they participate to share their collective experience and
passion for Oracle’s products with the rest of the world.

I trust this book will live up to its promise in empowering you to start taking advantage of the
full potential of Service-Oriented Architecture through the use of Oracle SOA Suite 11g. The
information, examples, and pointers should give you the knowledge, enthusiasm, and skills that
will prove invaluable when you consider, start, or continue using the product.

Thomas Kurian
Executive Vice President

Oracle Product Development

xviii

Acknowledgments

Many people have contributed to this book along the way. And undoubtedly I will not be
able to give them all the credit they are due. My heartfelt apologies for anyone I fail to
mention.

It all started with Peter Koletzke, who invited me to the Oracle Press author party and
introduced me to Lisa McClain, from McGraw-Hill. She liked what she saw—well enough
at least to sign me on as an author. Note that this was very early 2008, and to her credit she
kept faith where many might have given up on the project, as it was not a smooth ride for
the first year and a half.

I would like to thank Lonneke Dikmans, who joined me as co-author in the early
days of the project. She helped me shape it, devise the themes and chapters, the case of
St. Matthews, and the early drafts of several chapters.

The support I received at AMIS, from the management team and all my colleagues, was
simply tremendous. The interest they showed throughout the project, the patience they had
with me through some of the more challenging moments, and the encouragement they kept
giving me have been very important to me. I have especially treasured the discussions with
Peter Ebell, AMIS Expertise Lead for SOA.

Of similar importance was the support I have felt from my fellow members of the
Oracle ACE and ACE Director program. Their faith and positive expectations have been
very encouraging. I hope this final product meets with their approval.

I would like to thank the technical editors, Mike van Alst, Jeff Davies, and Ronald van
Luttikhuizen. Their feedback has helped to polish and refine the book, chuck irrelevant
content, and clarify anything I had made unclear. I would like to highlight Ronald’s
contributions: He has provided countless valuable comments and suggestions, from spelling
corrections to structural changes to chapters, and everything in between, both corrective
and constructive. He has made a huge and undoubtedly positive impact on the book.

Acknowledgments xix

Ronald was not only a diligent technical editor, he also contributed Chapter 15 (on security)
as well as part of the appendix (on migration from SOA Suite 10g). Edwin Biemond was co-author
with Ronald on the appendix, and also made a great contribution. Lonneke, originally co-
conspirator on this book, wrote the original drafts for Chapters 1, 2, and 13 and helped in many
other ways during the early stages.

It has been a pleasure working with the team at McGraw-Hill: Lisa McClain and Meghan
Riley. They kept me on track, forced me along when needed, and kept faith throughout a
sometimes bumpy ride. I hope the final result is as satisfactory to them as it is to me.

Many thanks to Rajni Pisharody and Bart Reed, the copyediting team at Glyph International,
who turned my fairly crude texts into the book that you have in your hands right now. We
worked together in an efficient, smooth, and pleasant way.

At various stages during the creation of this book, I have been helped by several members of
various Fusion Middleware Product Management Teams. They provided insights, backgrounds,
and inside information, as well as early access to documentation and software. They also
reviewed the initial table of contents and provided useful feedback throughout the process.
I would like to thank all who have helped, with a special word of thanks to Demed l’Her, Heidi
Buelow, Clemens Utschig-Utschig, Dave Berry, and Duncan Mills.

Last and never least, of course, I want to mention the vital support from Madelon and our
boys, Tobias and Lex.

Introduction xxi

Introduction

Service-Oriented Architecture is one of the major trends of our time in enterprise and IT
architecture. The promise of business agility, lower costs, and improved quality of
operations that SOA presents to business, based on concepts such as loose coupling, reuse,
encapsulation, and interoperability, attracts many organizations. Complemented with
Business Process Management (BPM) and Event-Driven Architecture (EDA), SOA can add
real and sustained business value to enterprises.

Adopting SOA in an organization is a serious challenge that will require major efforts at
various levels, from business to IT infrastructure. Crucial to the success of SOA adoption are
sometimes intangible elements, including mindset, collaboration across departments and
lines of business, communication, process orientation, and business analysis—in terms of
interfaces and contracts, with focus on reuse and loose coupling and the implementation of
proper governance.

When it comes to the actual implementation of the services and components that have
been analyzed and designed, there is a need for an SOA platform—a run-time infrastructure
that executes the applications and processes, handles service calls, and provides facilities
around security, exception handling, and management. Enter Oracle SOA Suite 11g.

SOA Suite 11g is one of the key components in Oracle Fusion Middleware, a prominent
platform to create and run agile and intelligent business applications and to maximize IT
efficiency by exploiting modern hardware and software architectures.

This book explains what SOA Suite 11g is, how it can be installed and configured, and
how its many components can be used to develop, deploy, and manage service-oriented
artifacts. It also discusses how SOA Suite interacts with other products in Oracle FMW.

xx

Introduction xxi

About This Book
The book is primarily targeted at software developers. Ideally the reader has some knowledge of
XML, SQL, and Java and perhaps PL/SQL, but these are not required to benefit from most of the
book’s content. Readers with administrative responsibilities will find a lot of material supporting
them in these tasks. Testers and (technical) architects will also learn a lot from large sections in
this book. IT management staff and business analysts will mainly benefit from Part I; if they have a
technical background, then Parts II and III will prove worthwhile as well.

The book is organized in five parts. Part I introduces the concepts that make up Service-
Oriented Architecture and describes the history of Web Services and SOA-related standards and
technology. It concludes with the installation of SOA Suite 11g and the creation and deployment
of the HelloWorld equivalent in SOA applications.

Part II discusses the development of SOA composite applications using the core service
components—BPMN, BPEL, Mediator, Business Rule, Spring Context, and Human Task—and the
technology adapters—File System, Database, JMS, and EJB. It also introduces the Oracle Service
Bus, the platform to implement the enterprise service bus that connects departments and external
partners.

Part III addresses administration and management activities. It focuses on security, deployment,
and lifecycle management, management of composites and composite instances, and dealing with
changes. Governance is the final large topic in this part of the book.

Part IV is called “Beyond the Basics.” It introduces two products that are closely related to the
SOA Suite core run time, but provide functionality that is usually considered nonessential and
more advanced. These products are Oracle Complex Event Processor and Oracle Business
Activity Monitor. This part also discusses the integration between SOA Suite and the Application
Development Framework (ADF). The last chapter looks at the application of SOA concepts
to user interfaces and also presents the case of SOA in SaaS (Software as a Service)—style
applications and cloud-based infrastructures.

Part V contains a number of appendixes with background information on migration, fundamental
XML technologies, detailed configuration of the SOA Suite run-time environment, and its APIs and
extension points. Note that three of these appendices are provided online rather than in the printed
book.

St. Matthews Hospital Center
Implementing SOA is meaningless without a tangible business context. Services address business
requirements, as do composite applications. To illustrate SOA and Oracle SOA Suite, this book
uses the case of a made-up hospital, called St. Matthews, that’s located in California—although it
has a surprising number of Dutch traits as well.

This hospital represents a series of business challenges that are found in organizations across
industries and countries. It has interactions with external parties (including customers and
business partners), strives to create more efficient business processes across departments that
combine automated actions and manual tasks, needs to implement security, continually faces
changing requirements with ever shorter times-to-market, and hopes to gain more real-time
insight into the current state of affairs.

Many of the solutions discussed in this book for St. Matthews set useful examples for similar
requirements in other organizations. And at the very least, St. Matthews provides a context that
most readers from many different countries will be able to relate to.

xxii Oracle SOA Suite 11g Handbook Introduction xxiiixxii Oracle SOA Suite 11g Handbook

How to Use This Book
The book you are holding is not intended as a reference manual that is easily used to look up
specific details on an operation or feature in the SOA Suite.

This book is primarily a guide that invites you to come along and explore the SOA Suite. It
introduces concepts and real-life requirements, using the imaginary St. Matthews Hospital as the
concrete example. It describes the functionality and features in particular components in the SOA
Suite and applies them to actual business challenges. Through step-by-step cases that go beyond
the archetypical Hello World and introductory order-processing examples, it demonstrates the
application of product features, provides hints and tips for using them, and suggests best
practices.

Most is gained from this book by not only browsing and reading it but by also getting your
feet wet by following along with the hands-on instructions in the book and the online chapter
complements. By having your hands do what your eyes are reading and your brain is processing,
you will have a multichannel learning experience that delivers the most thorough and lasting
results.

The main case in the book is the patient appointment process in which appointments with
doctors and other staff at St. Matthews Hospital are requested, approved by insurance companies,
scheduled, cancelled or kept, billed for, and reported on. The case is built up throughout the
book, each chapter leveraging the work done in the previous chapters. Even though you can read
individual chapters, be aware that they will often refer to decisions made in earlier chapters or
implementations created in a previous stage.

There is more to this book than meets the eye. In addition to the printed volume you are
currently holding (or reading on your electronic device), there are many online resources that
accompany this book: the book’s wiki, the online chapter complements, and the online appendices.

Wiki
An area inside the Oracle Wiki has been prepared for this book (see Figure 1). Organized per part
and per page, the wiki holds many (references to) resources, such as relevant sections in the Oracle
documentation for the SOA Suite and other components in Fusion Middleware, links to the OTN
forums and download pages, articles on blogs and websites that further illustrate or complement the
subjects discussed in the chapter, downloadable source code for the cases in the chapter, a link to
the online chapter complement, and errata. The wiki is expected to be a dynamic environment,
with new resources being added as time goes by, including news on software releases, new articles
and showcases, information on relevant events, and discussion threads.

The wiki for this book is located at
http://wiki.oracle.com/page/Oracle+11g+SOA+Suite+Handbook.

Online Chapter Complements
There is only so much detail you can include in the 800-or-so pages available in this book. I have
been struggling at times to find the right balance in the level of detail, the number of screenshots,
and the scope of the topics given the physical limits of the book. I finally found the solution via
online chapter complements: Most of the chapters in this book are accompanied by an online
complement that provides more detailed step-by-step instructions, an abundance of screenshots,
additional background information, and practical tips. Some cases are only briefly introduced in
the book and worked out in detail in the complement.

xxii Oracle SOA Suite 11g Handbook Introduction xxiiixxii Oracle SOA Suite 11g Handbook

You will find the online chapter complements as PDF documents organized per chapter on
the website http://groups.google.com/group/the-oracle-soa-suite-11g-handbook-/web.

Online Appendixes
In addition to the 21 chapters and one appendix in the book you have before you right now,
there are three more appendices available online. Furthermore, an extended version of the
appendix in the book has been published online as well (as Appendix A). The information in
these appendices is not considered essential to every reader, but can be useful in specific
conditions nevertheless. You will find these online appendices from this URL: http://groups.
google.com/group/the-oracle-soa-suite-11g-handbook-/web.

Appendix A: Migration from SOA Suite 10g to 11g
Appendix A describes the aspects and approaches for migrating from SOA Suite 10g to 11g. The
online complement for this appendix discusses several detailed scenarios for specific components
and artifacts that may not be relevant in all situations. Among the topics discussed in this online
extension are:

 Domain Value Maps ■

Custom XPath and XSLT functions ■

FIGURE 1. The wiki for SOA Suite 11g Handbook with references to online resources

xxiv Oracle SOA Suite 11g Handbook

Advanced BPEL characteristics, fault policies, unit test suites ■

Oracle Web Services Manager (OWSM) ■

Technology adapters (WebService, JMS, AQ, and Database) ■

Appendix B: XML Fundamentals
Chapter 4 contains a high-level introduction of the standards and technologies that form the
foundation of the SOA Suite: XML and XSD, WSDL, and SOAP. For many readers, that overview
will serve as a refresher for what they already have internalized. For others who may not have
had as much exposure to Web Service technologies, it may not nearly be enough to feel
comfortable around some of the discussions in the book. Appendix B provides more background
and details on the fundamentals of XML, XSD, XPath, and XSLT. Furthermore, it provides links to
more extensive resources.

Appendix C: Preparation and Configuration of the SOA Suite Infrastructure
Chapter 3 provides brief instructions on the installation and initial configuration of the SOA Suite.
The online chapter complements for this and several other chapters contain or refer to additional
instructions for configuration of the SOA Suite, the technology adapters, and some additional
components such as a local e-mail server. This appendix gives detailed instructions for the
configuration steps required on top of the default installation of the products to carry out all the
hands-on examples described in the book.

Appendix D: SOA Suite Run-time APIs, Hooks, and Extension Points
Chapter 12 discusses how Java can be used to implement functionality inside composite
applications and how SOA applications can be accessed from within Java programs. This
appendix discusses the interaction from Java as well as PL/SQL with the run-time APIs of the
SOA Suite itself—for example, for reporting on running and archived instances and performing
administrative tasks upon them, for publishing events to the Event Delivery Network, or to
leverage APIs in the workflow service and the User Messaging Service. It also describes how we
can extend the functionality of the SOA Suite run-time engine by registering custom XPath
functions that can add functionality to BPEL, Mediator, and Human Workflow actions.

Part
I

Introducing SOA,
St. Matthews, and the

Oracle SOA Suite

This page intentionally left blank

ChaPter
1

A Typical Case of SOA:
Introduction of St. Matthews

Hospital Center

3

4 Oracle SOA Suite 11g Handbook 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 5

OA is BAD! So there, I have it off my chest. It had to be said. It needs to be out in
the open. It is really BAD!

Okay, what is SOA again? Service-Oriented Architecture. So clearly it is about
architecture (more on that in the next chapter) and about services (more on those
throughout the book). But what is this BAD stuff?

It is my way of drawing your attention to the fact that SOA is really about Business Agility and
not about technical tricks. SOA helps us realize Business Agility through Decoupling. There you
have it: BAD. Business agility means the ability of an organization to adapt to new circumstances,
opportunities and threats, regulations, and technological advances. IT departments that enable their
organizations to flexibly and speedily adjust to new business requirements give these companies a
competitive edge, lower costs, and higher quality in the execution of business processes.

SOA gets its significance from the objectives it helps achieve. Some of the most important of
these are defined at the business level—not in technical terms, and not directly in the context of
the IT department. Business agility is an example of these objectives—others are discussed in the
next chapter. Other benefits from SOA are achieved in the IT department; of course, these, too,
will ultimately contribute to the business results.

SOA is not primarily driven by technology—it is not the latest version of a development
framework or a faster edition of a CPU. It is first and foremost driven by business requirements
and with business objectives in mind. Having said all that, it should be equally clear that service-
oriented computing and the establishment of Service-Oriented Architecture are only possible
because of the technology available to us.

This book is about technology alright: It will show you how the Oracle SOA Suite can be used to
implement many different aspects of SOA. You will see demonstrations of all the components in the
SOA Suite, each playing a slightly different, specialized role in creating services and implementing
business processes.

However, all these demonstrations of applying tools and technology can only make sense in
the context of an organization that works to achieve business objectives. You do not do SOA stuff
just for the technological kick—you do it for business reasons.

This book uses a fictional hospital, St. Matthews Hospital Center, as the business context for
the concepts discussed in this book (Service-Oriented Architecture, events and Event-Driven
Architecture, and business process modeling) as well as the examples of using Oracle SOA Suite
11g and its components. Although we use a hospital, the issues and solutions described here
apply to other organizations as well.

This chapter introduces St. Matthews and its business challenges, and provides some of the
background that will help you understand the examples discussed later in the book. This chapter
might also help you draw parallels to your own organization, especially concerning some of the
challenges facing St. Matthews, both at the business level and from an IT perspective. The
hospital is fictional, constructed from many examples collected in dozens of organizations around
the world, many of them based in The Netherlands.

Note that you can safely skip this chapter (and the next one for that matter) if all you are
interested in right now is getting going with the SOA Suite.

Introduction to St. Matthews Hospital Center
St. Matthews is a regional hospital that primarily serves residents in its vicinity. Lately it has attracted
some patients from a wider region and even from out of state. The hospital has formulated its mission
as follows: “St. Matthews is a modern, flexible, and capable hospital for the residents in the region.

S

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 5

Its goal is to offer high-quality medical care that is easy to access, in an environment where patients
feel at home.”

It is important to note that both flexibility and quality are in the mission statement. Flexibility
is needed because of the ever-changing rules and regulations in healthcare, as well as new
treatments and advances in pharmacy, clinical technology, and logistical facilities. Quality is
needed because of increasing competition between hospitals, scrutiny from consumer groups and
patient platforms, and lurking personal injury lawyers. Quality is not only measured in terms of
medical success, but also in terms of patient satisfaction. Even though the mission statement does
not explicitly mention it, it goes without saying that a sound financial state of affairs is a necessary
condition.

History
St. Matthews has a long history. It was founded in 1850 as a hospital for the poor. Money to build
the hospital was raised by local members of the Catholic Church. The nurses were nuns who moved
from different cities to help out in the hospital. In 1975, the hospital merged with the hospital in the
neighboring town and was named St. Matthews. In the 1990s, government policy was to merge
small local hospitals into larger regional hospitals. St. Matthews merged with two smaller local
hospitals to form a regional hospital in 1995. Nowadays, funding for new buildings and patient
facilities still depends on the local business community: In 2000, a building was donated by local
companies to celebrate the 150th birthday of the hospital. Today, the nuns are gone and have been
replaced by trained nurses and volunteers. The board of directors is supported by managers of the
different departments, and supporting units make sure the hospital can run its day-to-day business.
The medical specialists are still there, supported by sophisticated technologies such as
electrocardiogram (ECG), laboratories that test tissue and blood samples, and imaging technology.

Trends in Healthcare and Hospitals
As mentioned previously, in the 19th century, most hospitals were built to care for poor people.
They depended on gifts from the community. Patient satisfaction was not a major concern;
fundraising and public health issues were. At the end of the 20th century, a trend toward larger
hospital organizations with professional management resulted in many mergers of small hospitals.
Cost reduction and higher quality through scaling were the main drivers for this trend. However,
this did not prevent waiting lists from growing. Nor did it reduce the cost of healthcare as it was
intended. This was partly because of developments in the field. Technological improvements in, for
example, imaging technology, as well as medical breakthroughs in treatment of diseases, led to
higher costs for healthcare per patient. Treatments have become more expensive due to advanced
equipment, and an increase in patient life expectancy has resulted in more and prolonged treatment
per patient, which in turn results in more treatments per patient.

Other trends are increased security demands and the potential worldwide spread of diseases
due to globalization. Because of the increased use of the Internet, doctors don’t have a monopoly
on medical knowledge anymore. Consumer organizations and patient platforms have become
important lobbyists. As a result, patients are given more choice: They can decide to go to another
hospital if they wish. This makes it more important for hospitals to compete with each other and
meet their patients’ demands. Government regulations dictate that hospitals report their results in
a standardized format to an electronic address. National initiatives have started to encourage
collaboration between healthcare providers.

6 Oracle SOA Suite 11g Handbook Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 7

The Hospital from an Architectural Point of View
Technology has become more and more important in the day-to-day operation of St. Matthews.
This applies to medical equipment such as magnetic resonance imaging (MRI), but also to the
application of Information and Communication Technology (ICT) in all sections of the hospital.
Business processes, strategy, and financial management rely on information management. This
demands a strong alignment of IT with the business. For that reason, the hospital decided to
investigate whether applying enterprise architecture would be beneficial. They have hired an
enterprise architect from a local firm to get them started. Mary Johnson has been hired for the
project. Her assignment is defined as follows: Translate the vision and strategy of St. Matthews
into an architecture plan and define the steps needed to realize this architecture.

Showing the board of directors the value of enterprise architecture at an early stage is important
to ensure she has the support from the management of the hospital. Enterprise architecture can
structure and link business information and propose IT solutions that support business goals. This
does not have to take years of thinking and documenting, because a lot of the information is usually
already available in some shape or form and can readily be (re)used.

Mary proposes to define three views—or layers—to start with:

 A business architecture view that describes the processes and functions in the hospital. ■
The strategy, organization, and key performance indicators (KPIs) are modeled in this
view as well as the primary processes, management processes, and supporting processes.
She starts by modeling a high-level overview. Details will be added later, when she has a
better idea of the problems and strengths of St. Matthews.

 An information architecture view that describes the structure of the data and the ■
different applications that implement the structure. The data models within the different
applications are pretty easy to find. The more interesting part in this context is formed
by the data that is exchanged between information domains and between organizations.
The structure of this data should be application-independent because it already involves
at least two interacting applications. A common approach is to abstract the data formats
away from the applications in canonical data models.

 The applications are assigned to business information domains, not to the departments
that are currently using the applications.

 A technical architecture view that describes the hardware, middleware, and network ■
topologies of the hospital. Mary herself will not go into the details of this physical layout
of the hospital. The information management department has diagrams describing
these details. The focus for Mary right now is on the vision, or a statement of direction.
Therefore, she will focus on logical components for this view.

Because the hospital has no tool to model the enterprise architecture, Mary decides to
introduce the Oracle BPA Suite as a modeling tool because it has support for several diagrams
that depict architectural designs.

The following sections elaborate on the three different architectural views to provide an
overview of the current situation of St. Matthews.

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 7

Business Architecture View
Mary decides to start from the top with the business architecture. She begins by identifying
strategy and business needs. She has a lot of information to work with; although the hospital has
little or no experience with enterprise architecture, it has started several initiatives that can be
used as input for the business architecture. As part of these process improvement efforts, the
hospital has already described most of the important processes. Other input for the architecture is
the annual report published by the board of supervisors. To identify the business principles, goals,
and drivers that the architecture plan needs to support, Mary will describe the following:

 The organization and its external partners ■ This will identify the stakeholders for the
architecture in St. Matthews.

 The strategy that St. Matthews has formulated, with some critical success factors for ■
the goals and strategy It is important that design decisions be linked to these goals
and critical success factors to make sure the architecture actually supports the business
objectives and strategy of St. Matthews.

 The key performance indicators ■ The KPIs will be used to measure the success of
St. Matthews in achieving the identified goals.

 The business processes in the hospital ■ The architecture should chart the primary,
supporting, and management business processes of St. Matthews.

The Hospital Organization
The region that St. Matthews serves has 250,000 residents. St. Matthews has a capacity of 600
beds. There are 2,000 employees, 125 medical specialists, and over 100 volunteers. The hospital
has three locations to make it more accessible to patients and visitors. The hospital treats 150,000
patients per year, both outpatient and inpatient care.

The hospital board of directors is responsible for the strategy. The board of supervisors is
responsible for the governance code that is in place. The board of directors consists of both
medical staff representatives and patient representatives. Several supporting departments report to
the board of directors, including:

 Marketing and communication ■ The marketing and communication department is
responsible for both internal and external communication. This means the department needs
to communicate with patients, their relatives, and employees. The external communication
is directed at people who live in the region, as well as family doctors and other healthcare
providers such as pharmacists and physiotherapists. One communication medium the
hospital uses is the Internet. The website of the hospital consists of several parts: general
information about the hospital, a site where patients and visitors can get information, and an
area that is only accessible for registered healthcare providers.

 Human resources management ■ The human resources department is responsible for
recruitment of all personnel, assessments, and career planning. The human resources
department tries to minimize the number of employee sick days, decrease the number
of people who quit their job, and increase the efficiency of the departments. Career
planning, selection criteria, and assessments of personnel are all important instruments
for the HR department to increase job satisfaction, as are fringe benefits.

8 Oracle SOA Suite 11g Handbook Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 9

 Information management ■ Apart from being responsible for IT in the organization, the
information management department is also responsible for the alignment of IT with the
business. This means technical employees as well as business-oriented people work for
this department to communicate with other departments about changes, requirements
for new projects, and opportunities that new technology can offer the hospital. In the
technical architecture view of this chapter, we will look at this department in more
detail.

 Quality assurance ■ This department is responsible for quality assurance. It monitors
the quality and effectiveness of the hospital. Part of the quality system is patient safety
and compliance with rules and regulations. This department is responsible for handling
patient complaints and reporting key performance indicators to different regulatory
organizations.

 Legal services ■ This department takes care of all legal affairs of the hospital and its staff.
It deals with patients’ rights, hospital liability, legal aid for employees in liability suits,
compliance issues when new laws arise, and firing employees who don’t perform.

 Accounting, planning, and control ■ This department translates the plans of the board
of directors to the budget. This includes cost for patient care (production budget),
exploitation costs, personnel costs, education budget, planned investments, and current
and planned projects.

The primary processes in the hospital are all about patient care. Two clusters are responsible
for patient care:

 Surgical care cluster ■ This cluster is organized around specialties such as plastic surgery
and dermatology, but also contains units responsible for operating rooms, admissions,
planning, and so on.

 Internal care cluster ■ The internal care cluster has units such as cardiology and lung
diseases, as well as units for psychiatry and social services.

Two units support the day-to-day operation of the patient care units:

 Supporting units ■ This department includes groups such as laboratories and radiology.
Sophisticated medical technology is applied here by highly technically skilled people.

 Facilities ■ This unit includes hotel services, procurement, housing, technical services,
and logistics. These facilities are highly visible to both the patients and employees of the
hospital.

External Relations
In general, a hospital deals with three types of relations: other healthcare providers, insurance
companies, and patients (see Figure 1-1). The other providers can be hospitals, ambulance
services, pharmacies, family doctors, and many other types.

The hospital treats patients and cooperates with other healthcare providers to accomplish this
treatment. The patient pays the insurance company for health insurance. Depending on the
insurance policy, the hospital is paid by the insurance company or by the patient. When the latter is
true, the patient might (try to) claim the money from the insurance company, depending on the
coverage specified by the policy. The hospital sometimes reports a planned treatment in advance
to make sure it is covered by the patient’s insurance policy. With some insurance policies, patients

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 9

are required to go to the hospital designated by the insurance company. Therefore, the insurance
companies are important to St. Matthews. They determine to a significant degree how many patients
will actually come to St. Matthews for treatment instead of another hospital.

Strategy
St. Matthews has chosen the strategy shown in Figure 1-2. This strategy is centered around the
main objective of becoming the preferred hospital for patients.

FIGURE 1-2. Objectives and critical success factors

Be Preferred
Hospital

Increase patient
satisfaction

Cost efficient Increase quality
of care

Customer
centered

Integral care
Top quality

medical care
Process

improvement
Cooperation

FIGURE 1-1. Relationships in healthcare

Insurance
companies

Patient Provider

Reimburses Reimburses

Pays

Pays

Treats

Cooperates with

Reports treatments

Pharmacy
Ambulance

services
Family doctorHospital

10 Oracle SOA Suite 11g Handbook Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 11

This main objective can be realized through three subobjectives:

 Increased patient satisfaction ■ Several critical success factors are associated with this
objective. First of all, the hospital needs to be “customer centered.” Not the doctor, but
the patient should be the starting point in the daily operations of the hospital. Second,
the hospital needs to provide for integral care. So rather than having specialized clinics
for different diseases, the hospital should be a one-stop shop for patients. The third
and final critical success factor to increase patient satisfaction is process improvement.
Process improvement can reduce the chance of human error and also increase patient
satisfaction because care will be more efficient. Shorter waiting lists and appointments
scheduled in accordance with patients’ needs—not driven by the doctor’s schedule
alone—are examples of this.

 Quality improvement of care via innovation and process improvement ■ New
technologies—both medical and information technology—can improve the quality
of patient care. Process improvement can reduce the number of errors and therefore
also improve the quality of medical care. Cooperation with other hospitals, insurance
companies, family doctors, and pharmacies also increases the quality of care.

 Cost reduction ■ Because of advances in medical science and technology, more
expensive treatments can—and will—be given in the future. This means that people will
live longer and need even more care. Cost reduction is important in this competitive
market, especially for insurance companies. The critical success factor for cost reduction
is process improvement.

To accomplish all this, St. Matthews will create an environment that is safe and inviting and
that stimulates entrepreneurship for its employees.

Key Performance Indicators
All hospitals need to report on specific key performance indicators (KPIs) to make a comparison
of hospitals more straightforward for patients, insurance companies, and healthcare providers that
refer patients to hospitals.

The key performance indicators that need to be reported can be divided into the following
categories: patient satisfaction, safety and quality, patient care and organization of patient care,
personnel and organization, financial organization, environment of the hospital, and research and
education.

St. Matthews has decided to use these KPIs as input for process improvements. To accomplish
this, the KPIs have been associated with one or more of the defined objectives. These objectives
should eventually lead to the main goal of St. Matthews: to become the hospital of choice for the
region, which itself is measured through the number of patients treated in St. Matthews.

Information Architecture View
St. Matthews has gone through several reorganizations and mergers. To organize the information
in the hospital, Mary decides to define functional or business domains (see Figure 1-3), rather
than departmental clusters. Every domain is characterized in that it is the owner of both the data
it uses and of the associated processing methods.

The hospital uses a number of IT systems to support the different business domains. A common
type of system in the healthcare industry is the Hospital Information System (HIS). This usually is

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 11

a commercial off-the-shelf (COTS) application from a large vendor in the field. It is designed to
manage all the hospital’s medical and administrative information in order to enable health
professionals to perform their jobs effectively and efficiently. It often consists of the following
modules: clinical information system, financial information system, laboratory information system,
nursing information system, pharmacy information system, picture-archiving communication
system, and radiology information system.

After the mergers, the department of finance and administration (F&A), as well as the human
resources department, managed to consolidate their IT: F&A migrated everything to SAP ERP
Financials, and the HR department successfully consolidated on PeopleSoft Enterprise HCM. The
consolidation of the other applications has never been finished. There is no single integrated Hospital
Information System, but instead a series of applications with overlapping functionality and data. With
the exception of the picture-archiving communication system and the radiology information system,
all modules are custom built as separate applications for almost every department. This means that
the processes that span departments are inefficient and there is an abundance of errors. Errors occur
because different departments use different definitions for the same concepts or have the same
definition for different concepts. There is no such thing as a shared canonical data model. Errors also
occur because data that is available in one department is not available in the other department.
Another source of errors involves typos and spelling errors.

A representative example is the current process of making appointments between doctors and
patients. There are more than ten applications somehow supporting this process currently in use at
St. Matthews, varying from custom-made applications to Microsoft Excel spreadsheets. Recently,
this has become an even bigger problem because of new laws and regulations. The government
demands that reports about KPIs be delivered to a central website every year. Because there are
different systems, data is duplicated all over the place. The information about the same patient in
real life can be stored in various ways with different attributes and attribute values in different
systems. This means that compiling these reports requires manual development of queries, despite
all the Business Intelligence (BI) tools at hand. Another challenge is integration and
communication with external partners.

External Partners
As mentioned in the discussion of the business view of the hospital, St. Matthews has relationships
with other healthcare providers, with patients, and with insurance companies. There is a growing
need for information exchange. The intent is to use international and national standards as much
as possible for this information exchange, both for interaction between two applications within the
hospital as well as for exchanges between St. Matthews and external partners. One such industry
standard in the health sector is HL7, which is often used in Hospital Information Systems.

FIGURE 1-3. Business domains of St. Matthews

Encompasses Encompasses Encompasses Encompasses Encompasses

S
up

er
io

r

Patient
care

Finance and
accounting

Human
resources

Patient
communication

Hospital
management
and support

12 Oracle SOA Suite 11g Handbook Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 13

Insurance Companies Currently, point-to-point integration is used by St. Matthews in batch
processes to exchange data with insurance companies. Every night, files with records of treatments
are sent to the insurance companies for processing. After some time, the results are sent back and
checked by the hospital. If a claim record is invalid, it needs to be resent with the next batch.

The files to be submitted to the insurance companies are created using several different
modules in the Hospital Information Systems. A custom application that gathers and reconciles all
the data from the different Hospital Information Systems has been built by the IT department of
St. Matthews. The results returned from the insurance companies are loaded into SAP ERP Financials.

Patients Little electronic communication exists between patients and the hospital at the moment.
There is a website with information about the location of the hospital, visiting hours, and telephone
numbers, information about the organization of the hospital, and information about disease
prevention. “St. Matthews online” is the content management system that is being used by the
hospital to facilitate this portal-like site. The marketing and communication departments would
like to extend its functionality and create more online interaction with patients—for example, to
have patients review and update their appointments and perhaps even request new appointments.

Healthcare Providers Many national and international initiatives have started to facilitate electronic
exchange of data between healthcare providers. St. Matthews is part of the following initiatives:

 Electronic Patient File ■ A national initiative to facilitate the exchange of patient files
between healthcare providers.

 Regional information exchange ■ Family doctors in the region and St. Matthews have
agreed to use a common system to register referrals.

 Hospital collaboration ■ St. Matthews collaborates with several other hospitals to do
research on certain topics. Details about the research are exchanged and aggregated to
speed up the process and improve the quality of the work.

Technical Architecture View
As was described in the previous section, a lot of different systems are used in the hospital. The
hospital has a combination of commercial off-the-shelf (COTS) applications and custom-developed
applications. The COTS applications, such as SAP/R3, Planon, and PeopleSoft, are all implemented
by external companies. The projects are managed by the project managers of St. Matthews. The
custom-built systems are developed using PL/SQL and Oracle Forms by developers in the in-house
IT development unit. The Business Intelligence solutions are also implemented by their own
development department. A variety of solutions are used for this: Cognos, SQL, and PL/SQL for
“on-demand” queries, reports from SAP, and custom reports using Oracle Reports.

The information management department is responsible for the technical architecture. However,
the relationship between the other departments and the information department is deteriorating. IT
projects are almost always over budget and late, and the users don’t get what they need or what they
expect. Blame is shifted from the IT development and project management units to the business
consultancy group and the application management and support team, but that, of course, does
nothing to solve the problem.

Software and Programming Languages
The hospital runs three operating systems: Enterprise Linux for the servers, Windows Vista for the
workstations, and Windows 7 for the Microsoft Exchange Server. The company has standardized

Chapter 1: A Typical Case of SOA: Introduction of St. Matthews Hospital Center 13

on Oracle for the DBMS. This is true for all applications: Planon, SAP/R3, PeopleSoft HCM, “St.
Matthews online,” and the custom applications. Two web servers are currently in use: Apache
2.0 and Microsoft IIS. The middleware installed at the hospital is Oracle Application Server 10g.
The hospital uses Microsoft Active Directory for authentication and authorization.

The programming languages used in the company are PL/SQL, Oracle Forms, Java and JEE,
ABAP for SAP, and PeopleCode for PeopleSoft.

Interfaces and Standards
At the moment it is impossible to tell exactly how many interfaces exist between applications. There
are many point-to-point interfaces. Some are part of products that were bought, such as the interface
between Planon and SAP. Others are custom-built by developers using a variety of techniques and
protocols. These range from database links to HTTP calls and file exchange through FTP. A lot of
time and effort is spent in keeping these interfaces up and running.

The hospital has not been able to standardize all the external communication, yet. However,
like most hospitals, it does use HL7 version 3.0 for communication about patient data.

Summary
St. Matthews is a fairly well-run regional hospital that strives to be the preferred hospital for
patients and insurance companies. To become the preferred hospital, St. Matthews needs to
increase patient satisfaction, become more cost-efficient, and increase the quality of care. This
has an impact on both the business and the IT sides of St. Matthews. The hospital has decided to
use enterprise architecture to trace the business drivers all the way down to the IT systems, and
even the infrastructure they run on. This will ensure that the architecture of the hospital is fully
aligned with the (business) strategy of St. Matthews. The next step is to design a suitable
architecture for St. Matthews, given the business objectives discussed in this chapter and
continued in the next.

This page intentionally left blank

Chapter
2

Introduction to Service-
Oriented Architecture

15

16 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 17

lexibility, or business agility, is an important goal for modern organizations in order
to compete in fast-changing markets, keep up with ever-evolving regulations, and
satisfy demanding customers. Globalization and the Internet have greatly influenced
the rate of change and the range of opportunities for interacting between business
partners and reaching out to consumers.

It is the challenge to IT departments the world over to meet the quickly changing requirements
from the business—and ideally to provide their organization with innovative capabilities and a
competitive edge based on new technological advances. IT needs to be flexible to cater to fast-
changing business needs and to realize short times to market—preferably at lower costs and with
higher quality. IT can add value to the business in the form of new products and services. Last but not
least, IT can improve current operations by reducing (human) errors, reducing the turnaround time of
processes, and providing real-time insight in the execution of operations and its possible bottlenecks.

Architecture strives for alignment between business and IT. This chapter introduces Service-
Oriented Architecture (SOA) and discuss how it delivers specific capabilities in the overall
alignment: SOA aims at providing the agility to quickly respond to changing requirements by
rewiring existing and assembling new functionality through the reuse of existing building blocks
(services) and providing capabilities in an interoperable, cross-platform, and cross-domain
manner; functionality is exposed through services with well-defined interfaces and encapsulated
(hidden) implementations.

Associated with SOA are various other topics that warrant our attention. One such topic is
Business Process Management (BPM)—a continuous process improvement endeavor that’s
focused on designing, executing, and monitoring business processes and looking for ways to
optimize them; business processes in BPM consist of human tasks and automated operations—the
latter implemented through calls to Web Services. BPM promises more control and higher quality,
lower costs, and an intrinsic capability to rapidly change the process flow. BPM integrates with
and can build on SOA. BPM is discussed in Chapter 11.

Another topic that borders on SOA and that can be seen as an extension or specialization of SOA
is Event-Driven Architecture (EDA)—a pattern that promotes a high degree of decoupling between
systems and components through event-based, asynchronous communication via a generic mediator
from producers to consumers; EDA allows business processes to initiate service execution in
response to events without creating direct dependencies that would hamper the ability to change the
components. This chapter briefly introduces EDA; it will make reappearances in Chapters 9 and 20.

SOA, BPM, and EDA are related, as you can see in Figure 2-1.The business processes in BPM
raise events when certain business conditions occur and call services to perform automated tasks.
The services may invoke other services as well as trigger additional events. The event mediator
handles the events produced by processes and services, and propagates them to any registered
consumer—possibly a service to be initiated or a process to be triggered or updated.

The SOA Suite contains components that help to implement these architectural patterns and
also works with other products that provide some of these capabilities. In Part II as well as in Part
IV of this book, we will use these components to implement services that provide reusable
capabilities and that can be assembled in even more complex and specific business services with
higher added value. We will also use them to develop business processes that combine human
tasks with the automated functionality from the services. Events produced by services and
processes are processed by the event delivery network that hands them to consumers.

Before we start using the SOA Suite product, let’s first further define and discuss Service-
Oriented Architecture, albeit on a very high level. We will identify some legitimate reasons for

F

Chapter 2: Introduction to Service-Oriented Architecture 17

companies to start with SOA and show why Mary, our architect from Chapter 1, is considering
applying these architectural patterns and approaches for St. Matthews as part of the proposed
architecture solution. Note that if you just want to get started with the SOA Suite product, you
can skip this chapter for now and turn to Chapter 3 for installation and quick-start guidelines.

Service-Oriented Architecture (SOA)
Service-Oriented Architecture is a way of organizing applications and processes in terms of
services. Functionality available through automated means is exposed in services that can easily
be used and reused. However, services do not need to be automated: An action performed by a
human actor can be regarded as a service, too. In fact, one of the key aspects of working with a
service is that we do not know how it is implemented or whether it is automated at all.

An important objective and benefit of working with services is decoupling—the ability to have
services interact while minimizing their interdependencies. The latter allows us to make local
changes with minimal impact on the whole environment, such as modifying the implementation of
a service, changing its physical location, or even replacing one service with another. In addition,
complex services and processes can easily be composed that offer rich, dedicated functionality by
assembling results based on multiple less complex services.

SOA is an architectural concept that has different implications for different people in an
organization.

Several important factors that drive the choice for SOA are:

 Increasing competition and changing rules and regulations leading to the need for more ■
frequent and more rapid changes in business processes and IT support for those processes

 A higher degree of integration throughout an organization, across business domains, and ■
across technology platforms

 Increased interaction with external business partners and governmental agencies ■

 A more process-oriented approach in the way IT supports the organization and a quest ■
for lower costs and higher quality through reuse of existing, proven IT assets

The cornerstone of SOA obviously is the concept of a service. SOA is all about services. And
what exactly is a service? For our purposes, we can define a service as a collection of capabilities

FIGURE 2-1. SOA, BPM, and EDA

Event 1EDA

Business process

BPM

SOA

Event 2

Human
step

Automated
step

Service

18 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 19

(sometimes referred to as operations) that are defined in a standardized interface contract and can
be invoked by external consumers. The implementation of the service is encapsulated, hidden
from the consumers. Services in the context of this book are usually Web Services that have the
additional quality of interoperability through the use of industry standards, both for specifying the
service contract and for the protocol used for making calls to and receiving responses from the
service.

We can discern several types of services:

 Business services ■ Services that offer quite dedicated, often complex functionality
defined in business terms and supporting tasks in business processes (called business
services or task services); these services are typically exposed to consumers throughout
the business domain, the enterprise, or even to a wider audience.

 Elementary services ■ Services with fine-grained functionality with limited scope, often
working in the context of a single business object; these services do not offer very high
value by themselves, but are good candidates to be reused in the more complex business
services. As a result, these so-called entity or elementary services are only locally
exposed.

 Technical services ■ Services with no immediate business relevance, supporting other
services with cross-domain, technology-oriented capabilities—for example, for logging,
transforming, and exception handling. These services are also called utility services.

NOTE
There are many excellent and usually quite voluminous books on the
concepts and principles of Service-Oriented Architecture (see this
book’s wiki for some references). This chapter only aims at giving a
pragmatic introduction to some terms and concepts; please refer to
one of these extensive resources for detailed discussions and thorough
definitions.

We will discuss SOA from several points of view. We will first look at SOA as seen from the
business—in terms of business considerations such as cost, risk, opportunity, time-to-market,
flexibility, and customer satisfaction in a way that makes sense to nontechnical managers. This
discussion includes IT and the IT department—not at the technical level, but in the same
business-oriented way.

Next, we discuss SOA from an architecture point of view. We try to get clear on what
architecture tries to achieve and what the key architectural principles of SOA are. This discussion
introduces a number of terms and definitions that are reused throughout the book. It provides a
high-level description of several key infrastructural elements used in an SOA—without going into
specifics concerning the components in SOA Suite 11g that play the role of those elements (that is
for later in the book).

Finally, we come to the technical and implementation level and go into some technical aspects
of adopting SOA. We also talk about some of the crucial industry standards and technologies that
make SOA happen today.

It is unavoidable to have some overlap between these three points of view. They certainly do
not make sense in isolation.

Chapter 2: Introduction to Service-Oriented Architecture 19

SOA from a Business Point of View
Why would you want to adopt SOA from a business perspective? Service orientation promises
business agility. SOA is “BAD,” as we saw in the previous chapter: Business Agility through
Decoupling. SOA should help us to adapt our business processes and the underlying IT systems
much faster, cheaper, and more reliably than we could in the past. Reuse of proven building
blocks in new composite services and reworked business processes should allow both for quicker
time to market (reuse instead of building from scratch) and higher quality (reuse of services that
have been tried and tested). The decoupled design helps to minimize the impact of changes—in
terms of effort and risk. There is, of course, a cost benefit in all this as well.

Another trigger for SOA from a business perspective is competitive pressure, demands from a
key customer or state regulations. An organization may simply need to have the capability to
interact through (Web) Services because important business partners or the government stipulate
that. Just the implementation of a Web Service interface exposed to the outside world does not
necessarily force the organization to adopt SOA across the board, of course, but it can be the
crystallization point.

What does it mean from a business point of view to describe your architecture in terms of
services? We have our working definition of a service—capabilities described by a contract and
exposed in a way that hides the implementation and allows invocation by various types of
consumers, potentially in different business domains, in other technology realms, and even in
external organizations. There are different types of services (business, elementary, and utility), but
from a business point of view, we only care about services with a clear meaning and value to the
business and in business processes—services that the business wants to use in processes and user
interfaces or offer to internal consumers in the same or in different business domains or to external
clients and partners. Examples of services with business relevance are:

 A service that returns all information about a patient to consumers inside the hospital. ■

 An ordering service that customers of a manufacturing company can invoke to place ■
their orders (and track the status of those orders).

 An invoicing service for suppliers of a particular company that they can send their bills to. ■

 The discount calculation service that returns to internal invokers the total discount on ■
an order calculated based on all business logic regarding customers, loyalty programs,
order size, and current campaigns. This service is typically invoked as part of a business
process around order handling—a process that may very well be initiated by the ordering
service mentioned previously.

 Central communication services available to all departments in the organization, such as ■
an e-mailing service or a service for letter printing and mailing.

These business services are usually composed of one or more elementary and utility
services. Flexibility is achieved in several ways. Organizations can rapidly create new business
services through composition of existing services. In addition business processes are defined
as a sequence of human activities, logical flow elements, and calls to business services. As a
result, changing a business process, or even creating a new one, is usually a fairly simple task
because it largely means rewiring the flow and adding or modifying calls to the services. The
hard work was already done—when the services were implemented. Another benefit we get

20 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 21

from the layered approach with business services building on elementary services is the
adaptability it gains us. It is not just rewiring or recomposing services and processes; it is also
the fact that because of reuse, especially of elementary services, a required change (for
example, in a calculation or the structure of a database table) typically only needs to be applied
once in a single service implementation. Fine-grained, low-level functionality is ideally
implemented only once in an elementary service that is frequently reused.

Talking about products and services is not new for organizations or business people. The
great thing about SOA is that not just the business is speaking terms of services and products, so is
IT. This will make communication between IT and the business easier, both during the initial
realization as well as in maintenance. Defining business services won’t make the architecture
service-oriented, obviously. IT needs to follow through the concept of services all the way down
from the business processes and services to the elementary and utility services that do the actual
work. Reuse and decoupling need to be engrained in the IT organization.

Existing applications and business logic will have to be exposed as services. Most of the
capabilities the services will need to provide are already available, hidden away in legacy
applications, ready for reuse. We do not and should not need to throw those away and replace
them with code built from scratch. However, we need to win the hearts and minds of the IT staff
to adopt the service-oriented way of thinking and acting. This will take training, coaching, and
coaxing. As with any new acronym, SOA may be perceived as trying to change the world in a
dramatic way—and it should be clear to those involved that while things will change, it is not so
much a threat as an opportunity to hang on to many good things and improve what has been
holding them back all these years. It is with the IT staff just as it is with the applications
themselves: Wrap and reuse, do not rip and replace.

We will have to do some work to service-enable the existing applications, both for exposing
their reusable logic—as discussed earlier—as well as to make them reuse services offered to
them. We may currently have duplication of business logic in various systems—that situation is
undesirable. Ideally, any piece of logic is implemented only once, is exposed as an elementary
service, and is invoked from anywhere that logic is currently used. We should identify such code
duplication, determine which of the “duplicates” is the one to stay, service-enable that one, and
ideally call the service from all other current duplicate locations to reuse and de-duplicate.

When and why should an organization move to SOA? Basically there are three types of
motivators—although they are usually related and overlapping:

 Strategic reasons ■

 IT needs ■

 Tactical reasons ■

Strategic Reasons
Organizations that are in fast-changing markets, or in markets with fast-changing laws and
regulations or frequent acquisitions and mergers, need to be able to react to these changes in
an effective and efficient way. The organizations have to “embrace change” as their mantra.
Every single change is usually tactical, but the structural capability of an organization to adapt
to changing circumstances is a strategic objective. An organization can decide to use SOA as a
way to achieve this strategic business goal to continuously adapt and improve.

SOA can help reduce time to market by making it possible to compose new services out of existing
services and redesign business processes in short cycles. SOA can help reduce cost by reusing existing

Chapter 2: Introduction to Service-Oriented Architecture 21

assets (such as mainframes and commercial off-the-shelf software such as ERP systems) in new online
services. Some examples of companies in such markets are telecommunication companies (fast-
changing markets because of new products and technologies and mergers), insurance companies
(fast-changing laws and regulations, mergers, and internationalization issues), and government agencies
(changing laws and regulations, cost reduction, and e-government for easier and uniform accessibility).

In the case of St. Matthews, these issues apply as well: The hospital needs to compete with
other hospitals, and changes in laws and regulations occur frequently. To the hospital, reusing
existing assets is very important. St. Matthews has invested heavily in a number of custom-made
systems in the past and is very reluctant to start all over again—because of the time it would take
and especially the costs involved. Mary decides to address the need for agility at St. Matthews
and to propose SOA as part of the envisaged architecture to the board of directors.

Tactical Considerations
Organizations often suffer from inflexible IT systems. Large monolithic applications tend to mix
business logic, user interface logic, and data; there is no clear separation of concerns, and logic is
duplicated across applications. These systems often serve multiple functions from different
domains. For example, the clinical information system that St. Matthews uses started out as a
billing system. To send a bill to a patient or the insurance company, the system needed to include
information about the treatment this patient received. There was no system available that offered
this information, so it was decided to add this capability to the billing application.

The IT department and the hospital administrators started to use the system as a patient
administration system. Soon afterward, it was further expanded with data about laboratory tests.
What started out as a lean, easy-to-maintain, single-purpose system grew to a large monolithic
system serving several purposes. When somebody requests a change for one purpose, this
strongly impacts or even breaks some area of functionality—because it is all manacled together.
Every change becomes more difficult to realize, takes more time, and becomes more risky and
expensive. The user satisfaction with the system has understandably gone down.

Introduction of more loosely coupled components will reduce the cost of individual
changes—because the modifications do not ripple out—and increase the ability to satisfy requests
from the users in a timely fashion. Of course, this flexibility comes at a price—or at least so it will
be perceived initially: Architecture needs to be thought through, middleware infrastructure is
required, and existing applications need to be service-enabled. In the very short term—the scope
of a single business requirement—this will not have a great return on investment, obviously.

In the longer run, the IT organization can once more provide the service levels required by
the business in terms of time to market, quality, and cost of new requirements as well as the
predictability of the software development process. The IT organization could, instead of being the
eternal bottleneck, step forward and even suggest business functionality based on technological
advances. We will discuss this in more detail in the implementation view.

Loosely coupled components that are autonomous and relatively independent are an example
of a more federated approach in the IT environment. Benefits of this federated approach with
clearly identifiable, stand-alone components that can be united to work together include the early
and more thorough design effort with each individual component, the standardization that is
applied, and the resulting ability to deploy these components on various servers—thus allowing
the optimal load distribution (and software license cost).

This focus on federation with loosely coupled stand-alone components leans on another
important objective: intrinsic interoperability across applications, locations, business domains,
project teams, and technology platforms. Interoperability between stand-alone components is the

22 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 23

essence of service orientation. Interoperability requires standardized interfaces described by
contracts along with up-front trust and acceptable service levels (for example, performance and
reliability).

Somewhere in the middle between strategic and tactical considerations is the desire to be
vendor-independent and to have the freedom to choose “best of breed” solutions for specific
areas of functionality. Instead of being forced to buy all components from a single vendor, many
organizations want to be able to shop around for the best possible deal and yet still have all
products interact. A service-oriented approach and the underlying open standards enable that
interaction. Therefore, all software components—whether bought from commercial vendors,
acquired from open-source initiatives, or custom developed—must comply with this approach
and these standards.

Sometimes a company starts with SOA because of a specific, urgent need from a specific
department in an organization. An example can be a marketing division that wants to introduce
short-term campaigns based on popular movies: As soon as a movie hits the top-10 charts, they
want to start giving away gadgets with online orders. Those gadgets need to be sent along with
the order to keep the extra cost down.

This means that the company needs to combine existing functionality (sending out orders)
with new features (ordering and sending gadgets). Using Web Services to open up the legacy
systems, as well as creating an ordering process that includes sending gadgets, can solve this
problem. A Service-Oriented Architecture makes it possible to use the same functionality in
different processes, and thus to be able to change these processes quickly and support specific
short-term needs.

Another typical example is an organization with a very important customer that has demanded
a Web Service interface for specific interactions, replacing the current manual operations or
FTP-based data exchange. This customer needs to be satisfied urgently and, therefore, a small part
of existing applications needs to be service-enabled. This can be done in relative isolation, without
enterprise architecture dictating a service-oriented approach or SOA strategy.

Tactical—or perhaps we say “opportunistic”—implementation is different from a strategic
SOA initiative in several ways: Strategic SOA is more planned and takes into account long-term
goals. Tactical SOA solves short-term, localized problems. Strategic SOA has a bigger impact,
potentially or eventually impacting the entire organization. Tactical SOA has limited impact; it is
far less invasive. The benefit of tactical SOA is immediate and limited; that of strategic SOA can
take a little longer. Strategic SOA takes governance into account, whereas tactical SOA tries to
manage Web Services along with the traditional application. This poses a risk: If an organization
is mid-size to large, it becomes unmanageable after a while.

Tactical SOA makes sense for while, but should mature to a strategic SOA to survive the hype.
In fact, one may wonder whether “tactical” and architecture can really go together. Tactical use of
SOA principles may solve an urgent, localized problem, but does not touch upon the true meaning
and value of SOA. Even though SOA concepts are applied and service-oriented technology is used,
there is no real thrust for decoupling, reuse, and enterprise-wide business agility. When tactical
SOA-like implementations are not followed up with a strategic SOA initiative, they are hardly any
better than traditional point solutions and point-to-point architecture.

Summarizing SOA from the Business Point of View
An organization usually has some combination of reasons to start with SOA. It might start tactical
and move to strategic after the first successful projects. Or it starts with a combination of strategic
objectives and IT considerations.

Chapter 2: Introduction to Service-Oriented Architecture 23

From a business perspective, there are both strategic and IT reasons to start with Service-Oriented
Architecture for St. Matthews. In Chapter 1, the following strategic objectives were mentioned:

 The hospital needs to cooperate with other healthcare organizations to improve the ■
quality of care.

 The hospital needs to improve patient satisfaction by becoming a customer-centered ■
organization.

 The hospital needs to reduce cost. ■

Moving to a Service-Oriented Architecture can support these goals. Cost can be controlled by
reusing existing assets, cooperation is facilitated by the use of (Web Service) standards, and
patient satisfaction can be increased by offering new services to patients faster and ensuring that
all departments in the hospital share information about patients.

The main IT reason to move to SOA is the current inability to handle change. As just mentioned,
a simple change request from the business takes up too much time due to duplication of business
logic and data redundancy, as well as silo-style applications in which process flow, business logic,
user interface logic, and data integrity are intertwined and not available for reuse.

Mary has already defined the business services and products of the hospital. She will propose
to the board of directors to start a proof of concept with the information management department
to evaluate the suitability of the architecture choice based on SOA for St. Matthews.

SOA from an Architectural Point of View
Service-Oriented Architecture is an architectural style. But before we can investigate what this
means, let’s first define what we mean by architecture. The definition of architecture used in
ANSI/IEEE Std 1471-2000 is as follows:

“The fundamental organization of a system, embodied in its components, their relationships
to each other and the environment, and the principles governing its design and evolution.”

Components and Their Relationships
The A in SOA stands for architecture. So when we are discussing SOA, we are speaking about
architecture, and therefore we are talking about the organization of the system. For SOA this means that
the organization of the system is described in terms of services. A service itself consists of several parts:

 A service interface that defines the operations, parameters, and result of a service in a ■
common, standardized language.

 A service implementation that “does the actual work.” ■

 A service contract that defines the terms of use: who has been granted access to the ■
service, how often one can use it, and any fees charged for calling the service. Also
part of the contract are the service levels offered by the service provider. These specify
characteristics such as maximum service response times, availability (opening hours) of
the service, and the load the service can handle.

Figure 2-2 shows the two key roles in SOA:

 Service consumer ■ The application, business process, or (other) service implementation
that uses the service

 Service provider ■ The component or application that provides or implements the service

24 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 25

The third role in this figure (service registry) is discussed later on: It is the intermediary that
brings consumers and providers together.

Architectural Principles around Service Orientation
As defined earlier, principles governing the design and evolution of service-oriented systems are
part of architecture. Some of these principles are briefly introduced in this section. Note that a
thorough discussion is beyond the scope of this book—see, for example, Thomas Erl’s SOA:
Principles of Service Design (2007, Prentice Hall) for such a comprehensive discussion.

Intrinsic Interoperability Service orientation and all the objectives it helps to achieve hinge on
interoperability. Functionalities implemented in different applications, technology stacks, business
domains, and/or physical locations need to work together. We need to be able to build bridges
across traditional divides. A Java-based application must be able to invoke functionality implemented
in C# running on a Windows server. And a PL/SQL application running in an Oracle database in the
data center in St Matthews’ central building needs to be able to interact with the invoice
administration in SAP.

Interoperability—largely based on Web Services standards—is one of the key differentiators
between Service-Oriented Architecture today and similar concepts and initiatives in past decades.

Loose Coupling Components cannot work together without some form of coupling—either
directly on each other or through an intermediary. We need to carefully find the right level of
coupling so that the interaction can take place efficiently enough yet the coupling does not inhibit
our ability to change the implementation of components or add interactions with other components.

Coupling can exist along various axes. Examples include functional, technical, and temporal.
A certain degree of functional coupling is unavoidable: A consumer needs to know the interface
of a service in order to invoke it and process the response in a meaningful way. However, the
interface should not expose more details than necessary, especially when a consumer may come
to rely on such details. Technical coupling refers to the protocol used for communicating with a
service as well as the way the messages are constructed (XML, comma-separated, JSON, binary,
and so on). The more proprietary the requirements are that a service enforces on its consumers,
the higher the degree of coupling. The use of open standards for interaction is an important
element in reducing the level of coupling.

FIGURE 2-2. Service roles and their relationships

Service
registry

Service
provider

Service
consumer

Find Publish

Bind

Chapter 2: Introduction to Service-Oriented Architecture 25

Synchronous interactions are pretty common. Yet compared to asynchronous communication,
they have additional coupling: They require the service provider to be available when the request
is made and to respond in a timely fashion. Asynchronous communication with service providers
supplies additional decoupling. The effect the voice mail has on our ability to communicate by
telephone is an example of decoupling synchronous interaction through the introduction of an
asynchronous mediator.

In general, a higher degree of coupling means less flexibility because it becomes harder to allow
components to evolve independently without ripple-down effects on their consumers. Loose coupling
makes it easier to modify or replace a component without affecting other components. Loose coupling
also makes the reordering of services in business processes more achievable—the service should not
depend on the order in which they are invoked, only on the input passed into them.

Encapsulation, Abstraction, and Need-to-Know Basis Consumers cannot form dependencies
on what they do not know about the services they are invoking. That in itself is an argument for
strict encapsulation. Anything that a service keeps to itself can be changed without impact on
others. Security considerations are another reason for encapsulating the inner workings of services.

Examples of information that should typically be hidden from public view include details about
the implementation, both the structure of algorithms and names of private operations, as well as
anything about the tools and technology used for creating the implementation. The physical
whereabouts of a service is another example of information that should largely remain undisclosed.

Autonomy of Components The more autonomy a service has, the better it can perform its
responsibilities and the easier it can evolve in a flexible manner. Autonomy exists both at run time
and design time. Run-time autonomy refers to the degree of control a service has over its processing
logic and its environment at run time. Greater autonomy—fewer dependencies on entities that are
not controlled—means more freedom for run-time optimizations by administrators, thus leading to
consistent, acceptable, and predictable behavior. Such optimizations can include changing the
hardware configuration, relocating services, and utilizing hardware appliances to improve run-time
performance or attain the required auditing or security levels.

Design-time autonomy refers to the level of freedom service owners and developers have to
make changes to a service over its lifetime. When the service is used by few consumers and it is
based on its own data model, it has a lot of room for maneuvering. When it is heavily reused and
relies on a shared data model, that freedom is limited, depending on how loosely coupled the
consumers are and how abstract the service’s interface is.

The challenge is to balance our desire for reuse with the freedom to improve services. Loose
coupling is obviously important to achieve autonomy (and vice versa), as are encapsulation and
abstraction. A service that is not reused by anyone is quite autonomous, but fairly irrelevant as well.

Standardized Service Interface and Contract In order to facilitate the process of discovering,
understanding, and selecting services to reuse, and to automate the creation of interactions with
services, it is important that all services be described in a similar way—preferably according to
industry standards. The contract for a service consists of various elements, usually at least the
following:

 A technical interface description with operations and parameters (input, output, and faults) ■

 A supporting data definition document that describes the structure of the parameters in ■
detail

26 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 27

 A document specifying Quality of Service aspects of a service—for example, regarding ■
security and reliable messaging

 A service-level agreement (SLA) that describes service characteristics such as response ■
times, availability, and costs involved with invoking the service

 Additional metadata about the service that provides, for example, more elaborate ■
descriptions of the functionality of the service, plans for its immediate future, and
information on who is using the service, for what purpose, and what the user satisfaction
ratings are

The standard service contract specifies the documents that should be provided in the contract
and details the design standards that these documents should adhere to. WSDL (Web Service
Definition Language) and XSD (XML Schema Definition) are often used as the underlying standards
for the first two documents. Quality of Service aspects can be laid down in a structured document
using WS-Policy and more specific standards such as WS-Security Policy and WS-ReliableMessaging.
There is no industry standard for SLAs. It would make sense for an organization to design its own SLA
template to use for all the service-level agreements it will publish for its services.

Reuse of Existing Assets One of the important means of achieving agility is the reuse of
existing assets when composing new applications and services. St. Matthews can reuse its existing
Clinical Information System (CIS) by exposing its functionality through Web Services. This makes
it possible to quickly implement composite services and business processes that rely on CIS
functionality.

Services must be designed with reuse in mind: The functionality offered by a service should
not be determined with a single project, process, or application in mind. Instead, a broader view
should be taken, and the place of the service within the business domain or even the enterprise at
large should be considered. The interface should not be too specific, tied to a single consumer’s
purpose. The services need to have the right granularity to invite reuse. More on this aspect a
little bit later.

Reuse should be fostered—it typically does not happen overnight, nor does it happen on its
own accord. Initially a lot of work may be required on the part of the architects to convince
project teams to reuse instead of build from scratch. Management may have to offer some form of
reward to get reuse going.

Of course, the infrastructure needs to support reuse: The reused components need to be
accessible, available, and scalable. Furthermore, services must allow for concurrent access by
various consumers.

Service Discoverability Reuse can only happen when it is known which assets are available
for reuse. Services need to be discoverable. The services need to have metadata associated with
them to ensure that service consumers know the purpose of the services and the conditions that
apply when invoking them. To facilitate the discovery of services, a third entity frequently joins
the party of the service providers and consumers seen in Figure 2-2: an intermediary that helps to
bring the other two together. This intermediary is usually called a “service registry,” and provides
a standardized method for dynamic lookups and/or design-time discovery of services. The service
provider can publish its services in the registry, so potential service consumers can find the
services they need, with enough information about the functional interface and contract, the
service-level agreement, and the current usage of and the longer-term plans for the service, to
make a decision on reusing it and how to go about it.

Chapter 2: Introduction to Service-Oriented Architecture 27

Intrinsic Characteristics of Services Services should satisfy some general requirements in
order to optimally contribute to the service-oriented computing infrastructure:

 Granularity ■ One of the endless debates in service design involves the granularity
of the service. Should it be fine-grained, offering functionality that is quite generic,
extremely reusable, and with very limited added value? Or should it be coarse-grained,
offering tremendous value to very few consumers, with functionality that’s very specific
and hardly reusable? Services designers must strike a balance, which can be quite a
challenge.

 Note that different forms of granularity exist: at the service level (the width of the
functional scope of the service), at the level of individual capabilities, applied to data
(do we exchange entire object graphs based on the canonical data model or just exchange
specialized parameters for capabilities?), and applied to data constraints (how far do we
go in defining constraints on the data flowing to and from the services?).

 You will find granularity discussions in the real world too—for example, department
stores vs. specialty boutiques, or specialty rosary pliers vs. all-purpose pliers.

 Atomicity ■ A service should execute an atomic operation or transaction in its entirety.
If not, an atomic operation would be split over multiple services (and we all know what
happens when you split atoms). It would be nonsensical to make it the responsibility of a
service consumer to have to invoke all providers of the subatomic parts of an operation.
Note that a service may encompass more than one atomic operation, although typically
several or all actions executed by the service are still part of a single transaction.

 Idempotency ■ Services should not produce unwanted side effects, especially when a
request is submitted multiple times. The background for this capability is that sometimes
a request sent to a service does not result in the expected response message. There can
be several causes, including a failure to deliver or process the request or a problem
with delivering the response. When the response does not arrive, the service may be
invoked again. However, because the reason for the absence of the response could be a
problem on the return trip of the response message, it may very well be that the service is
executed for a second time.

 Ideally, we can prevent this situation from ever occurring by using reliable transports
with guaranteed message delivery. However, that may not always be possible, and
to cater to such situations the service should be idempotent. This can be achieved
by recognizing duplicates of already processed request messages. Alternatively, the
capabilities (operations) of a service can be designed not to produce unforeseen side
effects. A very fine-grained example could be to design a capability used for raising
salary not as raiseSalaryByX but as setSalaryAtX. The effect of invoking the latter service
capability is very consistent and clear to the service consumer.

 Statelessness ■ Services should minimize their resource consumption by holding on to as
little state information as possible. A successful service is ideally reused and composed
many times over. Typically such successful services are invoked very frequently and
simultaneously. To not overtax the shared infrastructure and resources—primarily
memory—it is important that a service not hang on to large volumes of data. If necessary,
especially for a longer-running service, to collect and construct data structures and
have those available in later stages of service execution, this state can be transferred to

28 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 29

infrastructure components that are optimized for handling state. Examples are a database
such as the BPEL Dehydration store and a data grid such as Oracle Coherence. The load
on the infrastructure can also be reduced by making a distinction between data that a
service needs to process and data that it only needs to pass on; the latter does not need
to be handled as state, nor does it need to be deserialized by the service. It could be
shipped around as an attachment—or even less intrusive and burdensome as nothing
more than a reference or claim check to a bunch of data. Only when the message flow
has reached a component that actually requires the data does it have to be retrieved
across the infrastructure.

 Note that another way to reduce a service’s burden on the infrastructure is to offload
CPU or other resource-intensive operations to specialized engines such as hardware-
accelerated XML parsers or transforming engines.

 Composability ■ Many services have their primary role as a component in composite
services. It is therefore important that these services can play their part well. A focus
on composability will influence the discussion of the granularity of services and their
capabilities. Frequently it will prove beneficial to have a service offer a similar capability
at different levels of granularity. For example, the capability to retrieve patient records is
ideally available in various forms: get a list of a small subset of attributes for all patients
that satisfy certain search conditions; get a full patient record based on a primary key;
and more importantly, out of efficiency and composability considerations, get a set of
patient records based on a collection of primary keys.

 Execution efficiency is very important, especially for fine-grained services that are
candidates for frequent inclusion (and frequent invocation) in composites.

 Event awareness ■ Event-Driven Architecture (EDA) will be introduced later in this
chapter to complement service orientation with an even more decoupled means of
interaction: Subscribers that are unknown to producers get notified of events that make
business sense to them. EDA can only work when any component—application, service,
or business process—that comes across occurrences of one of the business events that
have been identified as relevant to the business publishes that event to the world—or
at least to the event mediation infrastructure (the Event Delivery Network in Oracle
SOA Suite 11g). A requirement on all services therefore is that they, too, take on this
responsibility of publishing events whenever they encounter or initiate them.

Layering the Enterprise Architecture
When we are describing an enterprise, we often organize the architecture in the layers shown in
Figure 2-3. Each layer has specific characteristics, responsibilities, and dependencies, and therefore
has different requirements for standardization.

Application Service Components Layer The application (service) components layer consists
of the service implementations. For example, if we have an appointment service, the application
component that creates the appointment in our clinical information service is the service
implementation.

Services and Events Layer The services and events layer describes the contracts and the
interfaces of the service. The contract of our appointment service could state that it is available
during office hours and can be used by authorized personnel only. The interface can be defined

Chapter 2: Introduction to Service-Oriented Architecture 29

through operations, inputs, and outputs, as well as the events consumed by the service and
published by it. The appointment service, for example, has the following operations: create
appointment, cancel appointment, and reschedule appointment. The input parameters for the
create appointment operation are patient, date, and doctor; the output parameters are the
appointment details. The service publishes the “appointment was cancelled” event and
consumes the events with regard to the death of a patient.

Within the services layer, we usually apply a taxonomy—a classification scheme to organize
the potentially large number of services. This is useful, because it helps keep track of what services
exist in the organization. This is an important precondition for reuse: You can only reuse something
if you know that it exists and are able to quickly find it. Even more important: Services with specific
classifications have different rules applied with regard to granularity, behavior, security, and more.

Mary creates the taxonomy by defining the following service types for St. Matthews: business
services, elementary services, technical services (e-mail, notification service), and enterprise
services (the latter are business services exposed outside their business domain).

A service inventory (or service repository) is a collection of services under some form of
governance that assists the organization in finding services, defining and maintaining taxonomies,
and recording metadata about the services published in an enterprise. Various tools exist that
provide an implementation of a service inventory.

The service layers represent different levels of abstraction. Elementary services are specific to a
domain. When we use business domains (sometimes called information domains) to organize our
applications, we can assign the elementary services to these business domains. Elementary services
often offer CRUD-type operations on an entity (CRUD stands for create, update, delete). An example
can be an elementary patient service that offers the operation “addPatient.” Business services are
usually composed of one or more elementary services and perform an atomic operation or task
defined in the business domain. An example of a business service is a medication service that has
the operation “prescribemedication.” This service can use the patient service to look up address
information about the patient, and a “MedicalRecord” service can be used to get the prescription
needed.

Enterprise services are business services that the organization as a whole offers to consumers
throughout the enterprise—across business domains—and sometimes even outside of it, to
customers and business partners. A special type of enterprise services in the context of St.
Matthews includes services offered to the hospital by its external partners, such as insurance

FIGURE 2-3. Layering the enterprise architecture

GUI (mash-up & portal)

ESB

Business processes

Services and events

Application service components

30 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 31

companies, other hospitals, government agencies, and third parties in the cloud. St. Matthews
keeps a list of these as well. It is important for the hospital to keep track of all the dependencies
on services, including these external services.

Business events are published by services and business processes to a generic event-handling
framework. These events carry a (usually small) payload with specifics about the events.
Interested consumers—services, business processes, or application components—register their
interest in events of specific types with the framework through subscriptions. When an event
occurs that they have subscribed to, the framework sends it to them. Thus, events establish a
decoupled link between producers and consumers of events. Note that events, too, exist at
various levels: business, elementary, and technical. Complex event processing can be used to
deal with the finer-grained and more frequently occurring elementary events, as we discuss in
Chapter 19.

Business Processes Layer This layer contains the business processes. Simply put: A business
process consists by and large of calls to services for automated operations and human tasks for
manual actions—with some flow logic in between. Business Process Management (BPM) is
concerned with the management of business processes in an organization. The cycle of Business
Process Management consists of the following stages: business process analysis, business process
execution, and business process monitoring. BPM is discussed in more detail in Chapter 11.

There are different types of processes. One category is formed by human-centric processes,
where most of the work is done by humans and the most important challenge is to assign
workloads evenly and to monitor the progress of tasks. This is what is traditionally known as
workflow. Another category includes document-centric processes. These are processes that
evolve around documents, such as contracts or a press release for a website. Typically, you will
see this in document management and content management systems. There will be processes for
scanning, editing, approving, and publishing the documents. The third category of processes is
system-centric processes. This is what is traditionally called orchestration. One of the biggest
improvements in system-centric processes in recent years has been the shift from batch
processing to straight-through processing of one item. The last category of processes is called
rule-centric processes. A rule-centric process is one that has many alternative paths, depending
on existing business rules.

Apart from having different types of processes, we usually define different levels of processes
in the process layer (see Chapter 1). Mary decides to use three levels: The first level contains
value-added chains that may string several business processes together. We saw an example in
Chapter 1. The second level contains the end-to-end processes. This was described for the
appointment process in Figure 1-10.

The lowest level is the level that is relevant for developers and end users: This is the process
that will actually be implemented and run. It contains implementation details about the types of
activities (automated, human step, and so on), and describes in detail the flow logic with loops
and parallel flows that can be left out of the model at the second level.

Here are two design patterns that St. Matthews has decided to apply for business processes:

 Processes should not be too generic. ■ Designing business services is different from
designing a process. In software, you are looking for reuse, whereas in processes you
are looking for efficiency and possibilities for improvement—goals that are at odds with
generic, all-purpose designs.

 Use parallel execution flows whenever possible. ■ One of the ways to speed up a process is
to have activities not wait for unrelated events.

Chapter 2: Introduction to Service-Oriented Architecture 31

Oracle BPM Suite and Oracle SOA Suite 11g offer several options for BPM. The components
are discussed in detail in the next chapter. To design processes you can use either Oracle BPA
Suite or the lighter-weight Oracle BPM Studio, if you don’t need the full architecture features and
the many dozens of diagram types that BPA Suite offers.

GUI Layer This layer contains the interface that interacts with end users. Components in this
layer, such as back-office applications or customer-facing portlets and mash-ups, use the business
processes and services layer to retrieve data and perform actions. For example, St. Matthews
could create a portal for all patients. Information about the hospital visiting hours can be
displayed there—retrieved from a service that wraps a content management system. Patients
could also be offered an entry form to request appointments. This part of the application could
use the appointment service we discussed earlier to show free slots and then present the end
result: the scheduled appointment itself.

The GUI layer at St. Matthews also contains user interfaces for business partners such as
general practitioners and employees at insurance companies. A last, very important group of users
of the GUI layer is the staff of St. Matthews itself. Some of these user interfaces may provide the
front end of human tasks that are part of the business processes.

Rethinking the Notion of an Application
Not too long ago, many organizations and development teams tended to consider an
application to be the combination of the user interface, the business logic, and the database
that worked together to provide a specific set of functionality to a group of users. The key
applications in organizations typically had (or still have) nicknames or abbreviations that
are used with something like “loving frustration.” The application may be implemented in
Oracle Forms, Visual Basic, Delphi, Oracle Portal & Web/PLSQL, or some other application
development tool and technology. Usually, the application and the underlying database go
by the same name, are developed by the same team, and are monogamous: They were not
designed to interact with other systems.

The data in the database under the application is a valuable enterprise asset that may be
needed in other business domains. Frequently and increasingly, the data and business logic
in these core applications are also required for other user groups—such as business partners
or customers—and through channels
other than the current channels, such as
self-service web applications or Web
Service APIs. Perhaps as a first step on
the road to (near) future developments,
the mental picture of these archetypical
applications should be changed from a
single black box containing the database,
business logic, and (user interface)
application into two logically separate
components: database and business logic
on the one hand and the application on
the other, as shown here:

Data

Data

Application
(user interface)

Application
(user interface)

(Continued)

32 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 33

The application is usually quite specific for the group of end users it services, the
processes it supports, and the channel that is used—often client/server- or browser applet-
based. The application may be complemented by other applications, created using different
technologies, and intended for other user groups and offered through different channels, but
using the same business logic and database. It is clear, then, that the database has a wider
audience and purpose than its original narrow focus on the one application it was used
with. There is no exclusive ownership of the database by the application or by the team
developing the application. The data(base) is owned by the organizational unit that owns
the data (or the domain that the data is part of). That last part can be quite a cultural change
in some IT departments—one that needs to be implemented.

The notion of an application is changing. The most tangible manifestation of computer-
based processing logic probably still is the user interface, although the Web Services are a
similar tip-of-the-iceberg front end for potentially very complex constellations of programs,
database components, and other modules. However, a user interface will increasingly be
regarded as the front end for a human task at some point in a business process. The
workflow engine and to-do list play an important role in dictating when the UI should be
presented to the user—not just the user herself browsing through some global menu.

These user interfaces will present data and support operations that are increasingly no
longer one-on-one linked to a single database but instead connected to various data
sources and other services. This brings us to the next level of architecture where the front
end (the user interface or Web Service) is founded upon an amalgamation of services—
provided through some form of enterprise service bus, as shown here:

User interface

E-mail
IM
fax

Workflow
engine CMS

Application

Chapter 2: Introduction to Service-Oriented Architecture 33

Enterprise Service Bus One of the challenges when considering integration between systems is
managing all the connections. If we have point-to-point interfaces (see Figure 2-4) and something
changes in a service, all service consumers need to be modified. The service consumer has to be
aware of the protocol the invoked service uses, as well as the message format and the location of
the service. This tightly couples the consumers to the service providers.

The concept of an enterprise service bus (ESB) has been introduced to help address these
challenges. An ESB sits between service consumers and the services they invoke (see Figure 2-5).
It typically has a number of features that facilitate the interaction and help decouple consumers
from providers:

 Endpoint virtualization ■ When service consumers call a service through the ESB instead
of calling the provider directly, location transparency is achieved in the architecture.
A service provider can be replaced by another service provider, without the need to
change every service consumer to reflect the new address. Only the ESB knows which
service provider is invoked exactly; all the consumers leave it to the ESB. This is called
virtualization of services.

 Routing of services ■ Sometimes the routing is more specific: Based on the content of the
request message from the consumer, the service is selected to forward the request to; this
is called content-based routing.

FIGURE 2-4. Point-to-point interfaces

Service Service Service

Service
consumer

Service
consumer

Service

FIGURE 2-5. Enterprise service bus

Service Service

Service Service
Service

consumer

Service
consumer

Enterprise service bus

34 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 35

 Transformation ■ Providers and consumers don’t always speak the same language: They
frequently do not use the same protocols or message formats. The enterprise service bus
can transform a request to the format and/or protocol supported by the service and does
the inverse to the response before handing it back to the consumer. Messages inside
the ESB are based on the canonical data model (CDM); messages are transformed to the
CDM upon entering the ESB and may need to transform to application-specific formats
when traveling out of the ESB.

 A special element in transformation can be message enrichment: The result of the
transformation is not just the same data in a different message structure but an
enriched message with additional information that has been looked up (for example,
an appointment request that has been enriched with the recent medical history for the
patient).

 Validation ■ The ESB can validate requests before they are delivered to the service
provider as well as the responses coming out of the provider.

 Auditing ■ The ESB can log requests and responses for auditing purposes and send out
alerts when special conditions apply.

 Messaging ■ Instead of calling a service, an application can send messages and
communicate asynchronously with other applications. The ESB can provide guaranteed
delivery and persistence of the message. This is explained in more detail in the section
“Events and Event-Driven Architecture (EDA).”

 Synchronous/asynchronous adaptation ■ An enterprise service bus can expose services
with either a synchronous or an asynchronous interface—regardless of the nature of
the actual service provider(s) it needs to invoke; it can adapt from synchronous to
asynchronous, and vice versa. This—together with support for queuing and store-and-
forward for services that are temporarily unavailable—provides another very important
type of decoupling: The provider does not need to be available at the same time as the
consumer, and the consumer does not need to wait for the response from the service it
invokes. This has the same impact on service invocations as the answering machine and
voicemail had on communication via telephone.

 Composition ■ An ESB may be used to aggregate the results from several services in
a single response to a service invocation, effectively publishing a new, composite
service; enrichment can also be seen as a special case of composition. Note that other
components—such as a business process engine that runs BPMN or BPEL processes—
can provide similar composition- and service-coordinating functionality.

 An ESB may also be able to mediate between different security protocols: for example,
allowing (or requiring) the consumer to send a request with a SAML authentication token
while the service provider is authenticated through basic HTTP authentication.

Many of the functions listed are instances of mediation—a word with several meanings,
including conciliation and matchmaking. The ESB clearly is good at bringing two parties together
across various types of divides: communication protocol, location, technology, message format,
synchronous/asynchronous, availability, and security protocol. Other functions an ESB may offer
include technical and administrative aspects, such as performance improvements through result
caching, high availability through clustering, reliability and transaction management, enforcement
of authorization rules, throttling of message load, and SLA monitoring.

Chapter 2: Introduction to Service-Oriented Architecture 35

Canonical Data Model
When we compose applications using services, it is important that the services use a common
vocabulary or language. All services base their interface on this data model. Clearly this helps to
standardize the service contracts because consumers will encounter the same data structures in all
services. It also helps to lower the number of message formats an application has to know about
and cater to. The number of resource-intensive—and error-prone—transformations can be reduced.

It feels better to remove the reference altogether.
This Esperanto-like common language for services in the same business domain is called the

canonical data model. It has data definitions for the business objects—usually described in XSD
(XML Schema Definition). The canonical data model is closely aligned with the business
terminology and the business view of information—and is absolutely devoid of technical baggage
such as column names, SQL naming conventions, and technical data types. It should be centrally
managed by a team that consists of architects, business analysts, and developers.

In addition to the core canonical model with business object definitions, we will make use of
utility data definitions. These define special-purpose data structures used for parameters and faults
as well as for technical records that, for example, report on the results of data manipulation or
other metadata regarding the service execution. These structures usually have references to the
business objects. The canonical model can be said to cater to data at rest (the core definitions)
and data in motion (supported by this latter category of utility objects and technical definitions
that support the operation through metadata or pragmatic data structures).

For example, let’s look at a service that provides patient records. This service could offer the
capability to retrieve patient records in two ways: “get a list of a small subset of attributes for all
patients that satisfy certain search conditions” and “get a set of patient records based on a
collection of primary keys.” The first capability uses a data structure that defines a collection of
records consisting of just a few fields; these records can be defined based on the regular patient
element, but are probably better defined using a specialized type. A 360-degree patient type
could also be defined with a deeply nested tree structure that brings in everything that possibly
could be said about a patient.

Ideally, of course, every service in the world would speak canonical, but they do not (most of
them don’t anyway). So transformations will occasionally need to take place to translate between
noncanonical and canonical message formats. Note that in some industries, standards have been
established for data that is exchanged between business partners. The data format described for
the data in motion is, of course, a perfect foundation for the data at rest.

In large organizations with multiple business domains, it sometimes proves impossible to
establish a single enterprise-wide canonical model. Organizations may have multiple canonical
models—for example, per business domain and/or derived from external communities—that are
organized into a tree-like structure (using nested namespaces) with various levels of abstraction
and specific purposes.

We will see later how the canonical model can be defined as not just a collection of business-
based data structure definitions, but also as a library of domain values and even business rules.

Of course, commercial off-the-shelf applications typically do not comply with the organization’s
canonical data model, although, of course, they may comply with industry standards that can also
be used inside the canonical data model. A mediator, such as the ESB, is used then for transforming
the data that these applications expose to the canonical data model for the service consumers
(see Figure 2-6). Another common pattern is to have all the applications—both consumers and
providers—use their own format and then let the mediator transform everything. However, this can
be quite expensive in terms of resource usage.

36 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 37

The data flowing through the service-oriented infrastructure should be canonical as much as
possible. This way, if an application does not speak canonical, we should transform from (and to)
the application format as close to the application as possible. That usually means that the final
step before an application is invoked is the transformation from the canonical to the application-
specific format—performed by a mediator. For applications that do not speak canonical and call
in to the service-oriented system, we should offer an application-specific interface that feeds into
a mediator that transforms to the canonical format as early as possible. In general, transformations
should be kept as far down the technology stack as possible—they should be kept out of the
higher-level (composite) services if at all possible.

Governance
Traditionally, stand-alone applications—as described earlier—were developed by dedicated
teams that remained attached to the application during subsequent stages in the lifecycle. The
assets that formed the application were often completely owned, controlled, and exclusively used
by this relatively small team.

In Service-Oriented Architecture, most assets end up very much not (exclusively) owned by
any team or even department: They are—in theory at least—owned by the enterprise, targeted at
widespread reuse, and not naturally controlled by an individual or group. However, every service
needs to have an owner who is responsible for the services delivered. Because the service
delivers business value, it is a business unit that owns it.

Management of the lifecycle of these assets is important, especially given the extent of reuse
we are trying to achieve. To realize reuse, the availability of assets needs to be made public and
the assets need to be found and understood. Once reuse has happened, the process of evolving
those assets becomes more involved: Multiple parties have a stake in the assets and may have
specific requirements with regard to their evolution. SOA governance controls that process.

Other aspects of governance include: How do we ascertain that assets have the required
quality and deliver on their (functional) promise? How do we define and record the required
service levels and subsequently monitor the actual performance of assets?

Before the management of the assets themselves is in full swing, governance is required to
enforce the architectural principles laid down for the organization. What processes must be
implemented to ensure that all teams stick to the rules?

Governance must be implemented at every stage of the SOA lifecycle to track ongoing changes
to the architecture, design, and implementation—and to define, implement, and execute the
processes around designing and implementing changes to assets and the creation of new ones.

Chapter 18 introduces governance in the context of the SOA Suite, but only scratches the
surface of that topic (it is mainly outside the scope of this book).

FIGURE 2-6. Transformation is needed when an application (the patient consumer in this
example) can’t handle the canonical data definition.

Patient
service

Patient
consumerTransform

Patient Patient

Chapter 2: Introduction to Service-Oriented Architecture 37

Events and Event-Driven Architecture (EDA)
As described in the beginning of the chapter, SOA and events are closely related. Let’s first define
events: An event is a signal of a significant change in the state of a business object. Examples are
receiving a request, death of a patient, a fire alarm, receipt of a payment, and so on. Employees,
partners, customers, and also processes in an organization react to these events.

Some events are triggers that start a process. For example, in the appointment process, we can
define the event “Doctor referral received.” When this is received by the hospital, the appointment
process is triggered and appropriate actions are taken. Some events trigger more than one process:
For example, when a patient dies, this can trigger an investigation and at the very least the
cancellation of future appointments and any lab tests currently under way for that patient.

Events can be defined in the same layer as the services. Using events decreases dependencies
between service providers and service consumers because it provides for asynchronous
communication and does not require the publisher to know if and what subscribers exist for
a message. The following design principles apply to events:

 Events should contain enough information for the receivers to base decisions on, or to ■
analyze them for business activity–monitoring purposes or complex event processing.
A “new patient” event should contain, for example, the date, patient identifier, and
department. If a certain process needs more information about this event, the process can
fetch it using the patient identifier in the event payload.

 Events should be loosely coupled. An event does not know what process it starts or what ■
activity caused it to be published.

The best-known pattern for events is publish–subscribe (see Figure 2-7): An event is published
by a provider, and clients that are interested in the events subscribe to the message based on
some characteristics of the message. With some types of subscriptions, message consumers do
not need to be available when the message is published by the publisher. We will discuss this in
more detail in Chapter 9.

FIGURE 2-7. Publish-subscribe pattern

ConsumerConsumer

ConsumerProviderPublisher

Consumer

Event Event

Event

Event

38 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 39

Implementation Considerations The different types of events can be implemented in several
ways: We can have triggers in the database that publish an event to a queue when a record is
updated, inserted, or deleted. The same can be implemented using Java and JMS: A call to a Java
method could cause a message to be published to a JMS queue or topic. We can publish an event
from a BPEL process when we finish a process or a step in the process. We can define sensors
(out-of-process wiretaps that emit trace details about the BPEL process and the current activity) in
BPEL processes for specific activities, and do the same with ESB routing rules.

The message or event itself can be implemented using different standards: The payload can
be XML, text, a Java object, and so on. In an SOA environment, it is easiest to use XML, which is
the language for all application components and tools anyway. How a service can be consumed
also depends on the implementation that is picked. If we use JMS, we can determine at run time
what subscribers exist for a certain topic. But we can also decide at design time what message is
propagated to which subscribers, using content-based routing, for example. Last but not least,
there is a draft release of a new Web Service specification for events: Web Service Eventing (WS
Eventing).

Business Activity Monitoring (BAM) We can define events that should be published from
running processes. These events can be used for business activity monitoring (BAM). The goal of
BAM is to provide real-time information about the status and results of the processes. When
certain events occur, an alarm can be raised. For example, the hospital might want to monitor
cancellations in the appointment process. If completion of a cancellation activity takes too long,
an alarm can be raised to the supervisor to reassign the task to someone else. We will discuss
BAM in more detail in Chapter 19.

Complex Event Processing (CEP) Sometimes we are not interested in events from a specific
process, but we are looking for patterns. Complex event processing deals with the task of
processing multiple simple events, with the goal of identifying the meaningful complex events or
patterns. This has the advantage that a process does not need to be modeled in advance to be
able to detect significant events. Examples are insurance fraud detection, detection of specific
predictive patterns in stock trading, and also temperature control in the facilities of St. Matthews.
A more detailed introduction and some examples of using CEP are discussed in Chapter 19.

SOA from an Implementation Point of View
We talked about SOA from the business perspective and discussed the architectural meaning of
Service-Oriented Architecture. The last view we want to discuss is the implementation view.
There are several implications from an implementation and technology perspective when we
move to Service-Oriented Architecture:

 The infrastructure on which services run changes from the traditional “application” ■
infrastructure. We introduce services, processes, and events into our run-time
environment—such as Web Services and business process implementations—that require
special infrastructure to run (for example, an enterprise service bus, an SOA or SCA
container, a process engine, and tooling to enforce security). Middleware is introduced
that needs to be administered; new technologies such as Web Services need to be
learned by developers as well as administrators.

Chapter 2: Introduction to Service-Oriented Architecture 39

 The way we deploy and subsequently manage our run-time artifacts changes, too. ■
Because we introduce sets of loosely coupled components, instead of deploying one big
application, we have the option to install well-defined separate components on different
servers. We will probably have to do many more but far less complex deployments.
Making a small change may result in just a small redeployment effort, instead of a
full-blown redeployment. This new approach requires different skills from both our
administrators and our developers.

 St. Matthews has decided to use the Oracle SOA Suite 11g, after a careful product ■
selection process. This suite offers all the functionality the hospital needs, and the
developers and administrators are already familiar with Oracle products. Apart from that,
the suite offers out-of-the-box solutions for PeopleSoft HCM and SAP R/3 through the
adapter framework. Last but not least, SOA Suite 11g is component based and standards
based. This gives St. Matthews the opportunity to use other tools and middleware for
specific areas. The SOA Suite 11g components are discussed at length in Chapter 3.

 One of the primary objectives behind SOA is agility, the ability to adapt—the essential ■
attitude to embrace change. Organizations adopting SOA will typically carry out
frequent changes in response to business requirements. These changes can consist of
reorganizing business processes, assembling new applications from existing business
services or rewiring existing business services or applications, changing the logic of
(potentially heavily reused) elementary services, and so on. We need to think about
change procedures, automated testing strategies, and efficient deployment.

 New programming languages, standards, and frameworks are used. ■ Because one of
the guiding principles of SOA is standardization, adopting SOA in an organization will
likely mean some changes in the frameworks, tools, and standards used, shifting the
organization to industry standards for Web Services such as XML, SOAP, and WSDL. We
will talk about the standards in this section and in more detail in the rest of the book.

 The new programming languages, standards, and frameworks introduce a need for new ■
(versions of) tools. St. Matthews is, as we discussed before, an Oracle shop that has
selected the Oracle SOA Suite to develop its SOA artifacts for. Therefore, the hospital
will use JDeveloper 11g to create Web Services and other artifacts.

Standards in SOA
One of the important principles of SOA is standardization. It is very hard to communicate with
other applications if the protocols and message formats that these other applications use are all
different. We saw that in our discussions of canonical data formats and ESB. The same is true for
protocols. IT systems in an organization typically use various protocols and programming
languages. This makes combining them into new applications difficult, if not impossible. To solve
this, services should use standard protocols and message formats. In this section, we will briefly
discuss some of the most prominent standards used in SOA. The next chapter introduces many
more standards. In the rest of the book, these standards will be discussed in more detail as we
encounter them in the examples and cases.

40 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 41

Web Services One of the most important sets of standards is the one concerning Web Services.
The World Wide Web Consortium (W3C) describes Web Services as follows (www.w3.org/2002/
ws/Activity):

“Web Services provide a standard means of interoperating between different software
applications, running on a variety of platforms and/or frameworks. Web Services are
characterized by their great interoperability and extensibility, as well as their machine-
processable descriptions thanks to the use of XML. They can be combined in a loosely
coupled way in order to achieve complex operations. Programs providing simple services
can interact with each other in order to deliver sophisticated added-value services.”

There are two ways of creating a Web Service: using a formal protocol defining the operations
and message format in advance, and using a loose protocol where a hint of the next available set
of operations can be derived from the last service response. SOAP Web Services are an example
of working according to formal specifications defined in advance, whereas RESTful services are
an example of the latter approach.

SOAP and WSDL SOAP Web Services dictate a formal method of communication between
applications. Through SOAP and WSDL, an organization can specify the available operations in
services and the data that can be exchanged with the services. The specification of these services
in such a formal way has several advantages:

 The interaction is strongly typed: the consumer knows what type of data to expect. ■

 Because SOAP is more formal, there is more tool support to create SOAP-based Web ■
Services.

 Multiple protocols are supported (SOAP over HTTP and SOAP over JMS, for example). ■

 Additional features, such as WS-Addressing, WS-Security, and Basic Profile, are used. ■

The SOAP specification is discussed in more detail in Chapter 4 and in Appendix B.
However, this formal, contract-based, and XML-riddled approach is sometimes perceived as

very heavy-handed. The overhead in terms of the infrastructure required for handling SOAP Web
Service interaction and the sheer size of the SOAP messages compared to the actual information
content of those messages can cause people to shy away from SOAP.

RESTful Services A more lightweight Web Service alternative is available in the form of RESTful
services. REST, by the way, is an acronym for Representational State Transfer. Originally introduced
by Roy Fielding as a rather formal resource-oriented method of programmatic interaction over the
HTTP protocol using the four basic HTTP operations—PUT, POST, GET and DELETE—for CRUD
operations, RESTful services have evolved into a plethora of lightweight HTTP-based APIs. RESTful
services accept simple HTTP requests and send equally simple responses.

There are no generally accepted standards for RESTful services (for example, the use of contracts
of some form of description of the services). Initially, it was almost blasphemy to suggest the need or
even the usefulness for such descriptions, whereas in later stages large groups experimented with
WADL (Web Application Definition Language), a simpler counterpart to WSDL. REST-style services
can return responses in XML, although other formats such as CSV and JSON are popular too.

There is a lot of support for REST on the client side (consuming RESTful services in many
programming languages) and some on the server for publishing REST-style services. Some
enterprise service bus implementations have some support for REST—although mainly in situations
where the payload is XML described by some predefined contract, however lightweight.

Chapter 2: Introduction to Service-Oriented Architecture 41

REST seems primarily useful for data integration between web clients and servers, not so
much for enterprise SOA.

RSS Feeds Another lightweight approach to programmatic (one-way) exchange of information
is through RSS feeds. A simple HTTP GET request (REST-like) suffices to retrieve the information;
the format is a predefined XML structure. RSS only supports a very simple interaction pattern, but
in some situations may be just what the doctor ordered.

Policies As we discussed before, a service consists of an interface that can be described in a
WSDL, an implementation that can be in virtually any language and contract. The contract
describes the quality of aspects of the service. Examples include the number of concurrent calls
it can handle, the maximum number of records it returns, its maximum response time, the
authorization required for this service, the availability of the service, and the way the service
will evolve. Some aspects of the contract can be defined using the WS-Policy standard. For other
aspects of what is sometimes laid down in a service-level agreement (SLA), a standard format is
currently lacking.

UDDI Directory, Service Registry, and Service Repository Because we want to reuse our
assets and build new applications using existing components by exposing them as Web Services,
we need some type of registry to store and publish information about the services in our
organization—which services are available and where can they be found. To make it possible for
different tools to look up services, a standard has been defined to discover (web) services: UDDI
(Universal Description, Discovery, and Integration). UDDI defines a standard method for
publishing and discovering network-based software components in SOA. The comparison is
frequently made with the Yellow Pages—a directory that you browse through when you are
looking for a specific service. It contains an API for publishing and searching for services, and to
subscribe to changes to the service metadata.

UDDI was one of the earliest standards in the Web Service arena, along with WSDL and
SOAP. However, it has never really caught on for design-time service discovery. Many UDDI
implementations or service registries today seem primarily used for run-time lookup of the
physical location of services, a form of service (endpoint) virtualization.

The originally intended role of the UDDI-based registries has been taken over by a more
elaborate service repository—or asset manager—that is primarily used at design time. This serves
as a service inventory—a listing of the services available in the organization along with extensive
metadata that helps search operations and also provides real insight into the purpose, status, and
fit-for-use of the services. Note that the service repository contains many more SOA artifacts than
just services (WSDL and XSD); virtually any artifact that can provide insight and facilitate reuse
and collaboration, from service-level agreements to canonical data model descriptions, can be
recorded. An important role of the service repository is to provide insight into the dependencies
between the artifacts, primarily to assess the impact of changes.

Service registries tap into or collaborate with the service repository, using maybe 10 percent
of their information for service discovery.

Note that although UDDI is a formal industry standard for service directories, there is no such
standard for service repositories. Several vendors offer products that implement the concept of a
service repository, but these are not based on some common standard. Oracle offers the Oracle
Enterprise Repository.

42 Oracle SOA Suite 11g Handbook Chapter 2: Introduction to Service-Oriented Architecture 43

Industry Standards Many standards have been developed for structuring messages and services
in specific industries and business domains. An example is HL7 in the healthcare domain. HL7 is
a framework (and related standards) for the exchange, integration, sharing, and retrieval of
electronic health information. Another example is XBRL—a standard for financial reporting.

Service Component Architecture A relatively new standard is Service Component Architecture
(SCA). It is a set of specifications that describes a model for building applications and systems using
a Service-Oriented Architecture. It is a widely supported standard, backed by most large vendors
of SOA software and tooling. We will discuss SCA in more detail in Chapters 3 and 14, and we
work with it throughout the book—SCA underpins Oracle SOA Suite 11g.

Summary
A service-oriented approach will help St. Matthews establish the business services that are
required to help automate the business processes. SOA principles will help St. Matthews (and us)
design the elementary services with the right level of granularity, based on a common, canonical
data model, that are composed to create more complex composite services and business services.
The services will work together based on standardized interfaces and contracts that help reach a
high level of decoupling (or loose coupling). These interfaces are also essential in order to
achieve reuse of the services. Decoupling, service composition, and reuse are some of the factors
in achieving more business agility—the ability to flexibly and speedily respond to changing
business requirements. They also help to keep the costs down and the quality up: Reuse means
less development and testing effort as well as smaller maintenance effort because logic is not
duplicated in many components.

Service-Oriented Architecture helps achieve maximum interoperability—potential for
interaction across technology stacks and products from different vendors. It thereby reduces the
dependency on vendor-specific solutions and allows organizations to use best-of-breed products—
provided that these products support interfaces based on open, service-oriented standards.

Event-Driven Architecture (EDA) provides an extra level of decoupling: Through business
events that can be produced in any application, business process, or service implementation and
that can be consumed by any registered application, business process, or service, we achieve a
form of interaction that does not introduce dependencies that might hamper future changes in
artifacts because of increased impact. EDA uses asynchronous communication facilitated by
process- and service-agnostic infrastructure.

SOA offers flexibility in adapting business processes and underlying implementations as well
as cost efficiency by reusing and sharing existing assets and increasing process efficiency.

The eAppointment Pilot Project
Mary proposes to start with a pilot project, called eAppointment, to prove to the board of directors
that SOA is the way to go for St. Matthews. This book tells the story of this project and demonstrates
how Oracle SOA Suite 11g provides the means to achieve the business, architectural, and technical
objectives.

The core business process in the eAppointment project is very visible to the patients: the
appointment process. There are several reasons for selecting the first process to take on in such a
pilot project: the urgency of existing problems, the visibility throughout the organization, the largest
chance of a quick success (the low-hanging fruit), and the toughest nut to crack that would provide
the best possible proof for the validity of the approach. In this particular case at St. Matthews, it is

Chapter 2: Introduction to Service-Oriented Architecture 43

actually a combination: The patient appointments process is very visible and is currently a source of
frustration among hospital staff and patients alike, and at the same time it’s not all that hard to
improve and reap some early benefits. Figure 2-8 shows the high-level overview of this process.

The process starts when a referral for a patient is received from a family doctor or another
primary healthcare provider. Some system at St. Matthews needs to register the patient data. If the
patient is already known in the hospital, the existing record is updated; otherwise, a new patient
record is created. If this is the first appointment for the patient, an appointment is scheduled with
the first available doctor. Otherwise, an appointment is scheduled with the doctor who had
previous appointments with this patient, at least if the doctor is available during the period within
which the appointment needs to take place. Then instructions for the patient are prepared,
depending on the type of appointment required. The appointment details, along with these
instructions, are sent to the patient, either by e-mail or in a traditional letter. The patient does not
need to confirm the appointment; it is considered confirmed unless it is canceled. If the patient
wants to reschedule, she can call the hospital to change the appointment. If the patient cancels,
the appointment is removed from the doctor’s schedule. The process ends when the patient
arrives at St. Matthews for the appointment. If the appointment date passes and the patient does
not show up, the process is terminated as well.

FIGURE 2-8. Intake patient process—appointments

Register
patient

Schedule
appointment

Prepare
instruction

Notify
patient

This page intentionally left blank

Chapter
3

Oracle Fusion Middleware
and SOA Suite 11g

45

46 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 47

t. Matthews is facing several real business challenges, as we have seen in the
previous chapter. The hospital has well-defined views as to how to approach these
challenges from the business perspective as well as the implementation or
technological perspective. Service-Oriented Architecture (SOA) as an overarching
design principle is a key element in this approach. To apply the concepts laid down

in St. Matthews’ architecture blueprints, the hospital needs to put in place a technology stack that
supports those architectural concepts. Chapter 2 made the opening moves in this direction.

St. Matthews has evaluated a number of SOA and middleware offerings from various vendors—
including open-source products—and has picked Oracle Fusion Middleware (FMW) as its preferred
stack. Among the selection criteria, support for open industry standards ranked very highly, along
with product functionality, operational (administration) effort, and maturity. Because it is a long-
running and rather satisfied user of Oracle technology—RDBMS and various tools, including Oracle
Forms—the IT staff at St. Matthews has a natural bias toward the Oracle Fusion Middleware offering.
It hopes and expects that FMW will offer additional advantages, such as even better integration with
the Oracle technologies already in use (for example, PL/SQL), that alternative products wouldn’t
provide, in addition to a smoother learning curve based on the current skill set.

This chapter introduces Oracle Fusion Middleware in general and then focuses on the SOA
Suite, one of its key components. It first offers an overview of the history of SOA and middleware
within Oracle. Then it paints the broader picture of Fusion Middleware before concentrating on
the SOA Suite and the products and technologies FMW comprises. The chapter concludes with
the installation of the SOA Suite 11g and briefly touches upon the migration from previous
releases of the Oracle SOA Suite. At the end of the chapter, we’ll have the SOA Suite up and
running, ready for the development of services.

History of Middleware and SOA in Oracle
Oracle aspires and even claims to be the number-one vendor in the middleware market. Whether
or not that claim is justified, and regardless of what being “number one” in middleware exactly
means, it is very clear that Oracle has undergone a dramatic makeover from not having a
meaningful presence in middleware market at all to being at least one of the dominant players.
How did that makeover happen? Why did it happen? And what is middleware anyway?

An exact definition of middleware is almost impossible to give. Historically (from the mid-
1980s), middleware was very much associated with messaging and queuing, brokers, transaction
monitors, and distributed processing. The essence of middleware is in connecting software
components and applications, enabling interoperability between various platforms and different
systems, and supporting the automated, structured exchange of data across the IT landscape. As
such, middleware became the platform for Enterprise Application Integration (EAI). In more recent
years, middleware has become the label for technology for (web) services and SOA. The term
middleware now encompasses almost all software infrastructure required for implementing SOA.
It has come to also be used for areas such as identity management, business intelligence, and
content management. Note that although some vendors include databases in their definition of
middleware, Oracle does not.

The Mists of Time—Until 2001
It is difficult to point out exactly when Oracle started doing middleware for real and what those
initial activities were. It is much easier to see what those early efforts led to.

S

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 47

The Oracle RDBMS has been an interoperability platform from very early on: The RDBMS was
released for all major platforms, and many not so major ones as well. Oracle Corporation has always
invested a lot of effort in porting the C-based Oracle RDBMS software from Solaris—the primary
release platform for many years until Linux (temporarily) usurped that position—to a host of other
operating systems running on hardware from PCs to mainframes. Oracle database applications
written on one platform will be portable to any of the other platforms that the RDBMS runs on. This
means, for example, for PL/SQL programs “write once, run everywhere”—the much-touted Java
tagline, was realized before Java even existed! Interoperability with non-Oracle technology was not
as hot an issue at that time.

A first stab at messaging (infrastructure) was delivered through Advanced Queuing (AQ) in
the Oracle 8.0 RDBMS release (1998). AQ is based on database technology, including tables
and PL/SQL. It adds to the database the ability to implement, publish, and subscribe scenarios
where applications asynchronously communicate messages. Note that AQ is still the backbone
of persistent messaging in WebLogic today.

In the mid-1990s, client/server was all the rage, and in that two-tier architecture there was
initially no place for middleware—a third tier. However, the rapid expansion of the Internet as
well as several major challenges with the client/server architecture, such as maintenance effort
and server-side scalability, resulted in the rise of the three-tier architecture and the introduction
of the notion of an application server. An application server can be used to execute common
business logic for all clients, thereby decreasing load for both the front end and back end. Also,
through the type of functionality offered by this middle tier, it is the best place to position and do
integration (using middleware).

The need for integration across different systems in the enterprise—and, later, also between
enterprises—became more apparent and formed another force that drove the creation of middleware
software. The fact that most organizations use technology from different vendors, and that integration
therefore also means interoperability across various technology platforms, was one of the drivers for
the development of industry standards.

Oracle announced its full support for the Java platform early on, in 1997. In 1998, the Oracle
8i RDBMS was released with a Java Virtual Machine (JVM) inside the database. Oracle also
released several versions of its ill-fated OAS product, the Oracle Application Server. OAS 4.0, for
example, released in 1998, debuted support for CORBA, an early interoperability standard. Based
on OAS, Oracle announced the Oracle Integration Server (OIS) at the end of 1999, a platform for …
integration! OIS leveraged Advanced Queuing and introduced early versions of technology
adapters for integration with packages or views in the database as well as some third-party ERP
(SAP, PeopleSoft) systems. Other components new in OIS were Workflow and InterConnect. Until
overtaken by the Oracle Enterprise Service Bus (OESB), InterConnect was the primary Enterprise
Application Integration product offered by Oracle and it laid the foundation for several pieces of
today’s SOA Suite.

In 1998, the World Wide Web Consortium (W3C) published the 1.0 release of the XML
standard. This turned out to be the foundation for almost every integration and interoperability
initiative ever since. Oracle was quick to join the XML crowd. In 1999, the first release (of many)
of the XML Development Kit (XDK) appeared. The 9iR2 landmark release of the RDBMS had
built-in support for SQL/XML and the native XMLType data type. The XML functionality in the
RDBMS was collectively labeled “XMLDB,” a term that today covers many of the more native
database features around XML.

48 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 49

Industry Standards: From 1998 until Now
The evolution of middleware technology within Oracle Corporation took place alongside
developments in the industry. Both commercial vendors and open-source products were released,
competing with Oracle’s offerings. More importantly, most vendors were collaborating in various
consortia and standards bodies to create the industry standards that would bring such tremendous
change to the world of middleware and the promises of interoperability. The true reason why
SOA could bring the success and the results promised by various reuse and integration initiatives
since the 1980s lies in the widespread commitment to open standards, among the commercial
vendors as well as the open-source projects.

Many of the standards around the Web, Web Services, SOA, and interoperability are created and
maintained by standards bodies such as the W3C, OASIS, and JCP, in close collaboration with many
of the major industry players. Companies such as IBM, Microsoft, SAP, Sun Microsystems, BEA
Systems, Hewlett Packard, Fujitsu, webMethods, Software AG, and, of course, Oracle, frequently
join forces to further the evolution and widespread promotion of standards. Implementation of and
compliance with these standards has become an important part of marketing efforts, and any product
that fails to meet the standards’ specifications will have problems competing with similar offerings
that do support the standards.

XML (eXtensible Markup Language, inspired by HTML and its predecessor SGML) was the
first (and foremost) standard in this area, sponsored by Microsoft and published by the W3C in
1998. XML is today the lingua franca as well as the main lubricant of SOA, Web Services, and
other interoperability initiatives, as well as the foundation for many more specialized standards.
The XML standard describes a set of rules for creating documents with structured data. XML itself
is very generic—something like ASCII or comma-separated files with more structure. Its real value
starts to shine in conjunction with standards and tools that describe and perform validation of the
structure and content of the documents (XSD), retrieve pieces of information from the documents
using structured queries (XPath), and transform documents into different structures (XSL-T). You
will see many examples of these core XML technologies throughout this and any other SOA-
related book.

Hot on the heels of these standards related to storing information in structured documents
and manipulating those documents were standards for exchanging information captured in
such documents. The first definition of SOAP (the Simple Object Access Protocol) saw the light
of day as early as 1998. SOAP describes a simple envelope-style mechanism for combining
payload and metadata in structured packages. In 2000, the Web Service Definition Language
(WSDL) introduced the now-omnipresent standard for describing the contract for a Web
Service—where the definition of a Web Service by now has been stretched to encompass
almost any service and operation that deals with structured information. Fairly well known,
though not overly successful, is the Universal Description, Discovery, and Integration (UDDI)
standard, also dating from 2000. UDDI is intended to underpin directories of Web Services that
tools can browse through in order to discover useful services. Despite its lack of immediate
success, UDDI has certainly helped to promote the concept of service registries with listings of
useful services that potential consumers such as developers can browse through. UDDI, SOAP,
and WSDL can be seen as the first generation of the XML-based standards concerning Web
Services. In 2004, the WS-I Basic Profile was published to complement this threesome—a
set of guidelines on how exactly to apply these core Web Service standards, to ensure full

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 49

operability (the original standards allowed for multiple interpretations in certain areas that led
to differences between vendors’ implementations).

The second wave of standards in the area of Web Services is concerned with more advanced
concepts around message exchanges, such as the policies that apply to the message, the security of
the messages, sending them in a reliable way to guarantee the reception (in the proper sequence
and without duplication) of messages, correlation of multiple messages sent over a longer period,
and the specification of return addresses and other concerns. Together these standards are referred
to as WS-*: Their names all start with WS, and collectively they constitute a framework for
service-oriented message exchanges that make it useful to have a common denominator. The * is
usually pronounced splat or just star. Important members of the WS-* family are WS-Addressing,
WS-Reliable Messages, WS-Security, and WS-Policy.

The automation of business processes has always been an important objective for the IT
industry. The complexity of many processes and the involvement of multiple IT systems and
applications, as well as the required participation of humans, have stood in the way of process
automation for a long time.

With the rise of Web Services to overcome the interoperability challenges, fresh opportunities
started to open up for business process automation. New ways to describe business processes
in a structured way started to appear in 2004. The most prominent examples are Business Process
Modeling Notation (BPMN) and Business Process Execution Language (BPEL, defined through
BPEL4WS and WS-BPEL). Process definitions include the process routing and decision logic,
calls to Web Services, and tasks to be performed by people. As the standards evolved, engines
to execute such process definitions were developed by various vendors. BPEL4People and
WS-Human Task (2007) have added human task-oriented extensions to BPEL that, by itself, is a
rather technical Web Service–oriented language. Table 3-1 provides a chronological overview
of some IT industry standards and specifications relevant to middleware and Service-Oriented
Architecture.

Service Orchestration and Composite Services
In the previous chapter, we discussed elementary services and business services. The latter are
coarser grained, offering more specific and complex functionality, leveraging the elementary
services to help provide their functionality. Composing the coarse-grained services takes a
combination of flow logic, calls to other services, and logic to process the results of those calls.

The industry had recognized the challenges of service composition or orchestration. In
many cases, a number of services need to be invoked to accomplish a certain task, and only
when all services have been called and delivered their response is the task done or the
composite service complete. If a service call fails—either because of a technical issue or
because of a business exception—the task may need to be undone or may need additional
steps to overcome the problem. Multiple service calls can be made in parallel. Calls can be
made to synchronous services, which send their reply as the return message to the request,
and also to asynchronous services, which call back at some later point in time to deliver their
response. These clusters of service calls or composites can represent a real business process
or implement a composite service. Instances of such composites that perform service
orchestration can be long running—up to days or even months when real business processes
are implemented. Multiple instances of the same composite can be active at the same time,

50 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 51

TAble 3-1. Chronological Overview of Some IT Industry Standards and Specifications Relevant to
Middleware and Service-Oriented Architecture

Standard

Year of
Original
Publication

Current Release
and Year
Published

Standards
body Purpose

Enterprise Java Bean
(EJB)

1997/1999 3.1, 2009 JCP JEE specification for exposing and
accessing remote Java-based business
logic

XML 1998 1.1 (2nd
edition), 2006

W3C Flexible yet structured language for
creating text documents

SOAP 1998 1.2, 2007 W3C XML-based protocol specification for
exchanging messages with Web Services

XPath 1999 2.0, 2007 W3C Query language for retrieving
information from XML documents

XSLT 1999 2.0, 2007 W3C Style sheet language for describing
transformations for XML documents

WSDL 2000 2.0, 2007 W3C XML language for describing the Web
Services contract

UDDI (Universal
Description,
Discovery, Integration)

2000 3.0, 2004 OASIS XML language for publishing a registry of
(web) services

XSD 2001 1.0, 2001 W3C Schema language for defining the valid
structure and rules for XML elements
(and successor to DTD)

Java Message Service
(JMS)

2001 1.1, 2002 JCP JEE specification that describes a Java
API for loosely coupled, asynchronous
interactions through Message Oriented
Middleware

Java EE Connector
Architecture (JCA)

2001 1.5, 2006 JCP JEE specification for creating adapters to
connect Java with Enterprise Information
Systems

Security Assertion
Markup Language
(SAML)

2002 2.0, 2005 OASIS XML-based standard that describes
how security-related information
(identification, authorization) can be
exchanged

Web Services for
Remote Portlets
(WSRP)

2003 2.0, 2008 OASIS Specification for interaction between
portals (Portlet consumers) and (remote)
Portlets (Web Services with a user
interface)

WS-Reliable
Messaging

2003 1.1, 2007 OASIS A wire protocol used in SOAP messages
to ensure reliable transport between
sender and receiver

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 51

TAble 3-1. Chronological Overview of Some IT Industry Standards and Specifications Relevant to
Middleware and Service-Oriented Architecture (Continued)

Standard

Year of
Original
Publication

Current Release
and Year
Published

Standards
body Purpose

Business Process
Execution Language
(BPEL4WS/ WS-BPEL)

2004 2.0, 2007 OASIS Executable language for processes that
interact with Web Services

Service Data Objects
(SDO)

2004 2.0, 2005 OASIS Data-programming architecture that
facilitates working with structured data
objects in Service-Oriented Architecture

Business Process
Modeling Notation
(BPMN)

2004 1.2, 2009 OMG Standard for ways to graphically describe
business processes—and as added bonus
simulate or even execute those processes
for real

WS-I Basic Profile 2004 1.1, 2006 WS-I Specification on how to apply standards
such as SOAP, WSDL, and UDDI in
order to achieve true interoperability
across technology stacks

WS-Security 2004 1.1, 2006 OASIS Specification on how to apply
security—for example, through SAML or
Kerberos—to Web Services and SOAP
messages

WS-Addressing 2006 1.0, 2006 W3C Standard that provides transport-neutral
mechanisms to address and identify Web
Service endpoints and to secure end-to-
end endpoint identification in messages

XQuery 2007 1.0, 2007 W3C Programming language for querying
collections of XML data (technically a
subset of XPath)

BPEL4People and WS-
Human Task

2007 OASIS Extension of BPEL4WS to specify
interaction with humans and a human
task-definition language

Service Component
Architecture (SCA)

2007 1.0, 2007 OSOA Configuration language for describing
composite applications based on service
components

WS-Policy 2007 1.0, 2007 W3C XML language for describing the
policies—such as Security and Quality of
Service—that apply to a Web Service

WS-I Basic Security
Profile

2007 1.1, 2009
(approval draft)

WS-I Specification on how to apply security
standards such as WS-Security in order
to achieve true (security) interoperability
across technology stacks

52 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 53

handling different requests from potentially different clients. Figure 3-1 shows an example of
service orchestration where the BookACompleteTrip service orchestrates the flight, hotel, car,
and insurance-related services.

BPEL was the first language for implementing service orchestration—programs written in
BPEL invoke (usually multiple) Web Services, perform process logic, handle faults in service
calls, coordinate transactions, and deal with events and timeouts. Programs written in BPEL are
known as BPEL processes. These processes run in a BPEL container. They are usually started
through a call to the Web Services interface published for the BPEL process or initiated by the
consumption of an event.

Through BPEL, many organizations successfully created SOA applications: programs or
service composites that implemented business logic largely by orchestrating services that do the
real work. However, even though BPEL can orchestrate multiple service calls and perform many
of the actions required in a service composite, the BPEL container will usually work with other
engines to execute all logic in a process and the services it invokes. For example, pieces of
computing logic are implemented in Java; a workflow engine is engaged to handle human tasks;
adapters are required to interact with databases, message queues, and a file system; and a rule
engine implements decision logic that determines the routing through the process at junctions.
Service composites usually also involve a fair bit of message transformation, filtering, and routing.

When the BPEL process is really the implementation of a business process, chances are that it
will be long running (longer than a few seconds) and will carry some state data—data that it
hangs on to for a large part of its lifetime. BPEL processes can also be used to create composite
services—the coarser-grained next level from elementary services. In that case, a BPEL process
instance will complete much faster and should not be considered stateful.

FIGURe 3-1. An example of service orchestration, combining external services and internal
logic and exposing a single coarse-grained business service

BookFlight
BookACompleteTrip

service

BookHotel

HireCar

GetTravelInsurance

?

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 53

Note that in many cases the BPEL process could by itself take care of most of the work that can
be delegated to other service engines—and before the various dedicated service engines were
available, many BPEL processes were developed that actually do all the work themselves. However,
for reasons of performance, functionality, and development productivity, it is better to use the best
tool for the job. Equally important is the management agility: With all logic programmed into the
BPEL process, every little change requires a redeployment of the entire service composite. Especially
with long-running processes, such redeployments are not a trivial affair. Better to have the BPEL
process collaborate with logic running in other engines that are more easily reconfigured and have
different procedures for configuration and deployment. Some engines, for example, support a great
deal of run-time configuration.

Recently we have seen a shift away from BPEL: True business processes are increasingly
implemented using engines running BPMN. BPEL seems to be primarily an integration engine that
combines services to provide the type of coarse-grained service we discussed earlier.

Service Component Architecture (SCA)
With on the one hand the obvious success of BPEL for creating service composites and on the
other the ongoing challenges, many vendors working on Service-Oriented Architecture have
joined forces to come up with a new standard for creating service-oriented applications.

The objective of this standard was to allow the development of a service-oriented application
that could implement every piece of its functionality in the language and run-time engine best
suited for it and still have all the pieces integrated in a simple, standardized way, based on the
established standards for services. It is assumed—though not required—that the application will
invoke several external services. It is also expected that the application will expose a service
interface itself. Reuse is an important theme in SOA and is also a key objective for this new
standard: Applications developed according to the standard are reusable components that can be
included in other applications.

This standard is called Service Component Architecture (SCA), first published in 2007. It is
expected to become the dominant guiding principle, according to which vendors build their SOA
containers, and thus the framework for development of SOA applications.

The promise of SCA is that developers can use various languages running on different run-time
engines to implement various parts of the application—for example, BPEL, Java, another SCA
composite application, a rule engine, a workflow engine, and technology adapters to work with
databases, queues, and file systems. Each such part of the application is called a (service) component.
Each service component publishes a contract that describes its interface through a WSDL document.
The developers specify the functional link between these different parts of the application, and it is
up to the SCA container or run-time engine to facilitate communication between the components in
the most efficient way, usually through a native, binary communication protocol.

The coupling between service components is very loose; they can work together without any
knowledge about each other’s implementation. This way of creating composite applications is
very flexible: It allows replacement of one service component with another that, as long as it
fulfills the same contract, could be implemented in an entirely different language running on
another service engine.

SCA is not just for easier and more productive development of SOA applications. It also specifies
how the behavior of the application can be made configurable to allow administrators to apply
changes in the behavior without redeployment of the application. Changes in the location of services
called from the application can be changed at run time without impact on the availability of the
application. Quality of Service aspects, including security policies and reliability requirements, can
be (re)configured during or even after deployment.

54 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 55

SCA helps to simplify the assembly and deployment of composite applications. An SCA
composite application can be assembled from a collection of SCA composites and then turned
into deployable units.

Not Invented Here (2001–2008)
Around the turn of the century, Oracle had strong support for queuing, Java, and XML in its
RDBMS. In addition, it had a number of what one might call “middleware products” that were
mildly successful at best. OAS was struggling in a market dominated by IBM WebSphere, BEA
WebLogic, Sun IPlanet, and several open-source products. Oracle Integration Server did not get
any real traction, and Oracle Corporation seemed to be looking for a product strategy that would
make it a serious contender in the now rapidly evolving market for middleware.

During these years, we have seen a slowly but steadily evolving tendency at Oracle HQ to no
longer insist on building every technology and product itself. In 1994, Oracle acquired the RDB
database from Digital (Equipment Corporation), an acquisition that worked out very well. It
demonstrated how Oracle would generally treat products it acquired: continue and frequently
even intensify the development of new product releases. Maybe that experience prepared the
organization for what was to come in later years.

In 1998, Oracle released JDeveloper 1.0, its first ever Java Development IDE, based on
Borland’s JBuilder product. This initial release consisted of over 90 percent JBuilder code, and
was a rather feature-poor product in the eyes of today’s Java developers. However, its significance
was huge. Next to the traditional development tools created within Oracle, such as Oracle
Designer, Oracle Forms, Oracle Reports, and Discoverer, Oracle offered a tool for Java (web)
developers. And it would continue to evolve JDeveloper to become the strategic development
platform of Oracle. In 2002, the JDeveloper 9i (9.0.3) release meant the end of the last JBuilder
remnants in the products. Yet the experience with a product that started out based on a third-
party code base probably also contributed to the acceptance of externally developed products at
the core of new Oracle initiatives.

In 2001, Oracle radically changed its Application Server tactics. Rather than struggling on
with its own OAS product, it struck a deal with a Norwegian company called Orion to license its
application server. Orion became the heart of Oracle Containers for J2EE (OC4J) (initially the J in
OC4J stood for Java), the engine for the Oracle Internet Application Server (iAS). iAS quickly
expanded its reach to become the middle-tier platform for such diverse products as Portal, Forms,
J2EE Applications, Workflow and InterConnect, Discoverer, Oracle Single Sign On, Oracle
Internet Directory, and many more.

Support for Web Services in the Application Server started to appear from 2001 onward,
and was complemented by development facilities in JDeveloper almost from the start. Shortly
afterward, support for UDDI was added to the Oracle Internet Directory product. The year
2003 saw the announcement of Oracle’s implementation of WSRP (WebService for Remote
Portlets), a standard that facilitates the integration of Portlets (services with a user interface)
across vendor platforms.

In 2004, the cascade of acquisitions started in what was by that time becoming known as the
“SOA space.” Oracle acquired dozens of companies and products, most of them to be folded into
the Enterprise Applications portfolio, but a substantial number in middleware as well. All of these
acquisitions quickly helped to put together a suite of products and technologies that covered most
of the requirements for implementing Service-Oriented Architecture. The acquisition of Collaxa
for its BPEL Process Manager (2004) laid the foundation for the later SOA Suite 10g product. Thor,
Oblix, and OctetString were acquired in 2005 for their various security, identity and access

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 55

management (IAM), and services management related offerings. The Oracle WebService Manager
(OWSM, frequently pronounced awesome) was based on the technology in these products.

As part of the 2005 acquisition of PeopleSoft, the Business Activity Monitor (BAM) was added
to the growing range of middleware products. Also in 2005, Oracle gave up its own UDDI
implementation and instead decided to license the Systinet Service Registry from Systinet
Corporation (bought by Mercury a little later, which itself was acquired by Hewlett-Packard in
2006). In 2006, a partnership was entered into with IDS Scheer, a leading vendor of business
process modeling software (acquired by Software AG in 2009), that allowed Oracle to offer a
product—Oracle Business Process Analysis (BPA) Suite—based on ARIS.

Another major chunk was swallowed later in 2005, when Siebel Systems was acquired. In
terms of middleware, Siebel brought what was to become the BI Enterprise Edition to the table.

Amid all these influxes from the outside, Oracle developed its own Enterprise Service Bus
(ESB)—released in 2006. The Oracle ESB leveraged a lot of the work that had gone into developing
InterConnect and a wide range of technology adapters, and did this based on standards for XML
and Web Services. The first incarnation of the Oracle Rules Engine was published around that
same time. With the ESB, Rules Engine, WebService Manager, and BPEL Process Manager
components packaged together, Oracle released SOA Suite 10g in early 2006, accompanied by
JDeveloper 10.1.3 with the design-time environment for these components. Even though the various
components were not extremely well integrated, the suite, together with iAS 10g, offered a wide
range of functionality for developing, deploying, and managing SOA implementations. Table 3-2
lists Oracle’s most relevant acquisitions and OEM partnerships around middleware technology
(see http://www.oracle.com/us/corporate/acquisitions/index.htm for a complete, up-to-date list of
product and vendor acquisitions).

With this first generation of the SOA Suite in place, the next step was to be a much more
integrated SOA platform with all the various pieces really integrated together. The outline of SOA
Suite 11g—the core of the Fusion Middleware platform—was becoming clearer from 2006
onward, with initial technology previews being published starting in late 2007. However, plans
were to be changed dramatically in the course of 2008, as Oracle’s largest technology takeover
until then unfolded. Among its products were the AquaLogic Service Bus (an ESB), BPM Studio (a
BPMN-based product for Business Process Modeling), the Enterprise Repository (for governance
of services and other IT artifacts), AquaLogic Data Services, Tuxedo (for managing transactions
across distributed systems including mainframes), and a number of portal products.

When the Oracle-BEA deal was closed at the end of April 2008, the architects of Fusion
Middleware returned to the drawing boards. BEA’s products offered valuable opportunities for
improving the pending SOA Suite 11g that simply had to be taken advantage of—at the cost of a
regrettable delay in its original release schedule. The entry of WebLogic into the Oracle stable
meant, for example, the early retirement of the OC4J-based Application Server line: All Oracle’s
middleware were to be delivered on top of the WebLogic platform.

Other acquisitions that had an impact on the middleware product portfolio include Sunopsis
(2006, rebranded Oracle Data Integrator), Stellent (2006), and Universal Content Manager and
Hyperion in 2007—a solution for corporate performance management. Early 2010 saw the
completion of the acquisition of a big (Glass)fish: Sun Microsystems. Sun was a prize for Oracle
because of its hardware and its control over Java. As a bonus, Oracle gained control over many
Sun products concerning identity and access management, Web Services, BPEL and integration,
portals, as well as another JEE application server: GlassFish. None of these products gets the

56 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 57

TAble 3-2. Oracle’s Most Relevant Acquisitions and OEM Partnerships around Middleware Technology

Year Type Vendor Product Purpose

2001 OEM Orion OC4J Java/J2EE application server

2004 Acquisition Collaxa BPEL Process Manager Web Service Orchestration

2005 Acquisition Siebel Systems BI EE Business intelligence, OLAP,
reporting

2005 Acquisition PeopleSoft Business Activity Monitoring Real-time analysis of business events

2005 OEM HP (Mercury)
Systinet

Service Registry UDDI service directory

2005 Acquisition Thor Technologies Xellerate Identity and access management

2005 Acquisition OctetString Virtual Directory (Engine) Identity and access management

2005 Acquisition Oblix COREid, COREsv Identity and access management/
Web Service management

2006 Acquisition Sunopsis Data Integrator Data integration (ELT)

2006 OEM IDS Scheer ARIS/Oracle BPA Business process analysis

2006 Acquisition Stellent Universal Content Manager Content management

2007 Acquisition Hyperion Hyperion, ESSBase Corporate performance
management

2007 Acquisition Bharosa Bharosa Tracker and
Authenticator

Security and real-time fraud
detection

2007 Acquisition Bridgestream Role Manager Identity and access management

2007 Acquisition Moniforce Moniforce Web user experience monitoring

2008 Acquisition BEA WebLogic, AquaLogic
Service Bus, Enterprise
Repository, BPM Studio,
Tuxedo, Portals

JEE Application Server, ESB, SOA
governance, BPMN, transaction
management

2008 Acquisition ClearApp ClearApp Management of composite SOA
applications

2009 Acquisition Sun Microsystems Hardware and infrastructure
components:
GlassFish, OpenESB with
IEP, OpenPortal, OpenSSO,
Identity Management, Portal,
MySQL

Manifold, including middleware
for running JEE applications,
implementing SOA, processing
events, and managing identities/
authentication and authorization

2009 Acquisition GoldenGate GoldenGate Real-time data integration and
continuous data (changes) availability

2010 Acquisition AmberPoint Governance System,
Management System

SOA management and governance,
security, business transaction
management

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 57

“strategic” status at Oracle. This means that while some of their capabilities may be added to the
existing Fusion Middleware components, none will replace a current FMW product. As such, the
impact of the acquisition of Sun on the SOA Suite 11g was fairly limited.

More impact—at least on operational management, security, and governance of SOA
applications—can be expected from the acquisition of AmberPoint, which was announced in
February 2010.

Invented Here after All
Not all new middleware technology was seized from the outside world. Indeed, one of Oracle’s
current flagship middleware products was built from scratch at Oracle—it simply did not exist
anywhere in the world. WebCenter is a product for Enterprise 2.0, the enabler for enterprise-wide
collaboration. It delivers the next generation of enterprise portals. WebCenter extends SOA
concepts and services with a user interface through its support for WSRP Portlets. It provides the
integration point at the user-interface level between many areas of functionality, such as content
management, task management and workflow, enterprise-wide search and communication
through e-mail, instant messaging (or chat), and VoIP (Voice over IP). It is also a natural fit for
user interfaces that expose or leverage the services provided from the SOA.

WebCenter, Oracle Applications, BI Enterprise Edition, BAM Studio, Enterprise Manager, and
an increasing number of other Oracle products are developed using the homegrown Application
Development Framework (ADF). This framework contains ADF Business Components for smooth
interaction with the database and ADF Faces, with a rich Web 2.0 library of user-interface
components based on the JavaServer Faces (JSF) industry standard. The rich web applications are
agnostic when it comes to their data provider—the ADF Model abstracts the underlying business
service—and work equally well with a persistence layer based on JPA and EJB as well as Web
Services.

ADF has facilities for very productive, declarative development with several reuse mechanisms
and support for advanced data visualization, active (event-driven, server-push) user interfaces,
and “design time@run time” (discussed later in this chapter) for application customization and
personalization. Development of ADF applications is done with Oracle JDeveloper. The applications
run on a J(2)EE application server, typically WebLogic Server.

ADF is used in the SOA Suite to implement the user interface for the human tasks that are part
of the SOA applications.

Complete, Open, and Integrated—2009 and beyond
Around the turn of the century, Larry Ellison stated that enterprises should not go out and select
best-of-breed products from a range of different vendors that then would have to be integrated
together by “the guys with the glue guns.” Much better, he said, to buy a pre-integrated suite—
engineered from the beginning to fit together—that does not require such a “glue gun” approach.
That pre-integrated suite, by the way, was supposed to be the Oracle 11i eBusiness Suite.

Clearly this strategy was not embraced by the marketplace, and organizations continued to
acquire best-of-breed products that required integration. Oracle itself started to do the same thing,
as was described in the previous section. With PeopleSoft (HRM/HCM), Siebel (CRM), Retek
(Retail), Portal (Billing), and many other applications, Oracle bought itself an impressive range of
best-of-breed products that required … integration. At the technology level, by the way, it did
something very similar. With Stellent, BEA, Sunopsis, Hyperion, and others, Oracle acquired
superior, market-leading alternatives to some of its own products. Of course, these products, too,
needed integration.

58 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 59

The continuing and even increased need for integration of business applications provided
Oracle with a market opportunity. It could make money in the middleware space to support all the
integration efforts going on. In fact, how credible would the position of the Oracle Application
Server platform be without support for integration and service orientation? Providing solid and
functionally rich middleware was probably not just an opportunity as much as a necessity.

Apart from the external drivers, there was an urgent internal driver that was probably the most
pressing one: Customers running a combination of modules from Oracle eBusiness Suite, Siebel,
Retek, and PeopleSoft demanded of Oracle that these modules work together smoothly—
something they obviously had not been designed for. Although this requirement posed a huge
challenge, it was a challenge quite similar to the ones facing most enterprises: how to make
legacy, custom, and COTS (commercial off-the-shelf) applications work together. Oracle’s
middleware had been pushed by the Oracle marketing teams and sales force as the solution for
such challenges, so now it was time to put their money where their mouths were—or, as is the
usual expression within Oracle, it was time to “eat your own dog food.”

Based on the Oracle 10g SOA Suite, the Application Integration Architecture (AIA) was
developed. AIA provides process integration packs (PIPs), collections of BPEL processes that
implement business processes across various Oracle Applications products (for example, order
processing across modules in EBS and PeopleSoft). Underpinning the PIPs is the AIA Foundation
Pack that contains Enterprise Business Objects and Enterprise Business Services, which allow
organizations to create their own customized business processes on top of the Oracle SOA Suite,
spanning multiple modules from different products in the Oracle Applications portfolio and also
legacy applications, including SAP modules and custom-built applications. AIA is crucial to
Oracle’s strategy with regard to its Enterprise Applications portfolio. AIA’s requirements will further
drive the development of Oracle’s SOA products, and its success will provide clear proof of the
value of those products as well as a reference implementation with best practices, reusables, and
guidelines for organizations using the SOA Suite for their own SOA implementation.

Fusion
With the acquisition of PeopleSoft, Oracle announced its Fusion vision and roadmap. Later
acquisitions had their impact, not so much on the vision itself but certainly on the roadmap and
timelines. There has been a lot of confusion as to what Oracle’s Project Fusion entailed. At the
core, “Fusion” has these aspects:

 The integration of the acquired business entities into Oracle, reorganization as well as ■
staff retention, especially among engineers

 A newly developed next-generation application that is based on industry standards and ■
the latest technology and that takes the best features, flows, and usability traits from the
existing application products; this new product is known as Fusion Applications

 Technology for making different products in the Oracle Applications portfolio—such ■
as EBS, PeopleSoft, Siebel, Retek, and JD Edwards—work together, as well as the
technology stack for the new Fusion Applications; this technology has been labeled
Fusion Middleware

The adage Oracle uses for Fusion Middleware (FMW) is “complete, open, and integrated.”
This captures the essence of the objectives with and claims for Fusion Middleware.

Complete means that all capabilities in every middleware area you can think of are provided
by Fusion Middleware. And to put it even stronger, Oracle claims that every capability in FMW is

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 59

provided by the best-of-breed offering. So even if an organization wants to pursue a best-of-breed
strategy, it would have to select Fusion Middleware components in every area because they are
the best of breed in their own right. Oracle further strengthens the completeness claim with
Fusion Applications as the living proof. Oracle has a unique ability to maintain the completeness
in the future, given its resources, dedication, and internal needs.

Open refers to the fact that Fusion Middleware is hot-pluggable. This means that the FMW
components can be replaced by alternative products from other vendors. Oracle recognizes the
fact that even though it claims to provide a complete, best-of-breed solution in every area,
organizations may have current investments or even deviating views as to which product is the
best solution in a certain area of middleware capabilities. Another aspect of openness is the
support for open standards. Fusion Middleware complies with every major industry standard in
the area of middleware—some 195 standards are supported and adhered to in the FMW 11g
release. This makes the product open in the sense that it can be interacted with in ways that
are common across the industry. FMW is not open source, obviously, but does not tie an
organization to Oracle proprietary protocols or hamper interoperability. Custom applications
written for use with Fusion Middleware will run with alternative middleware platforms that also
support the industry standards.

Now let’s consider integrated. Not only does Fusion Middleware offer all middleware
capabilities (complete), it also has all these capabilities nicely integrated and working together.
That may sound trivial—if a vendor offers a number of middleware products, you would naturally
expect them to work together. However, frequently that is not the case at all—and it wasn’t the
case for the 10g releases of the Oracle SOA Suite. Fusion Middleware provides that integration
across different areas of functionality, such as business intelligence, Web Services, content
management, enterprise collaboration, identity and access management, governance, event
processing, and custom-developed user interfaces. It helps organizations create business
processes that integrate with these different technologies across the enterprise.

Fusion Middleware 11g: The Innovative Foundation for enterprise Applications
July 1, 2009, marked a milestone in the history of Oracle Corporation. On that day, the worldwide
rollout of Oracle Fusion Middleware 11g was initiated, the culmination of many years of helping
forge the industry standards, conducting research into interoperability, creating new tools and
frameworks, acquiring and absorbing products from external parties, and architecting a complete
stack of middleware products. The public unveiling of FMW 11g was one of the biggest product
launches in Oracle’s history.

Fusion Middleware 11g consists of many different products that provide solutions in diverse
areas, from identity and access management, business intelligence, event processing, content
management and data integration to a data grid, web application development, enterprise portal
and collaboration, business process management, governance, security, and, of course, Service-
Oriented Architecture. Fusion Middleware 11g runs on top of WebLogic Server 11g. The design
time for most products in the stack is JDeveloper 11g.

Fusion Middleware is not sold as single product with a simple price tag. Oracle understands
that many organizations will, at least initially, only use specific components from the wide range
of middleware products. Customers buy licenses for specific product suites, bundles of related
products in specific areas of functionality. Among the FMW 11g suites offered that are associated
with SOA are the BPM Suite, EDA Suite, Governance Suite, and, of course, SOA Suite. Note that
these suites have a certain level of overlap. Also note that for most suites, several reduced-cost
variations are offered that support usage of only specific products from the suite.

60 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 61

The biggest customer for Fusion Middleware is Oracle itself. The development of Fusion
Applications and other products in the Oracle Applications portfolio is all done on top of the
Fusion Middleware 11g stack. Most organizations will have less stringent requirements for their
development and integration efforts than the ones faced by Oracle’s internal divisions. Because
the exact same technology is available to external customers as is being used internally, Oracle is
providing the proof in the FMW 11g pudding by eating all of it itself.

SOA Suite 11g: The Key Components
SOA Suite 11g is first and foremost an SCA container, a run-time engine that can execute
composite service applications. Composite (service) applications are SCA-compliant applications
that are assembled from various service components that are wired together internally based on
WSDL contracts. Composite applications publish a service interface through which they can be
invoked by external clients. This interface is frequently a (SOAP) Web Service interface, but other
types of bindings are also possible, such as based on EJB/RMI and JMS. SOA Suite 11g can run
multiple instances of every composite application in parallel. It can handle calls into applications,
coordinate messages between components within an application, and facilitate calls from the
application to external services.

You invoke a composite application that exposes a Web Service binding by sending an XML
message to a URL. That message will be processed—possibly resulting in database manipulation,
file creation, human task execution, e-mail sending, and event publishing. At some points during
the processing of your message, you may receive return messages that can contain the results of
whatever the application has been doing.

The composite applications running on the SOA Suite can make use of the following service
languages and engines for executing its components:

 bPel Process Manager ■ Orchestrates (potentially) long-running service composites with
many interactions with external services, both outgoing and incoming.

 Decision Service or business Rules engine ■ Executes decision logic that can be
(re)defined at run time.

 Human Workflow Service ■ For engaging humans in making decisions or providing
information.

 Spring-based Java beans (as of 11 ■ gR1 PS 2) Custom business logic implemented in Java
acting on the messages.

 Mediator ■ For filtering, transforming, adapting, and routing messages.

 bPMN ■ Business process logic defined through BPMN can be executed inside the SOA
Suite (by the same engine that also runs BPEL). (This, too, was introduced in 11gR1 PS2.)

Composite applications accept incoming request messages and route them through components
programmed using these technologies. Note that other SCA containers may support different service
engines—for example, running Cobol, C, and C#—and that Oracle may add new service engines to
the SOA Suite as well. Each component performs a service that may alter the message, create new
messages, have external effects, or influence the onward processing in the application. Composite
applications can call out to external Web Services—and receive asynchronous responses or other
incoming messages from these external services. Applications can also make use of the Event
Delivery Network to publish business events as well as to consume such events.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 61

The SOA Suite is shipped with an impressive set of technology adapters. These adapters speak a
specific protocol and language to some external technology platform on one end and act like a
Web Service on the other. Examples of these protocols, platforms, and languages include the file
system, FTP servers, the database, JMS queues, the eBusiness Suite, SAP, and various B2B exchange
types, such as RosettaNet, ebXML, HL7, and EDI(FACT). These adapters make it possible for SOA
applications to connect to many different components and thereby service-enable existing assets.

Outside of the SCA container—but still part of the SOA Suite license and prepared for integration
with the SOA composites—are several other valuable products: the Oracle Service Bus (OSB), Oracle
Business Activity Monitoring (BAM), and Oracle Complex Event Processing (CEP).

Adapters
SOA Suite 11g is integrated with a large number of adapters that the composite applications can
make use of for accessing services across various technologies and protocols. These adapters
allow the composite applications to retrieve data from, forward messages to, and leverage
functionality in many different places in and even outside the enterprise—from database and file
systems to EDI trading partners and legacy applications. Some adapters allow for the activation of

Ingredients of a Composite Application
When developers create an SOA composite application, what they are actually doing is
working on XML files. What gets deployed to the SOA Suite’s SCA container typically is a
collection of the following files:

The WSDL and XSD files that describe the interfaces (contracts) of the application ■
as a whole (the services it exposes) as well as the service components running
inside the application.

The files that are the programs to run in the BPEL and Mediator engines or that ■
define the human task to be performed by an end user.

Files that describe how the SCA components are wired together to exchange XML ■
messages to be processed at run time.

Definitions for how XML messages are to be transformed en route from one ■
component to the next.

Some of the XML files provide the configuration details for the adapters that the ■
composite application can use to communicate to external technology platforms,
such as database, file system, e-mail server, and message queues.

Configuration plans that apply environment-specific deployment details. ■

Most of the XML, by the way, is hidden from view by visual editors that present far
prettier and easier-to-understand renditions of those blocks of XML data.

All of the XML files are bundled together in archives—a JAR (Java Archive) or SAR
(Service Assembly Archive, aka SOA Archive, a deployment unit that describes the SOA
composite application)—that are deployed to the SOA Suite container.

62 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 63

composite applications from the outside world. The most important adapters available for use in
SOA Suite 11g composite applications access the following targets:

 Database ■ For accessing tables and views (query and data manipulation) and calling
PL/SQL program units

 File and FTP ■ For reading and writing files from a file system and an FTP server

 Queues ■ For accessing queues through JMS, Oracle Advanced Queuing, and MQ Series

 enterprise Java bean (eJb) ■ To communicate with remote Enterprise JavaBeans

 Sockets ■ For reading and writing data over TCP/IP sockets

 Oracle Applications (aka Oracle ebusiness Suite adapter) ■ For retrieving data from and
sending data to eBusiness Suite (11i and 12)

 business Activity Monitoring (bAM) ■ For sending data and events to an Oracle BAM
server

 ADF-bC (business Components) ■ For interacting with an ADF BC–based Service Data
Object service

 b2b ■ For the exchange of business documents with e-commerce trading partners based
on industry standards such as RosettaNet, HL7, and various EDI protocols; also support
for interaction with SAP and other ERP applications

Adapters will usually be called by the service components running in a composite application
(outbound). Note, however, that most adapters can also initiate a new instance of an application
(inbound). The database adapter, for example, can “poll for changed records,” and any new or
changed record can start a new instance. Likewise, the file and FTP adapters can poll for new
files to arrive on the file system or an FTP server, or for new lines in an existing file. This adapter,
too, can instantiate a composite application instance when new data is read from a file that has
changed.

Other adapters that can act as “service clients” that create new instances of composite
applications include the EJB adapter, the JMS adapter, and the AQ adapter. Inbound adapters can
connect to existing instances of composite applications (see Chapter 6 for details).

Adapters are discussed throughout the book: For example, the database adapter is discussed
in Chapter 5, the file adapter in Chapter 7, the JMS adapter in Chapter 12, and the ADF BC
adapter in Chapter 20.

event Delivery Network
Business events are situations of potential interest. Examples are the reception of an order,
cancellation of an appointment by the patient, the failure of a credit check, the crossing of a
stock threshold (we are critically low on Band-Aids), and the acceptance of a job offer by a new
nurse. These events frequently occur in business processes when certain conditions are met or
actions have been performed. Events can also come into existence during the execution of a
service component. The business events may trigger the start of new composite application
instances or could notify already running instances.

However, the burden of informing any potentially interested party of the event should not be
on the service component that happens to encounter the situation. The producer of the event—
the application or service component that causes or encounters the situation that is deemed to be

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 63

of business interest—is not responsible for what happens with the published event, nor does or
should it care. This keeps producers and consumers decoupled: Consumers can be added or
removed without impact on the producers of events. Likewise, new producers can be introduced
without any effect on the consumers. To make this happen, we need a “man in the middle” of
sorts, a generic medium that deals with both consumers and producers.

A key part of SOA Suite 11g is the Event Delivery Network (EDN), an intermediary that takes
on the responsibility of receiving events from producers and delivering them to interested parties.

Business events are defined across services and composite applications as an extension of the
canonical data model. The definition of a business event comprises a name, possibly custom
headers, and the definition of the payload. These definitions need to be registered with the EDN.

Service components—BPMN, Mediator, and BPEL—can publish events (occurrences of one
of the predefined event types) to the Event Delivery Network. Events can also be published to the
EDN from ADF applications and through a PL/SQL API.

Service components such as Mediator, BPMN, and BPEL register their interest in one or more
of the centrally defined business events with the EDN. Such an interest can indicate all events of
a specific type, but also can include more fine-grained selection rules that refer to the custom
headers or payload to filter on specific occurrences of an event. When an event has been
published, the Event Delivery Network will make sure that all interested parties will receive the
event. Note that it is very well possible that an event is not delivered to any interested party at all.
In that case, it disappears into the void.

Chapter 9 discusses the Event Delivery Network and presents several examples in detail.

Oracle Service bus
Composite applications running in the SOA Suite will frequently need to access services made
available in an enterprise service bus (ESB), possibly based on services running in other SCA
containers, offered by external parties, or running on legacy platforms such as mainframes. In a
similar vein, the services exposed by the composite applications within the business domain may
need to be made available to a wider audience; this, too, is typically done through an ESB.

SOA Suite 11g contains an ESB: the Oracle Service Bus (the successor to BEA’s AquaLogic
Service Bus, abbreviated OSB).

Chapter 13 describes the OSB and how it can be used along with SOA composite applications.

business Activity Monitoring (bAM) Server
Oracle BAM provides a framework for creating dashboards that display real-time data as it flows
into the BAM server. This is typically data received from physical sensors (security gates, RFID
scanners), trace details from computer applications (request logging in web applications, process
progress signals from a BPM or workflow engine), or live data feeds with financial data, weather
reports, or even sports statistics. Rules can be created in BAM to instruct the framework to
highlight deviations and send alerts under specified conditions. BAM is primarily used to monitor
aggregates against predefined thresholds for data recently received over relatively short periods
(typically minutes to hours, rather than months to years). That, along with the built-in capability
to trigger alerts and take actions, is the main distinction between BAM and traditional business
intelligence, which tends to be more passive and more historically oriented. BAM tries to
facilitate the operational control of business process execution.

Data used by BAM for the actual reports is managed in memory in the Active Data Cache.
Data is loaded into this cache in real time via various channels. Probably most important in the

64 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 65

context of the SOA Suite is the BAM Adapter—it is not only the fastest option for streaming data
into the BAM server; it is also integrated into composite applications like all other adapters. For
BPEL there is an additional option through the BAM sensor action that can be enlisted when
adding special tracers to activities in the BPEL processes. Alternative routes for data into BAM are
Direct JMS, Oracle Data Integrator, and through the Web Services interface exposed by the BAM
server.

Chapter 19 introduces Business Activity Monitoring in detail.

Fusion Middleware Infrastructure and Weblogic Server 11g
SOA Suite 11g runs inside WebLogic Server 11g—the SCA container lives inside the JEE
container. The underlying run-time infrastructure of Fusion Middleware 11g is the WebLogic
Server platform, managed through the Administration Console. Several web applications are
installed into the WebLogic Server domain as part of SOA Suite 11g to support the FMW 11g run-
time operations. The Oracle Enterprise Manager Fusion Middleware Control Console is the most
important one of these—other examples are the SOA Composer, the Worklist application, and
several BAM web applications.

The Oracle Enterprise Manager Fusion Middleware Control Console is the integrated console
for virtually all run-time monitoring and administration of SOA composite applications and their
instances. This console is an ADF 11g web application that runs on WebLogic and is accessed
from a browser by the SOA Suite administrator to work on tasks in these main categories:

 Configuring ■ Adjusting properties from SOA infrastructure and service engines down to
components in composite applications.

 Monitoring ■ Aggregating metrics, performance figures, and faults across applications,
components, and service engines; reporting the current state of running instances;
providing an audit trail per composite instance; drilling down to the steps through a
component; and inspecting the log files.

 Managing ■ Deploying, stopping, and starting composite applications; recovering from
faults; terminating application instances; unit testing of composite applications; and
attachment of policies to SOA composite applications, service components, and binding
components. The Oracle WSM Policy Manager is the integrated facility to attach policies
regarding security, reliable messaging, addressing, and logging to Web Services and
service composite applications.

The WebLogic Server Administration Console is used alongside the Enterprise Manager
Fusion Middleware Control for normal JEE administrative tasks such as the configuration of data
sources and JMS objects, administration of the security realm, and management of the technology
adapters. Figure 3-2 shows the architecture of WebLogic Server and SOA Suite 11g installed on
top of it.

User Messaging Service
Another element in the infrastructure is the Oracle User Messaging Service (UMS). UMS provides
applications with two-way communication with users across various channels and protocols.
Messages can be sent and received through e-mail, IM (XMPP), SMS (SMPP), and voice (VoIP).
Most of the time, the message will be initiated by the application, but UMS also caters to

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 65

scenarios in which the user is the sender of the message and the application is on the receiving
end. The arrival of the message is fed into the application by UMS.

Notifications will frequently be sent via UMS from BPEL processes, the Human Workflow
engine, and the BAM server. WebCenter, ADF, and other web applications can also make use of
UMS. UMS consists of a server that works with a number of drivers to connect with message
gateways using specific protocols. These external gateways are not part of WebLogic Server or the
SOA Suite. Various e-mail servers, chat (IM) servers, and external providers of SMS and text-to-
speech services can be integrated.

Appendix C and the book’s wiki provide instructions for configuring the UMS services.

Meta Data Services (MDS)
The Fusion Middleware run-time environment has at least one, and possibly multiple, metadata
repositories that contain metadata for Oracle Fusion Middleware system components. A metadata
repository contains metadata about the configuration of Oracle Fusion Middleware as well as
metadata for different types of enterprise applications. Shared artifacts such as XSD documents
describing the canonical data model, data value maps that describe mappings between business
vocabularies in different domains, reusable transformations, human task definitions, security
policies, business rule definitions, and business event definitions are deployed to and managed in
metadata repositories. Artifacts in these metadata repositories can be used during development as
well as at run time. Meta Data Services (MDS) provides a single interface across all repositories.
MDS provides services to validate, version, tag and categorize, discover, and manage artifacts
throughout their lifecycle.

A special facility in MDS is its support for customization. MDS can return specialized versions
of artifacts that are created from a base version with context-sensitive deltas applied to it.

FIGURe 3-2. WebLogic Server with the SOA Suite installed on top of it

BPEL

Mediator

JDBC data
sources

JMS

XA/JTA

Database
adapter

JMS
adapter

BPMN

File
system
adapter

EJB
WebServices
management

Meta Data
Services (MDS)

User messaging
service

SOA app 1 SOA app 2

Platform security services

Event Delivery Network

SOA Suite 11g

WebLogic server 11g

Human
Task

Business
rule

Spring
Java/EJB

OSB

66 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 67

Design Time
The IDE (integrated development environment) used by developers to create service composite
applications is JDeveloper 11g. JDeveloper is an IDE in more than one way. Most facilities required
for developing software are integrated into a single workbench, including editors, debuggers, and
support for testing, building, and deploying software artifacts. JDeveloper is integrated with
WebLogic Server for easy deployment, execution, and debugging of web applications. JDeveloper
also brings together the design time for many different products and technologies—from Complex
Event Processor, BPM, UML, Java, and ADF to SQL and PLSQL (SQL Developer), and from
WebCenter, Data Integrator, XML, and Web Services to all the technologies and service engines of
the SOA Suite. That means JDeveloper is also the integration development environment.

Oracle Service Bus currently has two design-time environments: One is a browser-based
console and the other is part of the Oracle Enterprise Pack for Eclipse. OSB support in JDeveloper
is planned.

The slogan “design time at run time” is becoming fashionable, and describes the ability to
change the behavior of already deployed applications at run time. Fusion Middleware supports
various forms of this run-time application manipulation. For the SOA Suite, some of the interesting
DT@RT bits include editing of business rules; manipulation of domain value maps; configuring
properties on service composite applications and adapters; and creating, removing, or changing
subscriptions to business events. The Oracle Enterprise Manager Fusion Middleware Control
Console, the BPM Process Browser, and the SOA Composer are the tools for most of the SOA
Suite’s DT@RT, as is the OSB Console.

Related Suites and Products in FMW 11g
Applications running in the SOA Suite or organizations working with the SOA Suite will frequently
use other Fusion Middleware products as well. Some of the most likely suspects that you may run
into or decide to use alongside the SOA Suite are detailed in this section.

The Application Development Framework (ADF) is a JSF-based framework for developing rich
Java web applications. ADF has special integration points with the SOA Suite. To name a few:
ADF is used to create the user interface for the human tasks, ADF Business Components (ADF BC)
are used to publish SDO services on top of the database (which are used in, for example, BPEL
processes), ADF BC is capable of publishing events onto the Event Delivery Network, and ADF
applications can consume the Web Services exposed by composite service applications running
in the SOA Suite. By the way, ADF was also used by the Oracle development teams to create the
Enterprise Manager Fusion Middleware Control Console.

WebCenter has several faces, one of which is its portal capability. Portlets can be seen as a
special type of service: a service that has a user interface built into it. WebCenter provides ADF
applications with the ability to consume such services, and it also enables ADF developers to
expose their applications as Portlet services. WebCenter is also an extension of ADF as a foundation
for rich web applications, through a large collection of services that add “integrated collaboration”
to ADF applications. This includes support for blogs, wikis, RSS feeds, chat, e-mail, tagging and
linking, content integration, management of tasks, activities and events, and enterprise search across
all content, services, and application data. WebCenter also adds design-time at run-time capability
to an ADF application. This enables an application administrator or content editor to change the
appearance and content of application components at run time—very much like regular portal
products do, but in a more advanced and better integrated-with-ADF way.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 67

Fusion Middleware contains a number of products for governance of SOA artifacts (and other
IT assets). At the core of governance is the Enterprise Repository. The Enterprise Repository
provides metadata management for technical and software-related SOA assets and sophisticated
tools for governing those assets throughout their lifecycle to promote reuse. The Service Registry
provides a standards-based (UDDI) reference for the dynamic discovery and use of services and
their associated policies at run time. It contains a subset of the metadata managed within Oracle
Enterprise Repository that is useful to the run-time infrastructure for dynamic discovery of services
and policies.

Oracle BPA is a tool for business analysts and architects to perform process modeling and
analysis as well as simulation and publishing of process models. It integrates with both BPM and
BPEL: Process models (also called blueprints) from BPA serve as the starting point for more
detailed, implementation-ready process definitions created in BPM and BPEL.

CEP subscribes to event streams—such as from the SOA Suite Event Delivery Network (although
more likely from lower-level and more voluminous sources)—and executes a Continuous Query
Language (Oracle CQL) query to search for aggregates, patterns, and exceptions in real-time event
streams. The events processed by CEP are usually highly frequent, sometimes physical in nature,
and can be quite meaningless by themselves. The results from the continuous queries that reveal a
meaningful pattern or an exception are turned into events at a higher, more business-oriented level
that can be fed into Oracle BAM or the Event Delivery Network, for example.

Oracle Data Integrator (ODI), together with Oracle GoldenGate, provides a data-integration
platform that covers all data-integration requirements—from high-volume, high-performance ELT
batches, to real-time, event-driven, trickle-feed integration processes, to SOA-enabled data
services. This technology can be used alongside an enterprise service bus to handle large volumes
of data that primarily need to be moved from one system to another in not necessarily a service-
or XML-oriented way. ODI has support for Web Services as well—both outbound and inbound.
In addition, it can be integrated directly with Oracle BAM.

NOTe
ODI intentionally uses the term ELT instead of the more common ETL
(Extract, Transform, and Load).

Application Integration Architecture (AIA) is a framework for integrating various products and
modules from the Oracle Applications portfolio and for creating cross-module business processes.
AIA builds on top of the SOA Suite. Through AIA, JD Edwards, Retek, PeopleSoft, Siebel, EBS, and
Fusion Applications—among others—can interact in a loosely coupled way. AIA provides a
reference architecture for implementing SOA that can also be used with custom applications and
third-party software.

The Oracle Identity and Access Management offering has a substantial number of products
that help implement and manage scalable security based on open standards for applications and
services. Through Oracle Platform Security Services (OPSS)—an abstraction layer that implements
a security and identity and access management API—applications can use a uniform set of services,
without having to deal with implementation details of the underlying security infrastructure. OPSS is
the platform that provides security to Oracle Fusion Middleware, including products such as
WebLogic Server, SOA Suite, WebCenter, ADF, and Oracle Entitlements Server, to name a few.
Note that OPSS can run on various JEE application servers, including JBoss and WebSphere, in

68 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 69

addition to WebLogic. SOA Suite and WebLogic Server interact with OPSS for securing Web
Services and composite applications.

The Universal Content Manager, with supporting tools such as SiteBuilder, is another component
of Fusion Middleware. This product will typically not have direct interaction with applications
running in the SOA Suite. The same applies to the FMW products for Business Intelligence (BI EE)
and Enterprise Corporate Performance (Hyperion).

Oracle has bundled many of its FMW products in suites, such as the SOA Suite. These suites
comprise a logically related collection of products sold under a single license. Having said that,
most suites can be bought with tailor-made licenses that apply to a subset of the products in a
suite. And besides, there is a lot of overlap between the suites that is accounted for when you
acquire more than one of them. The most relevant product suites around the SOA Suite are the
BPM Suite, EDA Suite, SOA Governance Suite, BPA Suite, and Data Integration Suite.

Getting Started with SOA Suite 11g
This book is by no means intended to be only theoretical. Yes, it does tell a story and hopefully
explains a great deal about the SOA Suite by showing examples and describing the concepts
behind and workings of the service engines, underlying standards, and technologies and
supporting tools. However, you—and your fingers—will only start to learn for real once you start
practicing what is preached in this book. So now is the time to get into gear. It’s time to get
yourself a fully operational SOA Suite (version 11g) so you can start developing, deploying, and
running composite service applications as well as fully appreciate what it is really like to create a
service-oriented application.

This section describes the steps to take for installing and configuring SOA Suite 11g. It only
provides high-level instructions, however, because the details can be found in several excellent
installation manuals. The book’s wiki provides an online chapter complement with an extensive
installation instruction using many screenshots. The complement guides you through the
installation of a complete SOA Suite 11g environment that goes with the examples in this book.

It is assumed that you will install into a development environment to start dabbling with the
SOA Suite—not a full-blown, highly available, clustered production environment.

Installation of SOA Suite 11g
The SOA Suite is available for various operating systems, including Windows, Unix, and Linux.
You can install and run the SOA Suite on a machine that has at least 2GB of memory, some 10GB
of free disk space, and a dual-core 1.5 GHz processor. If you intend to run JDeveloper on the
same machine, you should have at least 3GB of memory.

Part of the SOA Suite infrastructure is the metadata repository that needs to be installed in a
10g or 11g Oracle RDBMS. Note that SQL Server 2005 and 2008 are also supported, as may be
other databases at some point. Before you start the installation, you need to make sure you have
access to such a database—with 1GB of disk space for the creation of new tablespaces. The
database parameters for processes and open_cursors should be set to a value of 500 or above.
You need database user credentials with DBA or SYSDBA privileges.

The documentation for the installation (as well as all other details) of the SOA Suite and
the other components in Fusion Middleware can be found online at http://www.oracle.com/
technology/documentation/middleware.html.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 69

Downloading the Software
Before you can start with the installation, you need to download the required software from Oracle
Technology Network. Go to the OTN page for Fusion Middleware Software: http://www.oracle
.com/technology/software/products/middleware/index.html. Download the following components:

 ■ Repository Creation Utility 300MB

 Weblogic Server 11 ■ g 800MB

 SOA Suite 11 ■ g 1.5GB

 JDeveloper 11 ■ g 1MB

JDeveloper extensions for SOA and BPM - 450Mb ■

Oracle Service Bus 11 ■ g - 900Mb (optional)

 Oracle Complex Event Processing 11 ■ g (optional)

The design and run-time environment for SOA Suite 11g is illustrated in Figure 3-3.

NOTe
This software (the full production versions) can be used for free under
the OTN Development License for self-education or for prototyping
and development of applications. All you need is a free account on
the Oracle Technology Network.

FIGURe 3-3. Installation applies to three tiers: the JDeveloper design time, and the run-time
setup of the Database and the Middle Tier

JDeveloper 11g WebLogic Server 11g

Oracle RDBMS 10gR2/11g

SOA
extension

WLS (domain)
connection

soa_domain SOA Suite 11g

1

2

34

AdminServer

osb_server1

Oracle Service
Bus 11g

5

BPM
extension

CEP 11g

6

bam_server1

soa_server1

FMW_MDS

FMW_SOAINFRA

FMW_ORASDPM

FMW_BAM

70 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 71

Installation Steps
This section presents the installation steps for the SOA Suite. Further details can be found through
references on the the book’s wiki.

1. Run the Repository Creation Utility (RCU) to install the metadata repository. The RCU is
started from the rcuHome/bin directory. The RCU creates all tablespaces, schemas, and database
objects required in the metadata repository for SOA Suite and BAM. Select at least the SOA
Infrastructure and the Business Activity Monitoring component under SOA and BPM infrastructure.
The Metadata Services should be selected automatically upon making those choices.

The default (or minimum) tablespace size can be a bit large for a development environment.
You can decrease the size of the data file associated with each tablespace to save on disk space.

2. Install Weblogic Server and create the middleware home. Run the downloaded
executable file for WebLogic Server 11g (the internal release number is 10.3.x). Select the option
Create A New Middleware Home. Accept the option to perform a typical installation and accept
other default values by clicking Next until the Finish button is enabled. Then click the Finish
button. Now WebLogic Server will be installed. You could start WebLogic Server when the
installation is complete to verify the successful installation. However, let’s first install SOA Suite
11g and create the SOA domain inside WebLogic Server.

3. Install the SOA Suite. Extract the downloaded ZIP file to a temporary directory. Run the
executable runInstaller (Linux and Unix) or setup.exe and pass the parameter -jreLoc, specifying
the location of a Java 6 run-time environment (for example, the one installed along with
WebLogic Server in MIDDLEWARE_HOME\jdk160_11).

The Installer Wizard appears. It performs a number of checks—available disk space, hardware
requirements, and so on. Then it asks for the install location. In the Oracle Middleware Home
field, specify the absolute path to your existing Oracle Middleware Home directory; this is the
directory created when you installed Oracle WebLogic Server. It presents a summary and allows
you to start the actual installation by clicking the Install button. When you click that button, the
SOA Suite software is installed in a directory structure starting at SOA_HOME that lives under
MIDDLEWARE_HOME.

4. Configure the SOA Suite. At this point, we have the metadata repository prepared in the
database and a clean install of the WebLogic Server. The SOA Suite software has been installed,
but not yet configured. There is no SOA container running inside WebLogic Server just yet. The
next step entails configuring the SOA Suite inside the WebLogic Server. We do this using the
Fusion Middleware Configuration Wizard.

This Configuration Wizard is located in the SOA_ HOME/common/bin directory (for Linux) or
the SOA_HOME\common\bin directory (for Windows). Go to this directory; then run the config.
sh script (for Linux) or the config.cmd script (for Windows) to start the Configuration Wizard.
Unless you have very specific reasons for deviating from the default settings, you should accept
them as they are for this development environment.

The wizard will create a new WebLogic domain called soa_domain. You have to provide the
credentials for a new user who will have the Administrator role. The default recommended values
to accept are weblogic for the username and weblogic1 (the last character is the number one) as
password. Note: Another frequently used password is welcome1. You may come across it in
tutorials and installation instructions or other documentation.)

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 71

Specify database connection details for the metadata repository you created using the Repository
Creation Utility in step 1. On the Summary page, click Install to start the creation of the new SOA
domain with three servers inside: AdminServer, soa_server1, and bam_server1. Note that you can
run this Configuration Wizard at a later moment to apply additional configurations to this domain.

The new domain is created in the directory MIDDLEWARE_HOME/user_projects/domains/
soa_domain.

5. Install the Oracle Service bus 11g. (This step can be considered optional at this point, as
the OSB is only required for Chapter 13.) Run the setup.exe from the OSB 11g download. Provide
the JRE location. Install the OSB 11g into the same Middleware Home used for the SOA Suite
11g. Next, run the configuration wizard to extend the soa_domain created during the installation
of the SOA Suite 11g with a managed server osb_server1 that contains OSB 11g.

6. Install Complex event Processing 11g. Again, an optional step, Complex Event Processing
is only introduced in Chapter 19. The CEP installation process creates a separate lightweight
container that runs CEP. Additionally, Eclipse should be installed as the development environment,
with the CEP plug-ins to complete the CEP IDE.

7. Start the AdminServer and the managed servers for SOA and bAM. Before we can start
doing anything at all with the SOA Suite, we need to start the servers in the new WebLogic SOA
domain. We will use three command-line scripts to get these servers going.

Weblogic Terminology
The product we just installed is called WebLogic Server 11g. However, at this point we
cannot run it because it has no instance to start and run.

An installation of WebLogic Server can be used to run one or more domains. For the
installation of the SOA Suite and the BAM server in the personal development environment,
we will assume for this book that you will work within a single domain. A domain is a
logically related group of servers that can share certain resources. A server is a unit that can
be started and stopped independently of other servers. Servers host the components and
associated resources that constitute your applications—for example, JSF pages and EJBs.
Every domain contains a special server: the Administration Server (AdminServer). You use
the Administration Server, programmatically or through the Administration Console or
WLST, to configure all other server instances and resources in the domain.

All other servers in the domain are called managed servers. When a managed server
starts up, it connects to the domain’s Administration Server to obtain configuration and
deployment settings. However, a managed server can start up independently of the
Administration Server if the Administration Server is unavailable. Several managed servers can
be linked to form a cluster. Note that a cluster runs within a single domain.

The installation of the SOA Suite that is described next involves an AdminServer, a
server for the core SOA Suite components—usually called soa_server1—and a second,
managed server that runs the Oracle BAM Server and web applications; this server is called
bam_server1 by default.

72 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 73

First, to start the AdminServer, locate the startWebLogic.cmd script (Linux: startWebLogic.sh)
in the MIDDLEWARE_HOME \user_projects\domains\soa_domain directory. Run this script from
the command line.

When the AdminServer is running, you should start the SOA server and optionally
the BAM server and/or the OSB server. Go to the directory
MIDDLEWARE_HOME \user_projects\domains\soa_domain\bin, which was created by the SOA
Suite Configuration Wizard. Open a command window and enter the following command to execute:

startManagedWebLogic.cmd soa_server1

(On Linux, use the script startManagedWebLogic.sh.)
To start the BAM server, use this same command for the bam_server1, and for the OSB server

replace soa_server1 with osb_server1.

NOTe
You will be prompted for the username (weblogic) and password
(weblogic1) of the administrator credentials used to boot the server, so
do not go away right after starting the script.

8. Access the Oracle enterprise Manager Fusion Middleware Control. With the servers
running, now is a good moment to check out the Enterprise Manager. This console is where most of
the administration tasks take place with regard to the SOA Suite and the composite applications. The
Enterprise Manager Fusion Middleware Control, shown in Figure 3-4, supports various actions, such
as deploying, starting and stopping, and testing composite applications, as well as inspecting
completed and running instances of the applications, including fine-grained details from individual
service engines and every single step in BPEL process execution. The console is available at http://
localhost:7001/em. Use the username weblogic and the password weblogic1 to log in to the console.

Starting the SOA Server without entering the Credentials
If you do not want to have to type in the username and password of the administrator
account every time you start up the server, you can do the following—after having started
the server at least once to have the directory structure created:

 1. Create a new directory called “security” under MIDDLEWARE_HOME \user_
projects\domains\soa_domain\servers\soa_server1.

 2. Create a new text file called boot.properties in this directory.

 3. Add two lines to this file with username and password key-value pairs, like this:

username=weblogic

password=weblogic1

When the server is started, the credentials are read from this file. Note that the file will
be changed into a more secure, encrypted pair of values. The same instructions apply to the
BAM server and the OSB server.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 73

The SOA node is the starting point from which you can inspect the list of deployed composite
applications—although, of course, initially there are none.

The classic WebLogic Server Administration console is also available and can be accessed at
http://localhost:7001/console. You will need this console to create and edit JDBC data sources
and JMS queues, as well as to configure various technology adapters and the identity store used
by WebLogic Server and SOA Suite.

Other web applications running at this point include the following:

 The BPM Worklist application, which displays the tasks assigned to users by the Human ■
Workflow service. This application can be accessed at http://localhost:8001/integration/
worklistapp.

 Running at http://localhost:8001/soa/composer is the SOA Composer, an application that ■
supports live editing of Business Rules and Domain Value Maps.

 BPM Process Composer is the application where business analysts and business process ■
developers meet up to create and edit Business Process Models; it is available at http://
localhost:8001/bpm/composer.

 When the OSB server is started, the console ■ —both for development as well as for
administration—can be accessed at http://localhost:7001/sbconsole.

 When the BAM server is started, the BAM web applications are available from the start ■
page at http://localhost:9001/OracleBAM.

FIGURe 3-4. The Enterprise Manager Fusion Middleware Control

74 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 75

9. Take further configuration steps. The installation and configuration of the SOA Suite is
now done to the point where we can start deploying and running the composite applications.
There are some additional configuration tasks you may want to perform, either now or at a later
moment. You could, for example, configure JMS queues or JDBC data sources in the WebLogic
Server Administration Console.

This may also be a good moment to configure the User Messaging Service (UMS) to allow
the composite applications to send and receive notifications via e-mail, IM, SMS, and other
communication channels.

Details for the configuration of JMS, JDBC, and UMS can be found online in Appendix C.

Installing JDeveloper
Go to the JDeveloper Downloads page on OTN (http://www.oracle.com/technology/software/
products/jdev/htdocs/soft11.html) and download the latest JDeveloper Studio Edition release.
After downloading the executable EXE, BIN, or JAR file, run the file to start the installation. Accept
the default settings in the Installation Wizard and have both JDeveloper and an integrated
WebLogic server installed.

NOTe
We will not use the integrated WebLogic Server for running the SOA
composite applications because it does not have the SOA server
installed.

Adding JDeveloper extensions When the installation is done, start JDeveloper. Before you can
design SOA applications, you need to install the SOA Suite extension—and for BPMN components
the BPM Studio extension. Select the option Check For Updates from the Help menu. The Check
For Updates Wizard comes up. Make sure that the box for Oracle Fusion Middleware Products is
checked on the Source page. The list of available updates will include the latest Oracle SOA Suite
Composite Editor 11g plug-in as well as the BPM Studio extension. Check both boxes and click
Finish. You will now probably have to provide your OTN credentials. JDeveloper will then start to
download the plug-ins (some 450MB in total). After the download completes, you need to restart
JDeveloper in order to activate the two plug-ins.

You can also add the SOA Composite Editor and BPM Studio extensions to JDeveloper from
local files that you download from the Oracle Fusion Middleware Products Update Center
(http://www.oracle.com/technology/products/jdev/101/update/fmw_products.xml). This can be
useful when you have to install the same version of the plug-ins on several clients or when the
download from JDeveloper fails for some reason (possibly firewall related). Just download the ZIP
files for the SOA Composite Editor and the BPM Studio. Then run the Check For Updates Wizard,
and on the Source page select the radio button Install From Local File. Select the downloaded ZIP
file to install the extension from.

Create a connection to the SOA Suite To deploy SOA applications directly onto the SOA
Suite, we need to configure an application server connection in JDeveloper to the WebLogic
Server soa_domain.

To create this connection, start JDeveloper and go to the Resource Palette. Click the New
icon, select New Connection, and pick the Application Server connection type from the list. Enter
FMW11g_SOASuite11g_local as the name for the new application server connection and select
WebLogic 10.3 as the connection type. Click the Next button. Provide the authentication details:

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 75

Again, use the weblogic/weblogic1 username/password combination. Next, you need to indicate
the WebLogic hostname (localhost for local installations) and the port for the AdminServer (7001
by default). Also enter the name for the domain you connect to; the name suggested in the
on line installation instructions is soa_domain. Click the Next button again. When you test the
connection, you should receive a number of success messages, one for each of the different ways
of connecting to the domain.

Click the Finish button to close the Create Connection dialog. The new connection is now
available on the Resource Palette.

See the on line chapter complement for detailed screenshots.

Sample Application and Fusion Order Demo
Oracle provides a demo application—called the Fusion Order Demo (FOD)—as a showcase for
Fusion Middleware applications. This demo application is an end-to-end application example
developed by the Fusion Middleware Product Management. It demonstrates common use-cases
in Fusion Middleware applications, especially the integration between ADF, SOA composite
applications, and WebCenter, as well as the usage of various service engines and adaptors inside
SOA applications. The business scenario demonstrated in FOD is a web shop where customers
can order products. Every new order triggers various process flows that handle the approval,
logistics, and payment details.

You will find the Fusion Order Demo on OTN (http://www.oracle.com/technology/products/
jdev/samples/fod/index.html). Installation and configuration instructions are provided on this page.

NOTe
To see every aspect of this demo in action, you would have to update
JDeveloper with the WebCenter plug-in. However, for inspecting the
SOA Composite applications in the demo, this is not required.

Create and Run the “HelloWorld”
of Service Composite Applications
This section walks you through the steps to create, deploy, and test-run (with SOA Suite 11g) the
world’s most basic SOA composite application. At the end of this section—after maybe ten
minutes’ worth of work—you will have your first application running in the SOA Suite. (Note that
detailed, step-by-step screenshots for this section are available in the on line chapter complement
on the book’s wiki.) The steps are as follows:

1. Fire up the engines. First, start the database that hosts the metadata repository and then the
WebLogic servers in the SOA domain (AdminServer and the managed soa_server1) using the
command-line scripts.

Locate the startWebLogic.cmd script (Linux: startWebLogic.sh) in the MIDDLEWARE_HOME \
user_projects\domains\soa_domain directory. Run this script from the command line or terminal.

When the AdminServer is running, you should start the SOA server. Go to the directory
MIDDLEWARE_HOME \user_projects\domains\soa_domain\bin, which was created by the SOA
Suite Configuration Wizard. Open a command window and enter the following command to execute:

startManagedWebLogic.cmd soa_server1

(On Linux, use the script startManagedWebLogic.sh.)

76 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 77

2. Start JDeveloper. Be sure to choose Default Role if you are prompted to select a role.

3. Select New from the File menu. From the New Gallery that is presented next, select the
SOA Application item in the Applications Category (under the General node). Click the OK
button to continue.

You will be prompted to provide a name for the application—for example,
HelloWorldSOAComposite. Leave the Application Package Prefix field empty and click the
Next button. On the next page, enter HelloWorld as the name of the project and click Next
again. JDeveloper then asks you what type of composite application this will be; pick
Composite with BPEL on the Configure SOA settings step. Click Finish to have the application,
project, and service composite created.

4. The Create bPel Process dialog appears. Specify the name for the new BPEL process
(HelloWorld) and the template (Synchronous BPEL Process). Make sure the box Expose As A
SOAP Service is checked, and accept the defaults for Namespace, Service Name, and Input and
Output (variables). Click OK. The Create BPEL Process dialog is shown in Figure 3-5.

5. The bPel editor opens up. You will see the basic structure of the BPEL process with a
Receive activity and a Reply activity, by default configured to receive a single string and return
a single string. You need to add one activity to set the value of that string result: Drag an Assign

FIGURe 3-5. Configure the new HelloWorld BPEL process.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 77

activity from the Component Palette and drop it between the Receive and Reply activities already
in the process, as shown in Figure 3-6.

Double-click the Assign activity to open the editor. Select the second tab, labeled Copy
Operation, if it is not already selected. Click the green plus sign and select Copy Operation from
the drop-down list. On the right (or To) side of the window, expand the outputVariable node, the
payload child node, and its client:processResponse node, and then select the client:result node.
That is the target of the Copy operation.

On the left (or From) side of the window, choose Expression in the drop-down list. Click the
calculator icon to open the XPath expression editor. Type the following text in the expression
box:

Concat('Hello dear',)

Position the cursor between the comma and the closing parenthesis. Expand the inputVariable
in the BPEL Variables tree, all the way down until you can select the node client:input. Select that
node. Click the Insert Into Expression button to add [an expression to extract] the value of the
input variable to the expression. Click the OK button to close the expression editor. Click OK
again to close the Create Copy Operation dialog and then one more time to close the Assign
Editor. Figure 3-7 shows the creation of the copy operation in the Assign activity.

You have now created a valid BPEL process—one that receives a request message that
contains a single string and returns a message that will contain the concatenation of “Hello
dear” with that same input string. It’s not much, but it constitutes a real BPEL process inside
the HelloWorldSOAComposite application.

6. To test this application, deploy it first. Right-click the HelloWorld project. From the
context menu, select Deploy and its nested option, HelloWorld.

FIGURe 3-6. Add an Assign activity to the BPEL process.

78 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 79

FIGURe 3-7. Configuring the Assign activity

The Deployment Wizard appears, which is a multistep dialog. In the first step, select Deploy
To Application Server (instead of deploying to an SAR file). Click Next. Accept all the default
settings in the second step, and click Next. On the third page, select the FMW11g_SOASuite11g_
local connection to the WebLogic server with the SOA domain. Click Next. On the next page,
select soa_server1 as the target server for deployment. Click Next, and the Summary page
appears. Now you can click Finish.

The SOA composite application is built, resulting in an SAR (Service Archive) file. The archive is
now handed to soa_server1 in the SOA domain on the WebLogic server. The message “Deployment
Finished” should appear in the Deployment sub tab of the console window after several seconds
(up to one minute).

7. Deployment is complete. With the deployment done, we can access the composite
application’s Web Service interface from tools such as the HttpAnalyzer inside JDeveloper or
soapUI (an open-source tool frequently used for testing Web Services). We can also open the
Enterprise Manager to first inspect the deployed composite application and then test it.

Open the Enterprise Manager (http://localhost:7001/em). Expand the SOA node and its child, the
soa-infra node, under the root node Farm_soa_domain. The node for the HelloWorldSOAComposite
application should be listed. Select that node.

The right side of the page is refreshed to present the details for this composite application.
Click the Test button to call the service exposed by this composite application. Enter a value for
the input field—for example, your own first name—and click the button labeled Test WebService.
The Web Service exposed by the HelloWorld application is invoked. This will create a new
instance of the composite application. After a few seconds, the result from the service should be
displayed, something to the effect of “Hello dear Lucas.” Figure 3-8 demonstrates the test run of
the HelloWorld application’s service.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 79

When you click the node for the HelloWorldSOAComposite application, you will see the
new instance listed. You can drill down on this instance to find out more about the components
in this instance that have executed (how long they took to complete, for example) and all trace
details for activity inside those components (such as the activities in the BPEL process). You need
to click the instance ID itself to see more information (not just on the row where the instance
information is shown).

At this stage, you have achieved quite a bit. The SOA Suite 11g run-time environment has been
installed and configured. Also, it actually works because it was possible to deploy and run a very
simple composite application on it (whatever exactly that may be). The design time (JDeveloper
with SOA Suite extension) is also up and running, appropriately configured with a connection to the
SOA Suite container.

Migrating from SOA Suite 10.1.3
Many organizations have adopted Oracle SOA Suite 10.1.3 in the recent past, using BPEL
Process Manager, the enterprise service bus, and/or Web Services Manager. Some even started
with the 10.1.2 release. Such organizations typically have made considerable investments in

FIGURe 3-8. Running the SOA composite application HelloWorld in the Enterprise Manager
Fusion Middleware Control

80 Oracle SOA Suite 11g Handbook Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 81

their environment, the SOA applications, and the skills required to develop the applications
and administer the infrastructure.

With SOA Suite 11g, these organizations may feel like they are up against the “dialectics of
progress”: They were the first to adopt Oracle’s SOA offerings and as a result they now have to
make additional investments to upgrade to this latest release. However, much of the investment is
not lost, but instead can simply be applied to SOA Suite 11g. And these early adopters are best
equipped to appreciate many of the improvements available in 11g over the previous releases of
the SOA Suite. Finally, Oracle has provided various tools that support the migration. As a result, it
may not be as earth-shattering, risky, or costly as it appears from a distance.

Note that there is no supported migration path from SOA Suite 10.1.2 to 11g; you will have to
perform an upgrade from 10.1.2 to 10.1.3 first.

The migration to SOA Suite 11g involves several aspects:

 The environment or run-time infrastructure (from OC4J to WebLogic Server) ■

 The development tools (JDeveloper) ■

 The security framework and identity and access management tools ■

 The SOA applications developed on 10.1.3 ■

 Any long-running BPEL processes with open instances ■

 Client applications that hook into the SOA Suite via (Java) APIs ■

 The skills, processes, standards and guidelines, and best practices ■

You can find more on migration from Oracle SOA Suite 10g to release 11g in Appendix A.

Summary
Oracle SOA Suite 11g did not appear out of thin air. It is the next step in a long evolution in the
IT industry at large (and Oracle Corporation in particular).

This chapter gave you a glimpse of the rise of software for integration and later on middleware,
in general, within Oracle. We discussed the advent of industry standards, starting with XML and
encompassing the Web Services standards, and more recently the standards for business processes
and service components. These standards are essential to success of Web Services—the foundation
for interoperability—and Service-Oriented Architecture. Oracle plays an important role in the
specification process and the promotion of most industry standards.

Oracle itself is an interesting example of integration: The company has acquired and subsequently
absorbed several dozens of other companies and their software offerings. Many important parts of
today’s software portfolio have roots in products from these “scalps.” The most striking acquisitions
in the area of middleware are Collaxa (2004), BEA (2008), and Sun Microsystems and AmberPoint
(both in 2010).

A many-year process of innovation, integration, and interaction with customers, including the
important internal Applications Development teams, has finally resulted in Fusion Middleware.
On July 1, 2009, Fusion Middleware 11g was launched. FMW offers a wide palette of middleware
technology, ranging from business intelligence, Web Services, and content management, to enterprise
collaboration, identity and access management, governance, event processing, and custom-developed
user interfaces. SOA Suite 11g is an important element in the FMW 11g stack, with interactions with
many of the other areas within FMW.

Chapter 3: Oracle Fusion Middleware and SOA Suite 11g 81

The SOA Suite has at its heart the SCA container that runs SOA composite applications. These
applications are built from components that run on specialized engines: BPEL, Mediator, BPMN,
Business Rules, (Spring) Java, and Human Task. The components can interact with external Web
Services and technology adapters to reach out to the database, file system, messaging infrastructures,
and so on. The SOA Suite provides a framework for negotiating events between applications, offering
a very decoupled way of making different applications interact. Other products in the SOA Suite are
Oracle Service Bus, Business Activity Monitoring (BAM), and Complex Event Processing (CEP).

Organizations that have adopted earlier generations of the SOA Suite will have to go through
a migration process when they want to take up the 11g release. This migration applies to several
aspects, including the infrastructure, applications, other software assets, and the skills of staff such
as developers and administrators.

This concludes Part I of the book. The next part introduces the components of the SOA Suite
in detail and demonstrates how to create composite applications with them.

This page intentionally left blank

Part
II

Developing Composite
Applications

This page intentionally left blank

ChaPter
4

XML and Web Services
Fundamentals

85

86 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 87

art I of this book introduced St. Matthews (our business case), the key concepts
and objectives for Service-Oriented Architecture, the industry standards, and the
Oracle product portfolio for implementing SOA. At the end of Chapter 3, we
installed the SOA Suite and got our first SOA application running by publishing
the obligatory HelloWorld Web Service.

Before we start developing much more complex SOA applications, we need to establish a
little foundation, consisting of XML, XSD, and WSDL. Of course, XML is the lingua franca for all
messages and most contracts, definitions, configurations, and even programs in our service-
oriented world. XSD (XML Schema Definition) is the data-modeling language for describing the
structure of XML documents, and WSDL (Web Service Definition Language) is the language for
describing service interfaces. This chapter provides only a quick introduction to these three key
languages. You may want to check out some of the resources mentioned on the wiki to get a little
more background on XML, XSD, and WSDL.

This chapter creates the starting point for the eAppointment project at St. Matthews, a crucial
project that must substantially optimize the process for creating and managing appointments. It
describes how Margaret Scott and Frank Tiger set out to create the definition of a Web Service
that will expose various operations concerning patient data. This service is implemented in the
next chapter, based on Frank’s existing Patients database.

Kicking the Tires on the eAppointment Project
The board of directors has nominated Margaret Scott, an experienced business-savvy project
manager, to lead the eAppointment project. It will be her job to bring together business and IT
staff from many different departments and with various roles, and have them share information,
responsibility, and ownership of the process of making and managing appointments. A “project
start architecture” document has been written, outlining the business objectives and information
architecture context of the eAppointment project.

Today, Margaret is meeting with Frank Tiger, team leader for the application management and
support team in the information department. He and his team take care of the Clinical Information
System, a key application for surgical data whose scope was later expanded to also support the
medical laboratories. Frank came to St. Matthews in one of the 1990 mergers. Before that he headed
data operations in one of the smaller hospitals that was merged with St. Matthews. Over the past two
decades, Frank and his team have been nurturing their database with patient data. Starting out as a
small scheduling and billing information system used at the surgical care department, it slowly grew
into a patient record system used all over St. Matthews. The team now also tracks simple medical
patient data such as blood pressure readings, weight, and height. Today, Frank is sitting on the largest
pile of patient records in the hospital—with over 300,000 patient records and many tens of millions
of associated table rows. His cooperation is critical for the eAppointment project, and Margaret
certainly knows that.

Frank is regarded as an Oracle guru. He started working with Oracle Database version 4 and
has seen over a dozen upgrades of the RDBMS. He has even managed to stay abreast of most recent
developments in SQL and PL/SQL. He writes Analytical SQL, uses the Model clause, and has traded
the DECODE for the CASE operator. However, Java and web applications are not his thing, as he is
wont to let people know. He has not been involved with any of the SOA initiatives at the hospital so
far. In truth, all the buzz and managerial expectations have left him a little anxious.

Margaret and Frank have a little history together. They collaborated on a project for the
migration from the VAX/VMS mini computers to the current Unix systems in the early 1990s.

P

Chapter 4: XML and Web Services Fundamentals 87

More recently they had some discussions regarding the security of “St. Matthews online,”
a project managed by Margaret.

Margaret feels that although Frank is very reluctant and a little scared of this SOA thing, she
has a good story and sound arguments to win him over.

When the niceties are over and they have established that they are both doing well and it is
great to see each other again, Margaret states, “I hear you have a lot of patient data!”

Frank cheers up. That is one of his favorite topics, professionally speaking at least: “That’s
right! I’m sitting on the largest database with patient records in our hospital!”

“That’s just great Frank,” replies Margaret. “I was hoping for that. You have probably heard
about the new eAppointment system we are creating.”

The hospital’s board of directors sees a lot of opportunity for improving patient satisfaction
through better quality of services, while cutting costs at the same time. Realizing the business
benefits promised by SOA are crucial to meeting these objectives. Refocusing the IT department on
services rather than on more or less closed, departmental applications and closed data stores will
be a challenge. One of the first areas they want to target is the patient appointment process: It is
this process that causes much vexation among patients and has a negative impact on patient
satisfaction—one of the key performance indicators (KPIs) for St. Matthews. And at the same time,
the process is hugely time consuming for hospital staff. The main reasons seem to be the fact that
patients are asked to provide the same information over and over again, the inflexibility in
changing appointments or scheduling multiple visits next to each other, and the lack of clarity and
information about the appointments. The hospital staff responsible for managing the appointments
is far from happy with the situation. But now there is hope for improvement, if not revolutionary
change—the eAppointment project has been announced.

 “I am managing that project,” says Margaret, “and we need to be able to retrieve patient records
for existing patients or create new ones as part of the process of managing patient appointments.”

Frank may not (yet) be into SOA, but he certainly is a service-oriented guy. He immediately
offers: “Here, I can give you connect details to our database. Normally there is a formal procedure,
but for you I can cut through some red tape. I will give you the full data model, with table and
column definitions. You’ll be up and running in no time!” He is pleased with himself for being so
cooperative. But he slightly miscalculated the situation.

“I am not that kind of girl!” Maggie says girlishly. “I may want your data, but I certainly
do not want your dirty tables!” She tries to make it sounded lighthearted, but has to get a very
important point across here.

Frank is a bit baffled. Here he was, promising unprecedented access to his data, and he feels
utterly rejected. Then, in the rebound, he pulls himself together and suggests, “Let me create a
View layer for you! We insulate you from all the complex SQL and provide a business API.” He
knows the word business usually goes down well with project managers.

Margaret stands tall. “To be frank, I do not want to do SQL anymore.”
“Hey, I am Frank here!” he makes a feeble attempt at a little humor. But he does not feel

lighthearted. With all his good intentions, he is not getting the response he was looking for. What
more could she possibly want from him?

Margaret is not oblivious to his confusion. “Frank, look here, we are all into services now. We
want to deal with clear interfaces, as technology-free as possible, with no implementation details.
I simply do not want to depend on the way you implement your database. I know you are constantly
optimizing the data design—and I want you to be free to do so, even if that means moving to a
different physical database or even opting for a different kind of data storage—based on in-memory
grid technology, for example. What I want from you is a service.”

88 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 89

“I suppose that means we will have to do that XML thing,” says Frank. He has not been
completely unaware of the world around him. The advent of the Internet, widespread use of XML,
the introduction of Web Services, liberal use of acronyms such as B2B, OO, SOAP, and more
recently SOA, and even talk of business-IT alignment—he has heard it all coming and most of it
going as well. Having a tough-enough job as it was, he tried and managed to steer clear of most
of the hubbub. And now apparently it has arrived after all.

Margaret replies, “Yes, I would like you to provide Web Services that talk XML. You and your
technology talk XML, we and ours do too—even if they are two completely different worlds in
terms of platform and architecture.”

“How is that better than straightforward SQL?” Frank feels tired. So his database and good-old
SQL are not good enough anymore. He wonders whether he is.

Margaret is prepared to explain to Frank what is driving her—and most of the rest of the world.
“Using XML-based services means that my team does not need to have SQL skills. We both know
that doing SQL properly is specialist’s job! And even though SQL is more or less a standard,
someone who’s an expert in SQL on a MySQL database may royally screw up on Oracle or DB2.
So I prefer to leave the heavy SQL lifting to the experts, such as yourself.

“Perhaps even more important than getting rid of my dependency on SQL experts in my team,
I will not have a direct dependency on your data model, your upgrades, or even your physical
location—like I said before. Loose coupling. That is the magic phrase. Of course, I will still
depend on you—or at least on your service—but in a much more subtle way. And if at some
point in time your local patient hub is replaced by the new SAP or Oracle Fusion Applications–
based standard solution, I will be able to continue running the eAppointment process against
the same service, which simply switched from your database to the new solution.”

Frank, drinking his coffee, almost chokes on it. Still coughing he enquires of Margaret
whether there are plans to replace him. Margaret quickly reassures him: “I was just giving you a
longer-term, strictly hypothetical example. As far as I know, there are currently no plans to do
anything of the sort.”

She continues: “Being able to talk against your Web Service means that we will have a
consistent way of communicating with all services we deal with. Yours is certainly not the only
one! For us it is great if every service—whether based on a relational database such as your
Oracle Database or the facilities department’s DB2, or implemented on top of the mainframe or
the .NET platform—can be accessed in the same way.”

“Yeah, great.” Frank is near sarcasm now. “I’m thrilled for you. Would there be something in
it for me as well?” He knows he should have seen this coming—and prepared himself. He has
had his head in the sand on this one. Silently he is angry with himself.

Margaret, however, really has some good news for him: “Actually, there is quite a bit in it for
you too,” she tells him. “Well, some of it is good for the hospital in general, and some of it is
especially good for you. For starters, you will be the SOA guy—hip and happening all over again!
It must have been the introduction of client/server technology and the graphical user interface
that was your last chance to shine!”

“Seriously though: I will pay for using your services. I have a pretty substantial budget for realizing
this eAppointment system. And since your service will contribute some key functionality, it is obvious
that there is plenty of budget to have your team develop the service. Besides, this does not end with
the initial development and roll out of the service. We will make an SLA, a contract that states that
you will continue to provide the service under certain conditions—like response time, availability,

Chapter 4: XML and Web Services Fundamentals 89

and security—and that the eAppointment’s business owner will pay for the service level. So you will
continue to have budget for managing and perhaps improving the service.

“As you know better than I do, there are many parties in this hospital who are interested in
your data. You have always been helpful in supporting all these parties, but usually in a very
informal way. With little or no benefit to your department, apart perhaps from their undying
gratitude. The new service approach we are discussing here will allow you to continue to help all
those parties, and in a more structured way that is more visible and recognized. They can make
use of the same service we are discussing for eAppointment. So you—and the hospital at large—
reuse the work you have already done. And you can sign an SLA with each of these parties. That
means that everyone will still rely on you—and thank you for it. And they will transfer some of
their budget as well as payment for using your service. To you, it may not matter much whether
the service is used by one party or by many. But the extra budget from those SLAs will certainly
allow you to make the service better and richer.

“Oh, and I shouldn’t forget this part: Service-Oriented Architecture is explicitly named in the
hospital’s strategic outlook for the next three years. The board has named it one of the key
elements for the success of the “Happy Client” and “Quality Health Check 2012” programs. To
get SOA really going here, they have set up a sponsor committee. This committee is to provide
additional funding for implementing services with proven reuse potential. Getting this patient
service up and running will most certainly be backed by this committee, resulting in an additional
budget as well as pretty high-profile visibility for your team!”

Just as Margaret had hoped, some of the things she has mentioned have piqued Frank’s
interest. The prestige of his team is important to him—as is being able to continually improve the
database and surrounding infrastructure. Having a budget and relative freedom—because of these
loosely coupled interfaces—really appeals to him.

“You can improve the implementation” Margaret continues, “without any of you noticing it!”
Frank, starting to see some interesting opportunities, exclaims, “Oh, and I know that George in

the lab has a lot of data that may interest my ‘service consumers.’ He has all kinds of information
about the tests ran on their blood and other bodily fluid samples. Today, either they have to ask
him for access to data—which he is quite often not able to provide—or they completely overlook
him. In both cases, patients are tested for things they have recently been tested for. Together we
can really offer a powerful service! And I am sure there are more like him, who have these hidden
nuggets of data we can add to the patient service in order to enrich it. Would you like that?”

Margaret would—for two reasons. First of all, the additional data Frank is talking about is very
useful. It will save her a trip down to the lab, where she expects a lot more resistance than Frank
came up with. And she very much wants to encourage Frank, who, after a hesitant start, is quickly
coming round and turning into a very enthusiastic believer.

But then Frank slows down. He calls himself to order it almost seems. He looks at her. He
seems to have lost some of his fervor. She is not losing him now, is she? He doesn’t seem as sure
of himself as he was just a minute ago. What is the matter with this rock-solid database guru?

Frank takes a deep breath. “Margaret, I know a lot about databases and SQL. And you really
had me going there, with the service idea and the sponsor committee and the reuse. And the
visibility of my team and all. But I know nothing about services—or XML for that matter. Can we
do this at all? How do we get going, Margaret?”

Margaret knows it is now time for the next stage. Frank wants to give it a try, and she needs to
help him with the first steps.

90 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 91

“Frank, I really appreciate your willingness to help me out with this service. And I am sure
you and I will work together just great. Of course, I realize this is going to be a big step for you
and your team. I am sure we can do this together.”

Margaret continues: “How to get things going, you ask? That is probably not as hard as it may
seem to you right now. The first step is that we outline the functionality your service will provide.
More specifically, we define the interface for the service. As soon as we have described the
service interface, my team can start coding the application that consumes your service, as they
will then know exactly how the service will look to them and how they can invoke it. And your
team can start thinking about the implementation of the service interface.

“At that point you probably ought to start learning about a few things. You will need some
understanding of XML technologies, as the storefront of the service will be XML based. In addition,
you need to know about Web Services. At that point, we can discuss several ways for you to
implement and publish the Web Service—for example, using either native database facilities, some
Java programming, or a service component in the SOA Suite. Note that at this point the hospital’s
architecture vision plays a role, too, as we are making choices that should be valid into the future.

“The first questions we will address are pretty straightforward. What functionality do we need
from your service for eAppointment? We will express the service interface in several elements:
What does the service request look like? What input should we send to the service? What are the
parameters we could or should include in the service request? And what is the structure—data
type, format, allowable values—of the request?

“Next, how is the service response composed? What data will be included in the response,
and what will be the structure?

“Finally, will your service throw any exceptions—and if so, what will be the exceptional
circumstances? What are the names and types of exceptions?”

Frank interjects, somewhat relieved: “That is really no different from creating a PL/SQL
package specification! You describe a function or a procedure with a name, the input parameters,
and the return value or the output parameters—which is almost the same as what you are saying.
The only real difference I see is that in PL/SQL we may raise exceptions in a program unit, but we
do not explicitly say so in the specification—they come as a surprise. I hear Java is somewhat more
structured in that area—as hard to believe as it may seem.”

Margaret is pleased with Frank’s reaction. He really is getting the hang of it. And he is right, of
course. What she has said about describing the service interface is very similar to the concept of a
PL/SQL package specification or an interface in Java programming. One important distinction is
the specific format for writing down the interface for a Web Service.

“You are right, Frank. It basically is the same thing. It will look a little bit different, but by and
large, describing a Web Service interface is similar to specifying a PL/SQL interface…ahem, package
specification.”

“Okay. Let’s get down to business. You will provide us with a service that we can call, let’s
say, the patient record service. We can agree, I think, that this service will accept some sort of
patient identification message as input—with either the patient ID (for existing patients who
remember their ID) or a combination of identifying elements, including birth date, last name,
initials, or Social Security Number. Then, of course, the service will return a response message
that contains the patient data—the name, contact, and address details, personal information, the
medical history, and any recent hospital visits. In addition, the service may return one of several
exceptions, such as when the service is called with an invalid or unknown patient ID. We can
write down this outline of a contract in a slightly more structured way.”

Chapter 4: XML and Web Services Fundamentals 91

Margaret hands Frank a piece of paper with the following XML:

<operation name="getPatientRecord">

 <input message="PatientIdentificationInputMessage"/>

 <output message="PatientDataRecordOutputMessage"/>

 <fault message="UnknownPatientIdFaultMessage" name="UnknownPatientId"/>

 <fault message="NoUniquePatientMatchFaultMessage" name="NoUniquePatientMatch"/>

</operation>

Frank recognizes the XML syntax. He realizes this is where it all starts. His SOA and Web
Services initiation. And so far, it doesn’t seem too hard.

“Is this the standard way for describing services?” he asks Margaret.
She confirms it is, but adds that this is only a part of it. “The service contract is typically laid

down in a so-called WSDL document. At the heart of the WSDL contract for a Web Service is the
portType element, which contains operation definitions like this one. But more on WSDL later
on. You will first need to study some XML basics.”

Introduction to XML
Clearly XML is an essential ingredient of Service-Oriented Architecture. Service definitions are
expressed via XML documents, the data structure of messages is defined through XML documents,
configuration for the run-time infrastructure is, by and large, in XML, the contents of messages
sent between services and service consumers is XML based, and the SOAP envelope that wraps
the message itself is also—you guessed it—an XML document. In order to delve into doing SOA, there
are a few things you should know about XML. For now, let’s assume you have dealt with XML in the
past. For a basic introduction into XML, as well as a list of other resources with in-depth information
on XML, see Appendix B.

Much of the attraction of XML lies in the fact that in all major application-development
technologies, tools, and platforms, facilities are available for performing the most frequently
needed operations on XML. Whether you develop in JavaScript, PHP, Java, C#, or PL/SQL for the
JEE, .NET, or Oracle Database platform, you will have native language facilities help you process
XML documents. These operations performed on XML documents are:

 Parsing ■ Reading the XML and turning it into a native data object for the programming
language at hand.

 Data binding ■ Going one step beyond parsing and making the data from the XML
document available as a custom, strongly typed programming language data structure (or
domain model). For example, transforming XML into Java objects, and vice versa.

 Validating ■ Verifying the validity of the XML document against rules specified in a
schema such as XSD or Schematron.

 Querying ■ Retrieving specific information from the XML document by applying search
questions.

 Transforming ■ Converting the XML document into another XML document (or a
different format, such as CSV or HTML) by applying a transformation template or
stylesheet.

92 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 93

Although some of the operations listed are handled transparently for us by the tools we will
be using for building the SOA, others require attention from the developer and will be discussed
in more detail both in this chapter as well as throughout the book. In particular, the use of XML
Schema Definitions (XSD) for describing the rules against which XML documents should be
validated, the use of XPath for performing queries to retrieve specific information from XML
documents, and the application of XSLT stylesheets for transforming XML documents will be fairly
familiar to you by the time you are done with this book.

XML Documents
An XML document consists of tagged elements organized in a tree-like structure. An XML document
contains various types of nodes:

 Document node (the entire document) ■

 Element node ■

 Text node (the literal values contained in element nodes) ■

 Attribute node ■

 Comment node ■

 Declarations and processing instructions such as namespace declarations, character ■
encoding, and XML version

These nodes can be validated and accessed in various ways, as we will see in later chapters.
See Appendix B and the references on the wiki for more background on XML.

Creating and Editing XML Documents in JDeveloper 11g
Creating XML documents is a task usually performed for us by automated means. Such means
include textfile-to-XML converters, use of SQL/XML queries, Java programs that construct XML
documents from string data, and text processors that save files in XML format. However, manually
creating or editing XML files is still a common task—for example, for testing purposes or for
management of configuration files—and, of course, for creating schemas that are not generated
by some tool but that are application and technology neutral.

In addition to specialized XML editors, of which there are plenty available, most IDEs
including JDeveloper have fairly advanced XML-editing capabilities. JDeveloper 11g’s XML Editor
has useful features such as checks on well-formedness (does the document comply with the XML
syntax rules?) and validity (does the document satisfy the specific rules laid down in the XML
Schema Definition?) as well as productivity enhancers such as XML element tag completion,
reformat, and code completion.

JDeveloper can also create an XML document based on what is called an XML Schema
Definition (XSD), a document that describes the data design of XML elements. JDeveloper
creates such an XML document with all required structure (elements and attributes) already in
place—though with meaningless, generated content.

Chapter 4: XML and Web Services Fundamentals 93

Data Design for XML—XML Schema Definitions (XSD)
The provisional service interface definition agreed upon by Margaret and Frank specifies an input
and an output parameter. It is implied that these are both XML messages:

<operation name="getPatientRecord">
 <input message="PatientIdentificationInputMessage"/>
 <output message="PatientDataRecordOutputMessage"/>
 ...
</operation>

However, it has not yet been determined how these messages are to be constructed. In
general, when we deal with XML documents, we know that they will follow the XML grammar
rules. Any “well-formed” XML document has a single root element, a tree structure with properly
opened and closed element tags, text content, and attributes. But this is still too vague to start
exchanging meaningful information or to build software to process the XML documents. We need
more specific rules to describe the structure, the data types, and other constraints for the XML
document. Without them, we know little more than a database developer who knows that a
relational database is used but does not have a database design.

The data model for XML documents is expressed using XML Schema Definitions—or XSDs. An
XSD is an XML document—readable to humans and software—that describes the vocabulary for
XML elements and attributes. Once we have the XSD for the XML documents we will be dealing
with, we can determine the validity of XML messages and start building the software that will work
with the XML—we know what information to expect and where to find it in the document.

NOTE
XSD has succeeded DTD (Document Type Definition) as the preferred
way of describing the structure of XML documents.

XSD documents define the elements that appear in XML documents. For these elements, XSD
documents specify the following:

 ■ Structure Child elements, attributes, and their order

 Types ■ Primitive (built-in) and user-defined simple and complex (nested) types

 Rules or constraints ■ Default values, the number of occurrences of child elements, the
valid value range or allowable values for attributes, optionality, and updateability

An in-depth introduction to XML Schema Definition is far beyond the scope of this book,
even though some examples are provided later on. If you are not yet familiar with XSD, you can
take a look at Appendix B for some more detailed examples. Additionally, you may want to check
out some of the resources listed on this book’s wiki for a more thorough introduction to XSD.

Decoupling in the real world is often hard to achieve with schemas and contracts generated
by tools—as is all too easy, for example, with a JAXB utility deriving the XSD from Java classes or
with the xsd.exe tool doing the same for .NET classes.

For building loosely coupled systems, it is important that services and underlying schemas are
truly owned by the enterprise, not by the applications. The only way to break the hold of applications
and technology on your service architecture is to eliminate those generated schemas completely

94 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 95

from the services you develop for the enterprise! This means that manual development is almost a
requirement for creating schemas (XSD documents) and services (WSDL documents).

Uniquely Identifying XML Elements
Questions that are frequently asked when we (or an automated component) encounter an element
in an XML document include, What element definition is this element based on? And what
exactly is meant with this element? A <table> element could signify an HTML layout structure
or a piece of furniture. An element called <patient> can refer to a person needing a doctor’s
attention but could also describe a personal trait. And one organization’s description of a
customer can be quite different in structure and attribute from another organization’s (say, when
comparing a prison with a hospital). We need to identify those XML elements more accurately
than by just using a simple name—otherwise, we will not be able to connect the element and the
relevant XSD-based definition of the element and we will not be able to properly programmatically
process the element.

Let’s take a brief step away from XML and look at your file system. It probably contains
several files called readme.txt. However, they are not the same file. When we formulate in a more
precise way, these files are not truly called readme.txt—they have something like /etc/directory/
otherdirectory/readme.txt for their name. The file is qualified by the entire directory and filename;
not by its filename alone.

Let’s look at other examples from the worlds of SQL and Java. When we speak about objects
in the database, it is easy to see that instructing a database developer to write a SQL query against
table CUSTOMERS in a specific database is not a good-enough instruction: There can be dozens
of tables called CUSTOMERS. A full identification of the table requires the schema in which it
resides. In Java programs, classes are used to construct objects that contain data and execute
application logic. Any one class usually calls upon other classes to perform some task. For
example, class PageRenderer may call upon class ButtonRenderer to render an instance of a
button. Again, using the indication ButtonRenderer is not good enough, because there may be
several classes called ButtonRenderer. The fully qualified name for a class includes not just the
name of the class, but also the package in which it resides—for example org.superui.renderers.
Thus, programmers—and the JVM class loader—can distinguish between org.superui.renderers.
ButtonRenderer and my.sandbox.ButtonRenderer.

With XML, we have the same challenge. Without further indication, we could easily
misinterpret element names. From the context of the document, we can derive that the “charge”
element does not specify electrical information or the Light Brigade storming in, but most likely
the bill presented to the patient for this particular visit. However, we should not rely on such
subjective, context-based interpretations, but clearly state our intentions. So in XML, too, we use
fully qualified names.

A fully qualified name for an XML element is composed of a local name and a namespace.
The namespace compares to the package name in Java and the name of the schema in the Oracle
database. In XML, the namespace, simply put, is a unique string without any real meaning other
than for identification purposes. Slightly less simply put: The namespace identifier is a URI
(Uniform Resource Identifier) according to the specifications laid down by the IETF (Internet
Engineering Task Force, RFC3986). These are quite simple, for our purpose at least:

“A URI is a—case sensitive—sequence of characters from a very limited set: the letters of the
basic Latin alphabet, digits, and a few special characters.”

Chapter 4: XML and Web Services Fundamentals 95

The IETF also notes that a URI often has to be remembered by people, and it is easier for
people to remember a URI when it consists of meaningful or familiar components. A URI does
not specifically refer to a resource that is accessible at a location that the URI seems to describe.
URIs are used for uniquely identifying resources, not for accessing them.

One straightforward way of making the elements you define in your XML documents unique
is by using a namespace identifier that contains something unique to your organization or even to
yourself. Many namespace identifiers in XML—just like package names in Java—therefore include
the URL for the website of the organization. However, any unique string will do. Here are some
examples:

http://ourhospital.com/patient
http://ourhospital.com/staff
com.ourhospital.patients
PATIENT:UUID673215631265GEE

A namespace provides a container in which to collect names that for some reason belong
together, as is shown in Figure 4-1. These names frequently share an owning organization,
a domain or knowledge area, or an industry. Note that the scope of an XML namespace can
have far more impact on your enterprise than a Java package name or database schema
identification ever could. A Java package name has a scope that is limited to the application
that uses it. An XML namespace can impact the entire enterprise and should be managed with
corresponding care.

FIGURE 4-1. Namespaces for elements in different domains

http://www.hospital.org/hrmhttp://ourhospital.com/patient

http://who.org/medical

XML document

xmlns=“http://who.org/medical”
xmlns:hospital=“http://ourhospital.com/patient”
xmlns:hrm=“http://www.hospital.org/hrm”

City Employeeid

State

Country
Blood pressure reading

Blood pressure readings

Date of reading

First name

Personal information
Age

Last name

Charge

Doctor visit

Treating physician

Systolic pressure

Diastolic pressure

House number
Street

Function
Birthdate

Bank account

Gender

SSN

96 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 97

The URI syntax is commonly organized hierarchically, with components listed in order of
decreasing significance from left to right. This does not really mean anything—at least not to
software parsing the URI definitions. It is just a convenient method for organizing the URI in a
way that is inspired by the structure of the real world. For example, the http://ourhospital.com/
patient and http://ourhospital.com/staff namespace identifiers are both defined in “Our Hospital,”
and describe various subdomains in the hospital—in the eyes of human readers. The fact that
their URIs have a partial overlap is meaningless to XML parsers and processors.

We associate an XML element name with a namespace using this syntax:

<patient xmlns="http://ourhospital.com/patient">

Instead of just “patient,” we should now speak about this element as {http://ourhospital.com/
patients}patient. This is the qualified name of the element, often referred to as the QName. The
name “patient” is the local name.

NOTE
XML elements do not have to be in a namespace. The local name of
such unqualified elements is equal to their QName. These elements
are said to be in the “null” namespace.

Having to qualify every XML name in this way would be dramatic: The document inflates
even further, the work involved is almost painful, and the readability is negatively impacted—to
put it mildly. So, instead, we can work with simple prefixes and rely on several inheritance rules.

Prefixes allow us to use friendlier ways of associating names with namespaces. Our patient
element could be fully qualified with syntax like the following:

<hospital:patient … >

The prefix can be anything you like. It is up to the XML parser to associate each element
via its prefix with the real namespace identifier. The linking pin to make that possible is the
namespace binding, the declaration somewhere in the XML document that associates the prefix—
again, any string you fancy—with the namespace URI:

<hospital:patient xmlns:hospital="http://ourhospital.com/patient">

Some prefixes are reserved—such as xml and xmlns—and some have become so commonly
used for specific namespaces—for example, xsl (http://www.w3.org/1999/XSL/Transform), xsd (for
http://www.w3.org/2001/XMLSchema), and xhtml (for http://www.w3.org/1999/xhtml)—that you
should refrain from using them for other purposes.

The namespace prefix—unless it is “xml” or “xmlns”—must have been declared in a namespace
declaration attribute in either the start tag of the element where the prefix is used or in an ancestor
element (that is, an element in whose content the prefixed markup occurs). Once a prefix has been
associated with a namespace inside some element tag, it can be used in all child elements. Here’s
an example:

<hospital:patient xmlns:hospital="http://ourhospital.com/patient">
 <hospital:personal>
 <hospital:firstName>

Chapter 4: XML and Web Services Fundamentals 97

We can also use the concept of the default namespace: Any element that is not specifically
prefixed or associated with a namespace through the xmlns attribute is in the default namespace—
if that has been defined. The default namespace is defined through a variation on the declaration
we saw before:

<patient xmlns="http://ourhospital.com/patient">

By simply using xmlns, without the colon and prefix, we state that for this element and all its
descendants, the default namespace is set to http://ourhospital.com/patient. Because many XML
documents contain only elements from a single namespace, the default namespace further simplifies
things considerably. A single namespace declaration in the root element of the document is all we
need to associate all elements with the appropriate namespace, as shown here:

<patient xmlns ="http://ourhospital.com/patient">
 <personal>
 <firstName>

Of course, an XML document may very well contain elements from different namespaces.
We can select one as the (global) default namespace—typically the source of the largest portion
of elements. The other namespaces can be associated with prefixes or be used as local default
namespaces. The declaration of namespace bindings is usually done in the root element, but can
be done in any element. See Appendix B for more details and examples.

Creating Real XML Schema Definitions
XSD documents use an XML syntax to define a grammar (or vocabulary) for creating a set of XML
documents. XSD uses fixed XML elements such as type, attribute, element, and so on, to define
the structure. You will find a basic introduction and more details on XSD in Appendix B.

Let’s look at a simple XSD document. It specifies the “address” element in the http://www.hospital.
org/hrm namespace. The binding to this namespace is specified through the targetNamespace
attribute in the “schema” element. This XSD document states that any occurrence of this {http://
www.hospital.org/hrm} address element should conform to the rules laid down in this XSD.
The XML elements in this document that are part of the XSD vocabulary itself are all from the
namespace http://www.w3.org/2001/XMLSchema, bound to the xsd prefix:

<?xml version="1.0" encoding="utf-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.hospital.org/hrm"
 targetNamespace="http://www.hospital.org/hrm"
 elementFormDefault="qualified">
 <xsd:element name="address" type="physicalAddress"/>
 <xsd:complexType name="physicalAddress">
 <xsd:sequence>
 <xsd:element name="postalCode" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string" minOccurs="0"/>
 <xsd:element name="country" type="countryCode"/>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="houseNumber" type="xsd:string"/>
 </xsd:sequence>

98 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 99

 <xsd:element name="poBox" type="xsd:string" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="typeOfAddress" type="xsd:string" />
 </xsd:complexType>
 <xsd:simpleType name="countryCode">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="be"/>
 <xsd:enumeration value="us"/>
 ...
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

This XSD snippet declares the address element, based on the physicalAddress type. Next comes
the definition of this complex type. It contains a number of child elements, such as postalCode, city,
state, and country. These must occur in this order. However, the state element is optional. The
country element is based on a simpleType, countryCode. The countryCode type is based on the
built-in simpleType string. A restriction is defined: The value of countryCode must be one of the
values defined in the enumerations.

The physicalAddressType then contains either a poBox element or a street and houseNumber.
The xsd:choice element specifies this mutual exclusiveness. Finally, the physicalAddressType also
declares an attribute called typeOfAddress, a string that indicates a visiting address or shipping
and mail destination.

Figure 4-2 shows the visual representation of this XSD definition and compares it with similar
designs in UML and ERD modeling.

An XML instance document with the {http://www.hospital.org/hrm} address element has to
comply with the XSD definition to be considered valid by XML processors. Here’s an example of
a valid document:

<?xml version="1.0" encoding="UTF-8" ?>
<address typeOfAddress="emergencyContact" xmlns="http://www.hospital.org/hrm">
 <postalCode>3456</postalCode>
 <city>Luik</city>
 <country>be</country>
 <street>Waffle Avenue</street>
 <houseNumber>123</houseNumber>
</address>

NOTE
Multiple XSD documents can define elements in the same namespace.
And one XSD document can define elements in different namespaces.
There is no mutually exclusive, one-to-one relationship between XSD
documents and namespaces.

A very special element we can use in an XSD document is the “any” element. We use it to
specify the occurrence of a block of well-formed XML—XML content that conforms to the XML
syntax rules. No other restrictions apply; it can be anything (as long as it is well-formed XML).

Chapter 4: XML and Web Services Fundamentals 99

This “any” element is convenient to allow parties to include additional information in an XML
document largely predefined through the XSD definition.

The next snippet specifies that inside the patientType there can be a patientattachment
element that contains well-formed XML. The structure or vocabulary for that content is
unknown—it can be anything.

<xsd:complexType name="patientType">
 <xsd:sequence>
 <xsd:element name="patientAttachment" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

In addition to the any element, there is the anyType type, which can be used to specify both
elements and attributes. This type does not constrain values in any way—and it can be used, for
example, when we have too little information or control to enforce a more specific type.

FIGURE 4-2. XSD compared to other data modeling techniques: UML Class Model and Entity
Relationship Diagram

Address

ERD

UML class model

XSD

Postal code
City
State
Country

Mail address
Pobox

Visit address
Street
House number

VisitAddress
houseNumber: String
street: String

Address
city: String
country: String
postalCode: String
state: String

MailAddress
poBox: String

CountrycodeType
–length < 2
–allowable values: nl,
us, de, be, mx, it, dk

address
type physicalAddress
typeOfAddress

+

countryCode
restricts xsd:string
maxLength 2
enumeration nl
enumeration us
enumeration de
enumeration be
enumeration mx
enumeration it
enumeration dk

physicalAddress

typeOfAddress
–

postalCode
type xsd:string

city
type xsd:string

street
type xsd:string

houseNumber
type xsd:string

poBox
type xsd:string

state
type xsd:string

country
type countryCode

<schema>
targetNamespace http://www.hospital.org/hrm

100 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 101

A complex type can be defined as an extension of an existing complex type, adding new
elements to the set already defined in the base type. This extension mechanism is similar to object
inheritance in, for example, Java.

Associating XML Documents with XSDs The XML processor that processes an XML document
can be explicitly instructed about the XSDs to apply—either inside the document or through
programmatic arguments. When the XML document is a message sent to a Web Service, the
relevant XSD is defined indirectly through the WSDL (see later) that contains an XSD reference.

Alternatively, the XML processor may know of one or multiple XSD documents that have
been registered with it. These XSDs describe elements in namespaces—with each XSD providing
the specification for one or more fully qualified elements. When processing an XML instance
document, the QName of the elements in the document is compared with this list of registered
schema-based elements. Any element in the XML instance document that can be matched will be
validated against the schema definition. Figure 4-3 shows an XML document with elements from
multiple namespaces defined in three different XSD documents.

Additionally, the XML instance document can contain an explicit reference to one or more
XSD definitions:

<address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.hospital.org/hrm Administration.xsd"
 xmlns="http://www.hospital.org/hrm">
 <postalCode>...

FIGURE 4-3. XSD documents describing elements in namespaces—implicitly referenced by
XML instance documents

VeryPatient.xsd

http://ourhospital.com/patient

xmlns:hospital=“http://ourhospital.com/patient”
xmlns:hrm=“http://www.hospital.org/hrm”
xmlns:who=“http://who.org/medical”

<<Uses elements
 defined in>>

<<
im

po
rt>

>

<<
im

po
rt>

>

WHO-medic.xsd

Administration.xsd
http://www.hospital.org/hrm

http://who.org/medical

XML document

<<target>>

<<target>>

<<target>>

Namespaces XML schema definitions

Chapter 4: XML and Web Services Fundamentals 101

The hint about the schema location is passed in the form of a schemaLocation attribute that
is defined in the http://www.w3.org/2001/XMLSchema-instance namespace. The attribute is
included in the root element of the instance document, and has to be preceded by a namespace
binding—usually to the prefix xsi.

Managing XSDs and XSD Dependencies
It is considered a best practice to use XSD documents to describe the XML vocabulary we want to
use in a specific business domain. Of course, such domains can be quite large with substantial
numbers of elements. Fortunately, we do not have to stick to a single XSD document with all
those elements in a single file. We can use the “include” and “import” elements in an XSD
document, which allow us to organize and manage element and type definitions in multiple
documents and help establish reuse of those definitions. For example, we can create an XSD
document called VeryPatient.xsd that contains a <patient> element that is used from several other
XSDs employed at St. Matthews that all specify XML messages containing patient information:

...
<xsd:element name="patient" type="patientType" />
 <xsd:complexType name="patientType">
 <xsd:sequence>
 <xsd:element name="personal" type="personNameType" maxOccurs="1"
 minOccurs="1"/>
 <xsd:element name="mailAddress" type="hrm:physicalAddress" minOccurs="1"
 maxOccurs="3"/>
...

The patient element is based on the patientType complexType that contains, among others,
the mailAddress element, which is based on the hrm:physicalAddress type—from a different
namespace and defined in a different XSD document, called Administration.xsd.

The physicalAddress type is bound to the {http://www.hospital.org/hrm} namespace (its prefix
hrm is declared at the top of the XSD document):

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://ourhospital.com/patient"
 xmlns:hrm="http://www.hospital.org/hrm"

The definition for this type is in a separate XSD document that is imported into the VeryPatient.
xsd schema:

<xsd:import schemaLocation="Administration.xsd"
 namespace="http://www.hospital.org/hrm"/>

The import element tells any processor interpreting the XSD document that it should read the
contents of the imported XSD document and merge it with the current XSD’s definitions. This
means that it is transparent to anyone using the VeryPatient.xsd whether the physicalAddress type
was in that XSD itself or in some imported XSD.

Similar to the xsd:import, the xsd:include construct also instructs XSD processors to read XSD
element and type definitions from the indicated external XSD document. However, include is
used for XSDs with the same targetNamespace as the base XSD, whereas import is used with
external schema definitions describing elements from a different namespace.

102 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 103

Managing XSD documents is very important, much like the management of the corporate
data model. The XSD documents form an important asset for an organization that adopts SOA.
Together, the XSDs describe all business data of interest—at the very least the data that is
interchanged between systems and published by (web) services.

The ability to link XSDs is essential in building a structure of schema definitions that is
manageable. Many organizations use hierarchies of XSD documents. At the root, you will find
entities or business objects from specific business domains. It is a common (best) practice to have
the namespace associated with the schema definition derive its name from the business domain.

A note or warning here, before you go overboard with an attempt at an enterprise-wide XSD
hierarchy. There is some risk involved that theoretical soundness conflicts with the harsh reality
of physical components that have neither unlimited memory nor infinitely fast CPUs. An XSD
hierarchy, no matter how correct, may become too complex to handle. For example, it cannot be
compiled because it imports the entire world into a single XSD that is then used by all Web
Services in the organization. In order to compile even the simplest Web Service, over 100MB of
XSDs have to be processed.

WSDLs—the service definitions that we will discuss a little later—are often a better place to
do the final importing of multiple XSDs. This does not mean that importing XSDs into XSDs is a
bad thing; however, the import directive must be used with discretion. The WSDL can choose a
subset of XSDs (which may import a small number of dependent XSDs) that it needs to operate,
instead of indirectly importing all XSDs in the organization.

Extension, refinement, and composition of elements and types can be done at lower levels in
the XSD hierarchy in XSD documents that import the business objects. More specific type and
element definitions used for particular applications and services are defined in yet lower levels,
again importing from the more generic schema definitions. This approach allows for Object
Oriented characteristics such as the reuse and inheritance of business object definitions.

Through the import of the WHO-medic.xsd, we have made the bloodPressureReading element
available in the VeryPatient.xsd document. It allows us to specify how instance XML documents
can define bloodReading elements inside the bloodReadings child in the patient element.

The Service Contract: Introducing WSDL
With this little bit of XSD under our belt, we can take a closer look at the contract Margaret and
Frank should draw up for the service that Frank’s team will provide. We have already seen the
first draft of this contract:

<operation name="getPatientRecord">

 <input message="PatientIdentificationInputMessage"/>

 <output message="PatientDataRecordOutputMessage"/>

 <fault message="UnknownPatientIdFaultMessage" name="UnknownPatientId"/>

 <fault message="NoUniquePatientMatchFaultMessage" name="NoUniquePatientMatch"/>

</operation>

This snippet is part of a WSDL document (WSDL stands for Web Service Definition Language,
frequently pronounced as whiz-dul). WSDL is a W3C standard, originally for defining Web Service
interfaces but today used for almost any kind of service—including Java interfaces, database APIs,
and RESTful services (with WSDL 2.0). A WSDL document describes the functional interface,
including operations, input and output messages, and faults. It also describes the implementation

Chapter 4: XML and Web Services Fundamentals 103

locations of the interface, or rather the physical endpoint (address) where the service can be invoked
in combination with the protocol to be used for invoking the service.

An interface can be bound to multiple protocols—such as SOAP, HTTP, and MIME—and
each binding can be exposed at one or more endpoints. WSDL has extension points that allow for
the definition of other binding types (for example, based on Java, JCA, and JMS). Note that we
will focus on the 1.1 release of WSDL supported by the SOA Suite.

Analyzing the Service Interface According to WSDL
The contract for a service has various aspects to it, of course. Some of it is very much like real-
world contracts, whereas other parts are quite technical in nature. The WSDL primarily describes
the service interface with a number of functional as well as more technical aspects of the contract,
in a way that technical infrastructures can understand and that is accessible to human readers at
the same time by using strongly typed XML with meaningful element names. We will take a closer
look at the essential elements in WSDL documents. Other aspects of a service contract—for
example, regarding its response time, availability, and release schedule—are not part of WSDL
documents.

Abstract Service Interface: The portType
We have talked about a specific operation Frank’s service should provide: getPatientRecord.
However, his service may very well offer additional operations as well, just as a Java class may
contain (and typically does) multiple public methods and a PL/SQL package specification
provides more than one procedure. The WSDL document contains the portType element, a
named set of abstract operations, and the abstract messages (input, output, and fault) involved
with those operations. Faults (referring to SOAP faults here) are the Web Service equivalent of the
exception in languages such as PL/SQL and Java. The portType element is very similar to the Java
Interface artifact—it specifies the abstract service interface that is on offer from the Web Service.
It is up to the port elements to hook up the implementation of this abstract interface and its
operations:

<portType name="PatientDataServiceInterface">
 <operation name="getPatientDataRecord">
 <input message="tns:PatientIdentityRequestMessage"/>
 <output message="tns:PatientDataRecord"/>
 </operation>
</portType>

Also notice that the input and output messages are now fully qualified and in the namespace
denoted by the “tns” prefix. Figure 4-4 provides an overview of the entire structure of WSDL
documents. Note the three sections that describe the what of the service (what functionality is
offered by the service?), the how of the service (can this functionality be invoked in terms of
protocol and message format?), and the where of the service (at which physical endpoint can the
service be contacted?).

Message Definition
Frank is nowhere near the point where he wants to start talking about the implementation details
such as the endpoint (the URL on which the service can be invoked) for his service. He wants to
first further specify the functionality of the getPatientRecord operation, or at least define what the

104 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 105

structure will be for the input and output messages. That is quite a life-altering change from his
initial response to Margaret’s opening moves, where he almost created the database views on the
spot for her. This structured, step-by-step approach sits well with him. It also gives him time to
absorb all the new lingo and concepts.

The input and output element each have a message attribute. This attribute refers to a message
element defined in the WSDL document or an external XSD:

<message name="PatientIdentityRequestMessage">
 <part name="PatientIdentificationPart" element="pat:PatientIdentification"/>
</message>
<message name=" PatientDataRecord">
 <part name="PatientDataRecordPart" element="pat:PatientDataRecord"/>
</message>

A message can consist of multiple parts. Each part can be seen to represent a parameter in the
operation request or response. Multiple part elements can be used when a message has several
unrelated or at least logically separate units.

Two types of styles are used for Web Services: document-style and RPC-style Web Services.
For the “document literal (wrapped)” style service (which we will work with most of the time),

FIGURE 4-4. Overview of the structure of WSDL documents

Other service
consumers

Service invocation contact

types
schema

element
VeryPatient.xsd

Administration.xsd

complexType

simpleType

message
part

portType
operation

getPatient

Import XSD for namespace

PatientIdentificationInputMargaret’s
team

Frank’s
implementation

team
bindings

binding
SOAP, HTTP, Java

service
port

URL, Host:Port

WSDL document

WHAT

HOW

WHERE

Chapter 4: XML and Web Services Fundamentals 105

the WS-I Basic Profile specifies that at most one part is allowed. In general, it seems that unless
there is a real need for using multipart messages, sticking with single-part messages is less complex
and less likely to have you run into tool limitations. This style works with XML documents that can
have a complex, nested structure if needed. The RPC-style service requires individual input and
output parameters, which makes the interface definition much less flexible. For the purpose of this
book—and almost always in other cases—we will use the document approach. The alternative,
RPC, is rapidly going out of fashion. For details, see the almost classic paper “Which style of
WSDL should I use?” (www.ibm.com/developerworks/webservices/library/ws-whichwsdl/).

Each part is based on either a type (for Remote Procedure Call or RPC-style services) or an
element (for the document literal–style services we will primarily deal with) that is defined in the
<types> section of the WSDL document. This section can contain XSD-style element and type
definitions, or import one or more external XSD documents. For reasons of loose coupling and
reuse of type definitions, as well as keeping the WSDL document readable, working with external
XSDs is preferable over including type definitions inside the WSDL document.

The following snippet is an example of a WSDL document that imports message definitions
using an external XSD document (VeryPatient.xsd in this case):

<types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://ourhospital.com/patient"
 schemaLocation="VeryPatient.xsd"/>
 </schema>
</types>

Frank and Margaret need to flesh out the structure of the PatientIdentification and
PatientDataRecord elements in the Patient.xsd. When they have done so, they have the
abstract interface for the getPatientRecord operation in the PatientDataService, because the
functionality is defined but no implementation details are specified. At that point, Frank and
his team can start working on the implementation—how to fulfill the contract—and Margaret’s
team can commence with the realization of service clients that will be invoking that service.
Well, almost. The two first need to agree on how the service will be called. The precise
physical address can be determined later on, but it would be useful to know the protocol via
which the service is to be invoked.

Through the operation and message elements, together with any referenced XSDs, we have
specified the XML structure for the requests to and responses from the service. What we have not
described yet is how the request and the response are communicated. It’s like agreeing on the
form that we will fill out and send to an agency to make a request. If we do not discuss the
address to which we should send the form or the postal service to use—that is what the service
and port elements are for there is a chance of that form not arriving in good shape. We should
also give consideration to the envelope we should wrap the form in and the fact that we may
need to provide a return address if we ever want to receive a reply from this agency.

Many tools, including the Oracle SOA Suite, are able to speak SOAP (formerly known as the
Simple Object Access Protocol, but today just referred to as SOAP). Other protocols—such as
REST, e-mail, and binary message transmissions—may also be supported.

106 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 107

SOAP: The XML Transmission Language
SOAP describes the meta-details for sending messages between service consumers and
providers. It is a W3C standard that describes the structure of an XML document—this time
the XML document that contains at its core a message being transmitted, enveloped by
metadata pertaining to the transmission itself.

A SOAP message in its simplest form looks
like this:

NOTE
We discuss SOAP 1.2, as that is the default
version used in the Oracle 11g SOA Suite.

At the core is the payload—that is,
the message itself. It’s like the letter inside the
envelope. The payload is wrapped inside
the <body> element. The <header> element
optionally contains header elements—elements that provide metadata about the message
that is being sent. This is much like the information you may scribble on the envelope in
which you send a letter, such as the return address and perhaps a specific indication of the
department the letter is intended for or the topic it is about.

The SOAP header can contain various types of metadata, including addressing
information—for example, the address to which to send any replies, transaction coordination
details, and authorization tokens—used to identify the sender of the message.

Namespaces can be declared at various levels, such as the root Envelope element or the
Header and Body elements. The Body element is the container for the actual payload sent
in the SOAP message. In the following example, the payload is the {http://ourhospital.com/
patient}patientIdentification root element with its contents:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <env:Header>

 <wsa:MessageID>urn:CBCA87702F9311DFBFAEA7F5A2B8D1B8</wsa:MessageID>

 <wsa:ReplyTo>

 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>

 </wsa:ReplyTo>

 </env:Header> <env:Body>

 <ns1:PatientIdentification>

 <ns1:patientId>3232</ns1:patientId>

 </ns1:PatientIdentification>

 </env:Body>

</env:Envelope>

The structure of SOAP messages is the same, regardless of whether the messages
contain a request or a reply—just like the basic concept of an envelope is the same, no
matter what’s in the letter it contains.

SOAP document
envelope

header

body

XML payload

blocks that contain QoS details
and other metadata

Chapter 4: XML and Web Services Fundamentals 107

The How and Where in the WSDL Contract
The Binding element in the WSDL document is used to describe the fact that the specific operations
in the service are callable via a specific protocol binding and data format. Several options are
available for bindings, including HTTP, MIME, JCA, and SOAP (the latter being the most prominent
among them):

<binding name="PatientDataServiceSoapHttp"
 type="tns: PatientDataServiceInterface">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getPatientDataRecord">
 <soap:operation soapAction="getPatientDataRecord" />
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

The type attribute in the binding element refers to a portType element—the element that
contains the interface that declares the available operations. The binding element links a portType
to a protocol and a style of message formatting. In this case, we have defined the binding of the
PatientDataServiceInterface portType to the SOAP protocol using a document-style message format.

The child element of the binding element—in this case, soap:binding or {http://schemas.
xmlsoap.org/wsdl/soap/}binding, because the prefix soap is bound to this namespace—indicates
the protocol. The soap:binding element specifies the format through the style attribute—which we
will always set to document.

For each operation in the referenced portType that we want to support through the binding,
we need to include a child “operation” element inside soap:binding. The name attribute on the
operation element refers to the name of one of the operations inside the referenced portType.

The input and output elements are finally used to specify whether the SOAP binding has a
literal or encoded use for the parameters. We will always use literal—refer to the paper mentioned
earlier for details.

The WSDL document will be completed with the Service element that finally assigns physical
address details to each of the binding elements in the document. Here is the Service element for
the contract Frank and Margaret are drawing up:

<service name="PatientDataService">
 <port name="PatientDataRecordServiceSoapHttpPort"
 binding="tns: PatientDataServiceSoapHttp ">
 <soap:address location="URL_To_Be_Defined"/>
 </port>
</service>

This element associates a binding element with a physical endpoint. The binding tells us how
to invoke the service operations—which protocol and message format—and the port child of the
service element contains the details of the whereabouts of the deployed service implementation.

108 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 109

However, note that Frank is at this point far from able to indicate the URL where his service
will reside, nor does Margaret need that information at this point. The location is therefore not yet
defined in the WSDL.

JDeveloper provides a WSDL editor with both Source and Design views, the latter offering
a graphical overview of the WSDL with drag-and-drop support for adding elements to the
document. However neat this UI, you will probably find yourself inspecting and editing the
source code directly. By the way, most WSDL documents will be generated for you by the
SOA Suite design-time environment, based on BPEL process and Mediator service definitions,
for example.

Demo: Create the Simplest Web Service Implementation
Once you have the complete WSDL and any referenced XSDs, you can start writing code that
calls the Web Service (even if it does not yet exist) and processes its response. Calling a Web
Service is supported by libraries and platform infrastructure in many technology environments.

Creating an implementation of a Web Service according to the specification laid down in the
WSDL and the XSD is also rather straightforward in various technology stacks. We will discuss
this process for Java using JDeveloper.

NOTE
All the source code discussed, screenshots for the important steps,
and some bonus material are on the book’s wiki.

The Contract for the Simple Web Service
Let’s assume a fairly simple WSDL document along the lines of the PatientDataRecordService—
but simpler, just to give you the idea. The key parts of the WSDL document are shown here.
Let’s see how to read it:

<definitions
 targetNamespace="ourHospital.PatientData"
 xmlns:tns="ourHospital.PatientData"
 xmlns:hospital="http://ourhospital.com/patient"
 ... >
 <types>
 <schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://ourhospital.com/patient"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://ourhospital.com/patient"
 schemaLocation="SimplePatient.xsd"/>
 </schema>
 </types>
 <message name="PatientIdentityRequestMessage">
 <part name="in" element="hospital:patientIdentification"/>
 </message>
 <message name="PatientDataRecord">
 <part name="return" element="hospital:patient"/>
 </message>
 <portType name="SimplePatientRecordDataInterface">

Chapter 4: XML and Web Services Fundamentals 109

 <operation name="getPatientDataRecord">
 <input message="tns:PatientIdentityRequestMessage"/>
 <output message="tns:PatientDataRecord"/>
 </operation>
 </portType>
 <binding name="SimplePatientDataRecordServiceSoapHttp"
 type="tns:SimplePatientRecordDataInterface">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getPatientDataRecord">
 <soap:operation soapAction="getPatientData"/>
 <input><soap:body use="literal"/></input>
 <output><soap:body use="literal"/></output>
 </operation>
 </binding>
 <service name="SimplePatientDataRecordService">
 <port name="GetPatientDataRecordServiceSoapHttpPort"
binding="tns:SimplePatientDataRecordServiceSoapHttp">
 <soap:address location="http://host:port/hospital...
 .../patientservices/GetPatientDataRecordServiceSoapHttpPort"/>
 </port>
 </service>
</definitions>

The portType element contains the actual operation on offer in this service. Through the
message elements and the schema referenced from the <types> element, we quickly get a feel for
the input parameters and the outcome of calling the operation.

We can ask for a PatientRecord by submitting the PatientIdentityRequestMessage (which
contains the PatientId, an integer value from the XSD). The service returns to us an XML
document—PatientDataRecord—that contains patient details such as name, initials, gender
and birth date, recent hospital visits, and some physical characteristics that could include
weight, height, and color of eyes. We learn this too from the SimplePatient.xsd document.

The service is (to be) offered through the SOAP protocol—as we can see from the binding
element. The endpoint is not yet specified—so we do not know the actual URL where we can call
this service.

The (referenced and external) SimplePatient.xsd document looks like this:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://ourhospital.com/patient"
 targetNamespace="http://ourhospital.com/patient"
 elementFormDefault="qualified">
 <xsd:element name="patientIdentification" type="patientIdType"/>
 <xsd:element name="patient" type="patientType"/>
 <xsd:complexType name="patientIdType">
 <xsd:sequence>
 <xsd:element name="patientId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="patientType">
 <xsd:sequence>

110 Oracle SOA Suite 11g Handbook Chapter 4: XML and Web Services Fundamentals 111

 <xsd:element name="name" type="xsd:string"/>
 ...
 <xsd:element name="physicalCharacteristic" type="measurementType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="hospitalVisit" type="hospitalVisit" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="measurementType">
 <xsd:sequence>
 <xsd:element name="dateOfMeasurement" type="xsd:date"/>
 ...
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="hospitalVisit">....</xsd:complexType>
 <xsd:simpleType name="genderType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="M"/>
 <xsd:numeration value="F"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

In fact, the service does not even exist at this point. Let’s first do something about that by
creating a simple implementation.

Creating an Implementation of a Web Service
JDeveloper helps with the implementation of a Web Service: You can ask it to generate a service
implementation based on a WSDL document. All you have to add yourself is the Java code that
does the actual work. All the Web Service deployment details and XML-to-Java data type mapping
are taken care of.

When we select the WSDL file in the Application Navigator, we can find the option Create
Web Service in the right-click menu. Selecting it brings up a wizard that we can, by and large,
accept the default values in. You may want to set a nicer package name in which the Java classes
will be generated.

The central class generated by the Create Web Service Wizard is PatientType—based on the
XSD element by the same name. Its properties are defined as follows:

public class PatientType {
 @XmlElement(required = true)
 protected String name;
 @XmlElement(required = true)
 protected String initials;
 ...
 protected List<MeasurementType> physicalCharacteristic;
 protected List<HospitalVisit> hospitalVisit;

The annotations are part of the JAX-WS specification, introduced in JEE 5. They provide
additional type-mapping instructions to the container in which the Web Service will be deployed.

Chapter 4: XML and Web Services Fundamentals 111

It is now up to us to implement the class SimplePatientRecordDataInterfaceImpl—more
specifically, the method getPatientDataRecord that accepts a PatientIdType and returns a
PatientType:

public PatientType getPatientDataRecord(PatientIdType in)

We can both deploy and subsequently test the Web Service from the right-click menu once
we have implemented this method.

Invoking Web Services from Java and PL/SQL
When they have been implemented and deployed, Web Services can be called from different
technology stacks—the main raison d’être for Web Services. Invoking the Web Service introduced
earlier can be done from, for example, PL/SQL and Java—this is shown in detail on the book’s
wiki. The wiki also introduces the tool soapUI, which can be used to invoke (and test) the Web
Service as well as to provide mock implementations for Web Service contracts.

Summary
The SOA Suite speaks XML. Almost all files we create during the development of composite
applications are XML documents. And the vast majority of data processed by those applications
when in production is also XML. It is essential for SOA Suite developers—as well as architects
and to some extent functional analysts and testers—to be aware of the primary XML concepts and
technologies, such as namespaces and XSD as well as XPath and XSLT (see Appendix B for these
last two).

The interfaces for services in the SOA Suite are typically specified in yet another XML document,
based on WSDL. This chapter introduced the structure of the WSDL document, focusing first on the
portType (the interface) that defines the operations and refers to the input and output parameters,
whose structure is usually defined in associated XSD documents. The port element in the WSDL
document specifies through which protocols (such as SOAP) and on which endpoint the service
can be invoked. This element only needs to be defined upon deployment—and it may even be
derived as a result of deployment.

The Web Service interface definitions are technology neutral: They can be implemented in
and invoked from many different technologies. The chapter briefly discusses the implementation
of a WSDL contract using Java. The wiki has examples for other implementations and service
consumers.

In the next chapters, we will create SOA composite applications that are the implementation
of WSDL contracts. These applications are constructed according to the Service Component
Architecture (SCA) specification that was introduced in Chapter 3. The SCA specification goes
beyond WSDL. SCA defines a general approach for describing what you could call the deployment
contract for services as well as for creating composite services built from individual service building
blocks—the service components. Also see Chapter 14 for a more detailed discussion on SCA.

In the next chapter, we will create a service component—using the BPEL Process Manager in
conjunction with the Database Adapter—that provides the implementation for the service
contract Frank has agreed on with Margaret. This component is embedded in an SCA composite
application that offers a single service to the outside world: the PatientRecordService. The SOA
Suite runs such composite applications and forwards the Web Service calls directed at the
PatientRecordService to the composite that has them executed by the BPEL process.

This page intentionally left blank

Chapter
5

First Steps with BPEL and
the Database Adapter

113

114 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 115

hapter 3 introduced the SOA Suite and explained how it implements an SCA
container according to the Service-Component Architecture. We develop
composite applications in JDeveloper that we can then deploy to and run in the
SOA Suite. These applications typically expose public Web Services that clients
can invoke. Internally they consist of service components that do the actual work.

SOA Suite supports various types of service components, including Mediator, Java (Spring),
Human Task, and Business Rule.

Another type of service component is introduced in this chapter: the BPEL Process service
component. BPEL (Business Process Execution Language) is a programming language for creating
a piece of service logic—logic that exposes a service interface and that typically orchestrates
multiple service calls. At the same time, BPEL has many of the traits of general-purpose
programming languages, as we will see in this chapter and the next. A BPEL process can be fairly
long-running, contains state, and can receive incoming messages in addition to the original
request that instantiated the process. This chapter introduces BPEL and the development of
BPEL service components. Note that the online chapter complement offers additional screenshots
and detailed step-by-step instructions to follow the examples hands-on.

Introducing the Business Process
Execution Language (BPEL)
The previous chapter introduced the PatientDataService, which makes data available in a
standardized, technology-independent way. Of even more importance to St. Matthews and
indeed every organization are its business processes that use the services. The business processes
are the concerted actions that an organization performs to achieve its business objectives. For
St. Matthews, among its business processes are the “intake patient/treatment patient/discharge
patient” processes as well as the “win employee/manage employee/lose employee” and “gather
claims/send claims to insurers/process payments” processes.

Continuing our discussion from Chapter 2, we see that when we analyze business processes
at the lowest level (where the action is), we can describe them as a series of activities, usually
by different actors, in a predefined order that may vary with the results of earlier steps, and
with information associated with the processes that is constantly transferred and manipulated
between steps and actors. A business process, for example, may have the patient, the reception
desk, the departmental office management, a doctor, and the billing department for its actors.
The information associated with the process could include the patient’s personal details, recent
health history, a list of recent hospital visits, the request from the patient to see a specific doctor,
as well as the preferred date and time, the best available timeslots for the doctor, and the agreed-
upon appointment.

Looking at the business processes from a service-oriented point of view, the actions can be
seen as calls to various services. The services are either implemented by software (system-centric)
or performed by human actors (human-centric). Executing the business process is largely a matter
of orchestrating the services that need to be invoked and managing the state of the process during
its lifetime. The business process may run very rapidly—in less than a second, perhaps, if only
computers are involved—or it can take hours, days, or even months.

C

Chapter 5: First Steps with BPEL and the Database Adapter 115

Automating a business process in an SOA environment can be done through BPEL, the Business
Process Execution Language. BPEL is a programming language for implementing process flows and
composite (or orchestrated) services. BPEL is a standard maintained by OASIS and supported by all
major players in the IT industry, including Microsoft, Oracle, IBM, Software AG, Adobe, and
SAP. A BPEL program—referred to as a BPEL process definition—can be run by a BPEL engine,
just like a Java program can be run by a Java Virtual Machine and a PL/SQL program by the Oracle
RDBMS. A BPEL process is often published as a Web Service. It then has an associated WSDL
document with XSD definitions and one or more operations on a portType that can be called
through SOAP messages. Note that we will later discuss other ways to call and communicate with
BPEL components.

BPEL Ingredients
A typical BPEL process contains the following items:

 Calls to services. A service in this sense can be a task performed by a human staff ■
member, hiding behind the service interface of a workflow engine, or an automated Web
Service, although for the BPEL process, the distinction is not important.

 Specific BPEL activities, including data manipulation (calculation and transformation of ■
variables associated with the process) and flow logic, including decision point (if-then-
else and switch/case, iteration, parallelism, wait).

 Event handlers and fault (or exception) handlers. ■

In SOA Suite 11g, BPEL components often work closely together with other service components
in a composite application, such as Mediator, and Business Rule service components, to facilitate
interaction with other services and provide complex, externalized decision logic.

Human Task components are also frequently wired to BPEL processes for the manual handling
of activities in potentially complex workflows. The recent BPEL4People extension to the original
WS-BPEL standard adds specifications that define a standardized approach for integrating human
interactions more closely with BPEL processes. More on human tasks in Chapters 10 and 11.

Another regular partner for BPEL components is the Notification Service for sending messages to
human users via e-mail, SMS, and instant messaging (internally connected to the User Messaging
Service, or UMS).

Its good fit with business processes notwithstanding, BPEL also provides a powerful way for
implementing composite services that do not necessarily directly relate to an automated business
process. Of course, services can be implemented using a variety of technologies, as we have seen
in the previous chapter, including Java, PL/SQL, C++, and .NET. However, when a service
component has to invoke multiple services—either external to the composite application or
provided by other service components inside the composite, and potentially asynchronous and
long-running—BPEL is typically a good way to implement the component. This holds especially
true when over the course of the component’s lifetime some state is built up in variables and
process flow logic is involved to loop or conditionally branch.

A BPEL component has the unique capability to receive additional messages, beyond the first
invocation that initiated the component instance, and respond to them. This allows clients to
interact with the process—for example, to check on its progress, provide additional information,
or get a hold of intermediate results.

116 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 117

Synchronous and Asynchronous Services
In the previous chapter, we assumed a pretty simple world, where a call to a service results
in a more or less instantaneous response. Or at least, although the response may take some
time to arrive, we will just wait for it. Just like synchronous function or method calls in
PL/SQL and Java, the process thread blocks until a result is received. However, in the real
world, some services do not render responses in a timely enough fashion to justify waiting
for them. We may have to ask the service desk, bank manager, or wedding planner to call
us back when they have the answer to our query—we just ran out of lunch break and
cannot stay on the line any longer. In short, synchronous request/reply cannot include
human activities. Well-known examples of asynchronous communication are e-mail and
voicemail. We leave a message, do not stick around for an answer—as there is no one to
provide that answer—and expect to get a reaction later on.

The same goes for clients that call services in a SOA world. Some services are inherently
asynchronous—which means that they will always send their responses by calling us back
instead of replying while we are on the line. Asynchronicity is often deliberately used to
decouple the service consumer from the provider (or the availability of the provider). In case
of an asynchronous call, the caller is not dependent on the immediate availability or fast
response time of the provider. Less dependency means more flexibility!

However, whereas the coupling decreases on the one hand—the callee does not need to
be available when the call is made, nor does the callee need to respond extremely rapidly—it
increases on the other, as the caller needs to implement a callback interface stipulated by the
service contract: Only when the consumer implements and exposes the callback interface can
the asynchronous response be received and processed. This introduces a new dependency on
the definition of the callback interface.

A call to an asynchronous service is handled differently than a synchronous call. The
calling party needs to provide a callback address, for example. It also needs to determine
what it will do during the time it waits for the callback. Will it be suspended? Will it wait?
Can it do other useful things? And how will it know the callback has arrived?

The answers to these questions vary with the technology involved. We will see how
BPEL processes deal with calls to asynchronous services—very elegantly, that much I will
give away at this point. Many other technologies have more difficulties in dealing with
asynchronous service calls natively—usually relying on some form of external message
queuing to handle the requests and or the responses.

You can tell asynchronous service interfaces quite easily from the WSDL: The portType
has operations without an output element, even though you clearly expect a response. A
second portType defines the callback interface with operations that handle the response. The
calling party has to implement this portType and let the asynchronous service know what the
address or end point is where this “receive asynchronous response” service can be invoked.

A special type of asynchronous service is the fire-and-forget service, a one-way service
that never returns the asynchronous response. The client can immediately resume
processing after making a call to this type of service and it does not have to anticipate a
response in the future.

A BPEL process can be short lived or long running, and it can publish synchronous and
asynchronous operations. A BPEL process that has among its activities a human task, a
“wait,” a “pick,” or a call to an asynchronous service will typically publish an asynchronous
service—however, that decision is up to the developer.

Chapter 5: First Steps with BPEL and the Database Adapter 117

BPEL is one of the first-class citizens for component implementation included in the SCA
standard, along with Java, Spring, PHP, (SOAP) WebServices, and C++. Services implemented
using BPEL can easily be configured in SCA components and linked with references provided by
other SCA components.

In this chapter, we will get off to a flying start by doing a rapid implementation of an SCA
composite application with BPEL-based service components. We will then take a first look at
some of the basic programming constructs of the Business Process Execution Language and go
on to see how we can leverage other services from a BPEL process (for example, to retrieve
information from an Oracle database).

Implementing the Composite PatientDataService
Let’s revisit Frank’s Patient Data Service—a composite service that we worked on in the previous
chapter. It seems that the data that this service will return for a particular patient has to be gathered
from various sources. Additionally, the service will have to do some processing and transformation
on the data retrieved from those sources to make it fit the requirements of the service consumers as
laid down in the WSDL. Even though a request for patient data is not much of a business process
all by itself, it is a composite service, and because of the service orchestration requirements, BPEL
is a good choice for implementing the Patient Data Service.

Now buckle up for a fast BPEL ride with the Oracle 11g SOA Suite:

 1. Start JDeveloper 11g. Create a new application by selecting File | New from the main
menu and selecting the node General | Applications in the categories tree. Select SOA
Application in the items list shown on the right side. Click OK.

 2. You will be prompted to provide a name and a directory for the application. Enter
PatientDataService as the name for the application. Also enter a directory of your choice
(see Figure 5-1).

FIGURE 5-1. The Create SOA Application dialog

118 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 119

 3. Click Next to go to the Project Name page. Enter the project name, PatientDataService,
and click Next. On the last page, Project SOA Settings, select the composite template
“Composite with BPEL” because we will create a composite application with a BPEL
service component. Accept PatientDataService as the name for the composite. Click
Finish to have the application, project, and service composite application created.

 4. The Create BPEL Process dialog appears, as shown in Figure 5-2. Here, we specify
the name of the BPEL process, the namespace, and the template we will use. Enter
PatientDataService as the name of the BPEL process. Enter http://stmatthews.hospital.
com/patient/PatientDataService for the namespace. Select the Synchronous BPEL
Process template because we want to publish the process as a synchronous service—after
all, we do not include human activities (yet) in this BPEL process, nor will we invoke any
asynchronous services. Enter PatientDataService for the service name.

 5. Leave the check box Expose As A SOAP Service checked. This will result in the BPEL
component being exposed as a Web Service in the composite application. It also leads to
an SCA composite with the BPEL process component already wired to an inbound SOAP
service binding component. External consumers access the BPEL process through that
SOAP service.

 6. Accept the default names for the input and output—we will change these into more
sensible values later on.

 7. Click OK.

At this point, JDeveloper will create a bunch of files, including the BPEL process definition
(PatientDataService.bpel) and the SCA composite definition (composite.xml). We talk about all
these files and their mutual dependencies in the online chapter complement.

FIGURE 5-2. The Create BPEL Process dialog for creating a new template-based BPEL process

Chapter 5: First Steps with BPEL and the Database Adapter 119

The BPEL process editor opens and presents the Design view of the BPEL process (see Figure 5-3).
On the bottom of the editor pane are three tabs: Design, Source, and History. In the Source tab, we
can see the underlying XML content of the process definition. The Design and Source tabs provide
different views on the same source, so changes can be made in either.

The PatientDataService BPEL process contains two activities at this point: Receive and Reply,
as will be the case for all synchronous BPEL processes. The first activity receives the service
request from an external partner—a party outside the BPEL process—and causes a new instance
of the BPEL process to be created. The Reply activity—usually after some meaningful processing
in intermediate BPEL activities that have yet to be added—returns a response to the external
partner.

BPEL processes have two types of external partners: the invokers of the service(s) exposed by
the BPEL process, and the services that the BPEL process invokes itself. The external partners as
seen from BPEL are identified in the BPEL process through partner links, which are nothing more
than the interaction points between the BPEL component and other components in the same
composite.

FIGURE 5-3. The new SOA project with the PatientDataService BPEL process

120 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 121

A synchronous or asynchronous BPEL process, like the one we have just created, has one
predefined partner link, called Client. It represents the external party that calls the BPEL process
(or rather the service published by the BPEL process, and possibly exposed by the composite
application). For each service, we will call from the BPEL process; for each external party invoking
this BPEL process, we will add a partner link.

JDeveloper has created two BPEL process variables: inputVariable and outputVariable. These
are used to capture the input received in the service request and specify the output to be returned
as the service response by the Reply activity. Variables in BPEL are based on an XML type or
element—either a primitive type or a custom type or element defined in an XSD document
associated with the project. The two variables created by default are based on the message types
specified in the WSDL for the PatientDataService’s “process” operation. This operation is also
created by default by JDeveloper.

We can create the absolute minimal BPEL process by adding just a single activity that will set
the value of the outputVariable, as we did in Chapter 3 (the BPEL activity used for manipulating the
value of variables is called Assign). The steps to create this minimal BPEL process and to deploy and
run it on the SOA Suite are described and visualized in the online chapter complement.

The PatientDataService BPEL
Process in More Detail
The PatientDataService implemented by our BPEL equivalent of HelloWorld is up and running,
assuming you followed the instructions in the online chapter complement. And although it is
laughably simple, it already has the core elements that underpin much more complex BPEL processes.

Business Process (Definition) vs. Business Process Instances
When business analysts speak about a business process, what they are referring to is the
definition of the process. When we create a BPEL process, a program to be executed by a
BPEL run-time engine, we also work on the definition of the process. However, what takes
place in an organization is more than that: The business process can be executed many
times per day, even many times simultaneously. And likewise a BPEL engine can run many
instances of the same process at the same time. Just like a Java class file is the mold to cast
Java objects from, the BPEL process is the mold used by the BPEL container to cast BPEL
process instances from—of which there can be many running at the same time, each with
its own instance ID and its own set of data.

The SOA console allows us to inspect running and finished instances of our business
processes—before finally purging them. It will come as no surprise that BPEL process
instances are stored in a database—a process called dehydration. This happens when a
process is finished and may happen also in mid-processing, when it is paused, waiting for a
response to an asynchronous service request or some other event to occur, or when a
Checkpoint activity is executed.

It is important to realize that every call to the service published by a BPEL process will
result in a new instance to be initiated. Note that it is not just an instance of a BPEL process;
it is an instance of the entire composite that contains the BPEL process.

Chapter 5: First Steps with BPEL and the Database Adapter 121

So by analyzing this trivial example, we get a feel for what constitutes this combination of SCA
and BPEL that is exposed as a Web Service. Figure 5-4 shows the files that make up the composite
application, along with their dependencies.

JDeveloper has created the file PatientDataService.wsdl. This file specifies the interface that
our BPEL process exposes and that the composite application will publish externally (because we
left the check box Expose As A SOAP Service checked when we created the composite):

<!-- portType implemented by the PatientDataService BPEL process -->
 <portType name="PatientDataService">
 <operation name="process"> <!-- the default name that we ought to change -->
 <input message="client:PatientDataServiceRequestMessage"/>
 <output message="client:PatientDataServiceResponseMessage"/>
 </operation>
 </portType>

The Request and Response message types are based on the elements defined in the XSD
document PatientDataService.xsd that was also created for us. Initially both Request and Response
elements consist of a single string.

FIGURE 5-4. The PatientDataService BPEL process and its associated WSDL and XSD files

Ex
te

rn
al

Se
rv

ic
e

types
import PatientDataService.xsd

element
PatientDataServiceProcessRequest

variables

Receive Reply

inputVariable
outputVariable

element

PatientDataService.bpel

PatientDataServiceProcessResponse

message
PatientDataServiceRequestMessage
PatientDataServiceResponseMessage

portType

partnerLinkType

PatientDataService

binding

service
port

PatientDataService

operation

PatientDataService.wsdl

PatientDataService.xsd

process

role
portType

partnerLink

role
partnerLinkType

122 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 123

The BPEL process—defined in the file PatientDataService.bpel—contains variables, just like
programs in other programming languages. Some variables contain the messages received from or to
be sent to partners, whereas others contain data required for holding state information or temporary,
local data related to the process and are never exchanged between partners. All variables hold data
in the form of XML.

The variables are defined in the BPEL process through “variable” elements, which specify the
name and the data type or structure of each variable. Variables can be global—accessible throughout
the BPEL process—or local to sections of the process (called scopes and introduced later). A variable
can be based on an XML Schema Simple Type such as string, decimal, or dateTime. Alternatively, a
BPEL process variable can be defined in terms of a message type defined in the WSDL document or
an element in one of the XSD documents.

A special type of variable is the Entity variable. A variable of this type is bound to an SDO
(Service Data Object) published by a Data Access Service (DAS), which could be provided, for
example, by an ADF BC data provider. More on this advanced setup in Chapter 20.

The variables in the PatientDataService BPEL process are in reality not simple strings (like
they are right now) or integers; their structure is defined by WSDL message types. JDeveloper has
created two variables for us: inputVariable, based on the PatientDataServiceRequestMessage
message type in the WSDL file, which in turn is based on the PatientDataServiceProcessRequest
element in the PatientDataService.xsd document. The second BPEL variable is outputVariable,
which is likewise based on the PatientDataServiceProcessResponse element. Figure 5-5 shows the
BPEL variable definition.

 <variables>

 <variable name="inputVariable" messageType="client:PatientDataServiceRequestMessage"/>

 <variable name="outputVariable" messageType="client:PatientDataServiceResponseMessage"/>

 </variables>

FIGURE 5-5. The definition of the variable outputVariable based on the message type
PatientDataServiceResponseMessage

Chapter 5: First Steps with BPEL and the Database Adapter 123

Later in this chapter, we will extend the XSD document with a more interesting definition of
the PatientDataServiceProcessRequest element. The inputVariable in the BPEL process immediately
inherits that more complex structure.

Essential BPEL Activities
BPEL is a programming language with its own XML-based syntax, constructs, and dozens of
operations, or activities, as they are called in BPEL. Some will manipulate data, others perform
logic (decision, loop), and a number of activities is involved in interacting with external service
and event providers and consumers. Here we discuss the essential BPEL elements.

Partner Link Type
A very important element in BPEL processes is the link between the BPEL process and the external
world: the services called by the process and the parties external to the BPEL process that access
it. Every type of interaction is represented by a PartnerLinkType element, specified in the WSDL
file of the BPEL process. Note that we see here a special extension to WSDL that BPEL introduces.
The WSDL document created for a BPEL process contains at least one PartnerLinkType element
for the partner that invokes the process. A PartnerLinkType specifies “role” elements. Each role
element introduces a role that either the BPEL process or the external partner can assume in their
mutual interaction: service consumer or service provider. That role is linked to a portType that the
partner playing the role should implement. If the BPEL process is asynchronous, the partner link
type contains two role elements: The partner is initially the consumer of the service sending a
SOAP message to the BPEL process and subsequently the receiver of the response message sent to
the callback interface.

In our very simple PatientDataService, we have just one interaction with the outside world:
the client calling the service and receiving the immediate response. In the PatientDataService.
wsdl file, this interaction is specified through a single partnerLinkType:

<plnk:partnerLinkType name="PatientDataService">
 <plnk:role name="PatientDataServiceProvider">
 <plnk:portType name="client:PatientDataService"/>
 </plnk:role>
 </plnk:partnerLinkType>

The role of PatientDataServiceProvider in this interaction with the external client will be
assumed by the BPEL process—the provider of the service. Every party calling this service will be
the client that uses the PatientDataService portType. It is important to realize that the partner we
are referring to is not just a single entity: A service can be (and hopefully will be) invoked by
many different partners—BPEL processes, Java applications, enterprise service bus intermediaries,
PL/SQL programs, and so on. The point is, of course, that they all play the same role—client—in
the exchange with the PatientDataService and are therefore all captured under the same
partnerLinkType umbrella.

partnerLink
The Partner Link types are defined outside the BPEL process in the associated WSDL file. As
stated before, they describe a type of interaction for the process. The BPEL process itself uses
Partner Link elements for every specific interaction between the process and the outside world.
A Partner Link element is an instance of one of the predefined interaction types. A partnerLink
refers to a Partner Link type.

124 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 125

The PatientDataProcess contains just a single partnerLink, associated with the PatientDataService
Partner Link type. The attribute myRole is set to PatientDataServiceProvider—this indicates the role
played by the BPEL process in this interaction.

 <partnerLinks>
 <partnerLink name="PatientDataService"
 partnerLinkType="client:PatientDataService"
 myRole="PatientDataServiceProvider"/>
 </partnerLinks>

Combining this partnerLink with the referenced Partner Link type indicates that the BPEL
process will provide the implementation of the PatientDataService portType.

When we deploy the BPEL process, it is up to the container to bind all partnerLinks to physical
endpoints. In the case of the Oracle SOA Suite with the SCA run time, the partnerLinks will
be exposed as services (for portTypes implemented by the BPEL process) and references (for
partnerLinks identifying external services that the BPEL process needs to call). In our current case,
the client partnerLink in the PatientDataService BPEL process is exposed as a service by the
composite application PatientDataService. Whether these services and references are internal
within the composite—invoked and satisfied by other service components—or whether they are
exposed at the composite level depends on the wiring inside the composite.

Receive and Reply Activities
The Receive activity is present in most BPEL processes, usually at the very beginning. Sometimes it
is used to receive in-flight messages or events in already-running BPEL instances. It is the activity
that receives a request from a partnerLink and in doing so can start a new BPEL process instance.
Receive activities correspond with operations in the portType in the WSDL of the BPEL component.

In our example, the Receive maps to the process operation; a new instance of the
PatientDataService process is created whenever the Receive activity starts handling a new request.
This is specified through the createInstance attribute on the Receive element. The Receive activity is
associated with the partnerLink from which it will receive a request message. Here, that is the client
partnerLink. The Receive specifies a BPEL process variable that will be populated with the incoming
request message. In this example, the request message is assigned to the inputVariable, which as we
have seen before, is based on the PatientDataServiceRequestMessage message.

Although the associated partnerLink should be enough to tie the Receive to a specific
portType—and indeed the portType attribute is optional—we still need to specify which operation
in the portType is linked to this activity. In this case, it is the process operation for which requests
are to be picked up by this Receive activity:

 <receive name="receiveInput" partnerLink="PatientDataService"
 portType="client:PatientDataService" operation="process"
 variable="inputVariable" createInstance="yes"/>

When a BPEL process implements a synchronous operation—one with an output as well as
an input, such as the process operation in our example—it needs to contain a Reply activity to
complete the synchronous communication that started with the Receive and send the response
message to the party calling the service:

 <reply name="replyOutput" partnerLink="PatientDataService"
 portType="client:PatientDataService" operation="process"
 variable="outputVariable"/>

Chapter 5: First Steps with BPEL and the Database Adapter 125

NOTE
This is not an offline callback as with an asynchronous service;
instead, it is just the online synchronous reply.

The Assign Activity and BPEL Variables
In between the Receive and Reply activities, the least interesting step takes place: the Assign.
Although especially not noteworthy in this example, the Assign activity is one of the most
frequently encountered BPEL process steps. Its task, as its name suggests, is to assign values (to
variables or partnerLinks). In that sense, you can regard it like the = operator in Java or the :=
operator in PL/SQL. That should give you an understanding of how important it is.

To extract values from variables, the Assign activity uses XPath expressions. The Assign
activity not only uses XPath for retrieving values; it also uses XPath operands and functions to
manipulate these values and write them to a specific location in an XML target.

In this example, the literal string value ‘John Doe’ is assigned to the outputVariable. To be
more specific: The outputVariable is based on the PatientDataServiceResponseMessage, which
has one part (called payload) that is based on the PatientDataServiceProcessResponse element in
the XSD file. This element is based on a complexType with one child element: result.

The variable definition in the BPEL process is as follows:

 <variable name="outputVariable"
 messageType="client:PatientDataServiceResponseMessage"/>

Here’s the message definition in the WSDL document:

 <message name="PatientDataServiceResponseMessage">
 <part name="payload" element="client:processResponse"/>
 </message>

And, finally, here’s the underlying element definition in the XSD document:

<element name="processResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>

The “to” element in the following Assign activity specifies that the value ‘John Doe’ is assigned
to the “result” child element under the PatientDataServiceProcessResponse root element in the
“payload” part of the outputVariable:

 <assign name="Assign_1">
 <copy>
 <from expression="’John Doe’"/>
 <to variable="outputVariable" part="payload"
 query="/client:PatientDataServiceProcessResponse/client:result"/>
 </copy>
 </assign>

126 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 127

In general, the “from” element in an Assign activity can contain a BPEL variable or a partnerLink
(a special type of variable), an XML fragment, or an XPath expression. Inside the XPath expression
there can be references to multiple BPEL variables as well as literals and XPath functions, of
which there are dozens. The “to” expression can contain a BPEL variable or partnerLink. Note
that when either the to or from element refers to a variable, the element can also contain a “part”
attribute to refer to the message part as well as a “query” attribute that contains an XPath query into
the XSD type on which the message part is based.

To make our life easier, Oracle has defined a number of extensions to the Assign activity as it is
specified in the BPEL standard. These extensions are implemented using the built-in BPEL extension
framework that is part of the standard. The added “append” operation, for example, can be used
to append the contents of a variable or XML fragment—which can be a list of nodes or a complex
XML fragment—to another variable. Other extensions are copyList, insertBefore, insertAfter, and
rename.

The logic that is now implemented in the BPEL process is very simple—and very much like
any old programming language. For example, in PL/SQL, the functionality of this program would
be represented by code like this:

package PatientDataService
function process (p_input in varchar2)
return varchar2
 l_result varchar2(2000);
begin
 l_output:= 'John Doe';
 return l_output;
end;

The Assign Activity and the Use of XPath in BPEL
In the PatientDataService process, we have used the Assign activity to copy data to the output
variable using a very simple XPath expression. XPath is a query language used for retrieving data
from XML documents. XPath is a key element in XSLT, the transformation language used for
converting a certain XML input into a differently structured XML output. Appendix B provides a
little background on XPath.

To illustrate the use of XPath in BPEL processes, as well as to show a little more of what we
can do with the Assign activity, we will first make our BPEL process somewhat more interesting
by enriching the data structures we use.

Extending the Structure of the BPEL Variables
In the PatientDataService.xsd, we create the definitions for the elements PatientDataService
ProcessRequest and PatientDataServiceProcessResponse (see the wiki for the complete sources):

<schema targetNamespace="http://stmatthews.hospital.com/patient/PatientDataService"

 xmlns:hospital="http://stmatthews.hospital.com/patient/PatientDataService"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="PatientDataServiceProcessRequest"

 type="hospital:patientIdType" />

 <element name="PatientDataServiceProcessResponse"

 type="hospital:patientType"/>

Chapter 5: First Steps with BPEL and the Database Adapter 127

 <complexType name="patientIdType">

 <choice>

 <element name="patientId" type="integer" minOccurs="0"/>

 <sequence>

 <element name="firstName" type="string" minOccurs="0"/>

 <element name="lastName" type="string" minOccurs="0"/>

 </sequence>

 </choice>

 </complexType>

 <complexType name="patientType">

 <sequence>

 <element name="name" type="string"/>

 ...

 <element ref="hospital:physicalCharacteristic" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <element name="physicalCharacteristic">

 <complexType>

 <sequence>

 <element name="dateOfMeasurement" type="date"/>

 ...

 </sequence>

 </complexType>

 </element>

</schema>

Next, we make a change in the PatientDataService.wsdl document—we base the payload
parts of the input and output messages on these new element definitions (instead of process and
processResponse):

<wsdl:message name="PatientDataServiceRequestMessage">
 <wsdl:part name="payload" element="client:PatientDataServiceProcessRequest"/>
 </wsdl:message>
 <wsdl:message name="PatientDataServiceResponseMessage">
 <wsdl:part name="payload" element="client:PatientDataServiceProcessResponse"/>
 </wsdl:message>

Now both the inputVariable as well as the outputVariable in our BPEL process have a more
complex structure, and can be used for more meaningful things. The inputVariable can contain a
patientId, firstName, and lastName. The latter two are used when the patientId is not known. The
outputVariable contains details about the patient and his or her physical characteristics.

Next, we add a variable called temperatureReading to the BPEL process, based on the
physicalCharacteristic element in the XSD document. We can do this in Source view, in the
<variables> element:

 <variable name="temperatureReading"
 element="client:physicalCharacteristic"/>

Alternatively, open the Structure window (from the View menu or using the shortcut key
combination ctrl-shift-s) and then open the node Variables under Process, which is in turn
under Variables (see Figure 5-6). Click the green plus sign to open the Create Variable dialog.

128 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 129

Specify temperatureReading as the name and select the Element radio button. Click the browse
icon to open the Type Chooser dialog. Open the Project Schema Files node and select the
physicalCharacteristic element from the PatientDataService.xsd file. Click OK in the Type
Chooser dialog and OK again in the Create Variable dialog.

Using XPath in the Assign Activity with More Complex Variables
Go back to the Assign step and remove the existing copy operation. Then create a new copy
operation to assign a value to the new variable. Figure 5-7 shows these steps. On the left side,
choose XML Fragment in the Type drop-down. Add a fragment of XML that describes the body
temperature characteristic and enter the following snippet:

<client:physicalCharacteristic xmlns:client="http://stmatthews.hospital.com/
patient/PatientDataService">
 <client:dateOfMeasurement>2010-12-28</client:dateOfMeasurement>
 <client:whatWasMeasured>body temperature</client:whatWasMeasured>
 <client:measuredValue>38.5</client:measuredValue>
 <client:unitOfMeasurement>Degrees Celsius</client:unitOfMeasurement>
</client:physicalCharacteristic>

Note how we need to include the namespace in order to correctly identify the elements in this
fragment. Without the namespace, the measuredValue element, for example, could be something
entirely different from the measuredValue element as specified in the PatientDataService XSD
document.

On the right side, specify temperatureReading as the target variable.
Add a second copy operation that will set the /PatientDataServiceProcessResponse/name

element in the payload part of the outputVariable. The value is derived from the firstName and

FIGURE 5-6. Creating the BPEL variable temperatureReading based on the physicalCharacteristic
element

Chapter 5: First Steps with BPEL and the Database Adapter 129

lastName elements in the inputVariable. We will use the XPath concat function to join these
two together.

Select Expression on the “from” end of the Assign/Copy and click the icon for the (XPath)
Expression Builder. This Expression Builder supports constructing XPath expressions from literals,
(nodes in) BPEL variables, and XPath functions, including the Oracle BPEL XPath extensions.
Select the concat function from the functions list after first selecting the String Functions category.
Then click Insert Into Expression. Position the cursor inside the parentheses and select the
PatientDataServiceProcessRequest/firstName element in the payload part of the inputVariable.
Click the Insert button again.

The following function is added to the expression:

bpws:getVariableData(BPEL variable [,part name [,location path]])

This is one of the most important XPath extension functions you will use in BPEL processes.
Its task is to extract a value from a BPEL variable. When using this function, you specify the
variable from which you want to extract a value and, optionally, depending on the structure of
the variable, a part and (possibly) a location path to a specific node in that part.

In this case, we want to extract the firstName element under the
PatientDataServiceProcessRequest root in the payload part of the inputVariable by using
getVariableData(), like this:

bpws:getVariableData('inputVariable'
 ,'payload','/client:PatientDataServiceProcessRequest/client:firstName)

FIGURE 5-7. Copying an XML fragment to a BPEL variable using an Assign/Copy operation

130 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 131

Type ,’ ‘, in the expression editor to add a space between the first and last name. Then insert
the lastName element into the expression, as shown in Figure 5-8.

The complete XPath expression now reads as follows:

concat
(bpws:getVariableData('inputVariable'
 ,'payload','/client:PatientDataServiceProcessRequest/firstName')
,' '
,bpws:getVariableData('inputVariable'
 ,' payload','/client:PatientDataServiceProcessRequest/lastName')
)

On the right side, specify the name element in the PatientDataServiceProcessResponse in the
payload part of the outputVariable as the target for the Copy operation.

Finally, create a new append operation in the same Assign activity, which takes the
physicalCharacteristic element in the temperatureReading variable and appends it to the child
node list in the PatientDataServiceProcessResponse element in the outputVariable’s payload part
(see Figure 5-9).

NOTE
Through “append” we can inject XML nodes into variables that
already contain XML data; the Copy operation does not allow this.
Other fine-grained XML manipulation in Assign activities can be done
with operations such as insertBefore, insertAfter, remove, rename, and
copyList.

FIGURE 5-8. Using the XPath Expression Builder to construct the XPath expression for a Copy
operation in an Assign step

Chapter 5: First Steps with BPEL and the Database Adapter 131

Here it is in plain BPEL code:

<bpelx:append>
 <bpelx:from variable="temperatureReading"
 query="/client:physicalCharacteristic"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:PatientDataServiceProcessResponse"/>
</bpelx:append>

Deploying and Running the SOA Composite Application
When we deploy the modified composite application in the same way as described in Chapter 3
and in this chapter’s online complement and invoke it in the Test Web Service page, the answer
we receive for a request with the firstName and lastName set contains the
PatientDataServiceProcessResponse with a physicalCharacteristic (bodyTemperature) included.

We see the effect of the various operations in the Assign activity that created the
temperatureReading variable based on the XML snippet, appended the entire variable content to
the PatientDataServiceProcessResponse in the outputVariable, and copied the concatenation of the
firstName, a space separator, and the lastName from the inputVariable to the name element in the
outputVariable. This gives us some idea what XPath and the Append activity can accomplish in
manipulating BPEL variables—a combination we will often rely on.

However, it also shows the verbosity and complexity of using the Assign activity. Apparently
simple operations may not be all that simple through an Assign. When we want to initialize a
complex variable, it may be easier to use the Transform activity. This activity uses an XSLT
stylesheet—see Appendix B for some background on XSLT—to produce the XML content of the
target variable based on a source.

FIGURE 5-9. In the Assign activity, appending the contents of one BPEL variable to a node in
another variable

132 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 133

XPath in BPEL
In addition to the XPath functions concat and getVariableData, which we just used, we have a
huge library of functions at our disposal for constructing XPath expressions in BPEL and other
components of the SOA Suite. These include functions for string and date/time conversion and
manipulation (including making the current date and time available), XML manipulation
(including transformation with XSLT or XQuery), and parsing of a string value to a DOM node.
Other XPath functions support interaction with files, LDAP directories, and even a database
directly—although you may wonder whether it would be such a good idea in terms of decoupling
to directly access such external systems. If all that is not enough, you can extend the XPath
functionality of your SOA Suite instance with custom functions that you implement in Java.

Breaking the Contract
What you may have noticed in the preceding steps is that we changed the interface of the service
quite substantially: Both the input message and the output message are very different from the
previous incarnation of the service. Yet, we did not need to change the most explicit part of
the service contract—the WSDL document. All the changes were in the XSD that describes the
structures of all messages exchanged with the PatientDataService. By changing the XSD, we can
easily invalidate all current clients of the service—clearly not an action that will make us many
friends. It is important to realize that changing an XSD may break clients using our functions.

In such conditions, it is usually a better approach to publish a new version of the service and
leave the old version running during a certain grace period in which clients can move to the new
version. More on this in Chapter 17.

The PatientDataService as SCA Composite Application
The SOA Suite is about much more than just BPEL processes and the BPEL service engine. It
is about composite applications that expose services and possibly references—dependencies
on external services that are to be provided to the composite—and that can easily be
composed into more complex and functionally richer composites. In this section we may
have focused on the BPEL process, but what we have developed is in fact an SCA composite
application, albeit a simple one. The composite application contains a single service
component—the BPEL process—that exposes a single service.

From the outside, the service interface of this composite is the Web Service that is wired
to the BPEL component in the SCA composite. Clients do not interact directly with the BPEL
process—in fact, they have no knowledge about the implementation of the service offered
by the composite application, nor do they need that knowledge. It would not impact any
consumers of the application’s service if we exchange the BPEL component for a service
component that implements the same service in a different implementation language—
Mediator, Java, and so on—running in another service engine.

The content of the composite.xml file describes how the composite application
PatientDataService exposes a SOAP Web Service called “client” with a port called
PatientDataService_pt that is described by the PatientDataService portType in the
PatientDataService.wsdl. Every SOA composite has one, and only one, composite.xml
file describing the general structure of the composite. Chapter 14 explains SCA and the
structure of the composite.xml file in more detail. The chapter complement on the wiki
discusses the details of the PatientDataService composite application.

Chapter 5: First Steps with BPEL and the Database Adapter 133

Implementing PatientDataService as an Asynchronous Service
The BPEL process PatientDataService is implemented as a synchronous process. Given the
current functionality in the process, that is a logical choice. However, many processes will
be asynchronous, for example, because they include potentially long-running actions, calls
to asynchronous services, or human tasks. We will now briefly discuss what would change
in the BPEL process itself, the WSDL, and the SCA configuration if PatientDataService were
to go asynchronous.

In order to receive the response from an asynchronous service, the partner that calls the
service must provide a callback interface: a service implemented by the partner that the
BPEL process can send the response to. This is reflected in the partnerLinkType definition in
the WSDL document:

<plnk:partnerLinkType name="PatientDataService">
 <plnk:role name="PatientDataServiceProvider">
 <plnk:portType name="client:PatientDataService"/>
 </plnk:role>
 <plnk:role name="PatientDataServiceRequester">
 <plnk:portType name="client:PatientDataServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

In addition to the role PatientDataServiceProvider—which we already had in the
synchronous case—we now have the role PatientDataServiceRequester that refers to the
partner calling to the asynchronous service. This role is associated with a new portType in
the WSDL—an abstract functional interface that is also added now that the service has
become asynchronous. This portType describes the interface to be provided by the partner
in order to receive the service response:

<portType name="PatientDataServiceCallback">
 <operation name="onResult">
 <input message="client:PatientDataServiceResponseMessage"/>
 </operation>
</portType>

Note that there has also been a change in the original portType PatientDataService.
Before in the synchronous situation, it had both an input and an output; in the
asynchronous case, it no longer has an output. The output is now returned via the callback
to the PatientDataServiceCallback portType.

For the BPEL process, not much changes. Synchronously, the process concludes with an
“online” Reply to the partnerLink that started the “conversation” with the initial request
picked up by the Receive step. In an asynchronous process, we cannot reply because the
partner is no longer online. Instead, we have to make a call to the callback service that the
partner has made available. Making a call to a partnerLink—when it is not a synchronous
Reply—is done through the Invoke activity, just like any other normal service call:

<invoke name="callbackClient" partnerLink="PatientDataService"
 portType="client:PatientDataServiceCallback"
 operation="onResult" inputVariable="outputVariable"/>

(Continued)

134 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 135

Accessing the Database from a BPEL Process
Even though we have implemented a perfectly valid BPEL process, it will not necessarily make
anybody happy. At St. Matthews, the PatientDataService is supposed to facilitate people such as
Margaret by making real patient data available—data that is currently stored somewhere deep
down in the database Frank’s team controls. In order for this BPEL process to implement the
service for real, it will need access to that database. In this section, we will first see how we can
use the database adapter to configure a service that accesses Frank’s database. Then we will have
the BPEL process call this database service to retrieve real patient data.

The database adapter in SOA Suite 11g helps to expose data and operations from relational
databases in a service-compliant fashion. The database adapter connects to any relational
database using JDBC. Other adapters are available for nonrelational databases and mainframe
systems. The database adapter uses Oracle TopLink 11g for database interactions, itself based on
the Oracle-sponsored open-source project EclipseLink, an advanced Java Persistence framework
for relational-to-object mapping.

The database adapter allows us to declaratively configure services to interact with a database
for virtually any operation you may need: data manipulation (Insert, Update, Delete, Merge), data
retrieval (Select, Query by Example, Poll for new or changed records), and stored procedure calls
with simple and complex parameters (possibly based on user-defined database types). These
services are published as Web Services with their own WSDL and XSD files, and are treated by
the BPEL process like any other external service or partner link that is invoked.

We will create two database adapter services for use in the PatientDataService process. One
is to select the patient ID from the PATIENTS table, based on the first name and last name in the
request for a situation where the patient ID is not known. The second service will call the Patient_
Data_Service API—a PL/SQL package created by Frank and his team—to retrieve different types
of patient records. We will invoke a function in this package that takes the patient identifier as
input and returns a complex database object type with information on the patient, his physical
characteristics, and hospital visits.

A Simple Select Service to Retrieve the Patient Identifier
Let’s start our introduction of the database adapter with a simple select against a single table.
(Obviously in the real world, Frank would never allow this direct prying into his database. We
only want to show how a Select service is created in the SOA Suite. To that same effect, we
naively pretend that patients are uniquely identified by the combination of their first name and

The Invoke step specifies the partnerLink—which is the same PatientDataService that
we used for the Reply because we are still conducting communications with the same
partner in the same context as before—and therefore we use the same Partner Link type.
Only this time the portType is different from the Reply in the synchronous case: We call the
operation onResult on the callback portType PatientDataServiceCallback, published by the
partner. Note that it is up to the BPEL and SCA run time to determine where the physical
location (endpoint) is for that callback service. Usually they leverage the WS-Addressing
information found in the service request as sent by the partner.

Chapter 5: First Steps with BPEL and the Database Adapter 135

last name.) Suppose the database with all the patient data we are interested in has a table called
PATIENTS. This table has, among many others, the columns ID, FIRST_NAME, and LAST_NAME
(the wiki contains the SQL script to create this table). We need a service to find us the value of
the ID of the patient for whom we have the first name and last name.

In the composite editor for PatientDataService, we drag a Database Service Adapter from the
SOA Component Palette and drop it in the External References swimlane, as shown in Figure 5-10.

The Database Adapter Configuration Wizard appears so we can configure this service (see
Figure 5-11). Enter RetrievePatientIdentifier as the service name. On the next page, select the
database connection to use in the development environment. When we deploy the service, we will
configure an instance resource adapter connection factory and a data source on the application
server to use instead of these hard-coded connection details. By providing a value for the location
field, we determine the JNDI name of the database adapter connection factory on the application
server this service will hook up with: eis/DB/FranksPatientDatabase.

NOTE
We assume here a database connection called PatientsDatabase has
already been created to Frank’s database schema with the PATIENTS
table and the API. See Appendix C for details on creating a database
connection in JDeveloper, as well as configuring the database
resource adapter, a connection factory, and the associated data source
on the WebLogic Server.

FIGURE 5-10. Adding a Database Adapter Service in the composite application

136 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 137

Next, we specify the database operation this service will provide. We need to perform a
query against a table, so we choose the Select operation (see Figure 5-12). We could have picked
Query by Example; however, that operation is used when a varying set of search criteria is used.
Because we know that the service we want to add right now will always query by first name and
last name, we do not want to bear the additional performance penalty for that flexibility.

FIGURE 5-11. Specifying the connection details for the Database Adapter Service

FIGURE 5-12. Selecting the operation type in the Database Adapter Service Configuration Wizard

Chapter 5: First Steps with BPEL and the Database Adapter 137

In the next step—Select Table—we select the PATIENTS table. We can then specify
Relationships—for the case when we have multiple tables we want to join together, or a table
with self-referencing relationships. We ignore this step for now. In the Attribute Filtering step we
can deselect the attributes we do not need queried from the database. By excluding information
we do not need, we lower the load on both the database, network, and the SOA Suite run time.
In this case, we are only interested in the ID, so we deselect the other attributes, except for the
first_name and last_name attributes that are needed in the where clause for this query.

On the Define Selection Criteria page, shown in Figure 5-13, we create two parameters:
firstName and lastName. These parameters will determine the structure of the request message
type that is the input for this service.

Using the Query Expression Builder we create the where clause for the query against the
PATIENTS table:

WHERE ((UPPER(FIRST_NAME) = UPPER(#firstName))
AND (UPPER(LAST_NAME) = UPPER(#lastName)))

Note that the parameters are identified using the # character in the where clause.

FIGURE 5-13. The TopLink Expression Builder for specifying the query selection criteria

138 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 139

We can skip the Advanced Options page and leave the defaults for now. On the last page,
click the Finish button. The Database Adapter Service is now created. This means that a number
of artifacts is generated by JDeveloper:

 ■ RetrievePatientIdentifier.wsdl Contains the functional interface for the Database
Adapter Service with a portType that includes a RetrievePatientIdentifierSelect operation,
message definitions, and an import of the XSD.

 RetrievePatientIdentifier_table.xsd ■ Contains the element definitions for the request
and response messages. Note that we will have to deal with these structures in the BPEL
process that invokes this service.

 RetrievePatientIdentifier-or-mappings.xml and RetrievePatientIdentifier-ox-mappings. ■
xml The TopLink mapping files that specify how relational tables are mapped to Java
objects and those, in turn, to XML types. The records read from the database tables
have to be turned into XML data structures that the service consumers such as the BPEL
process expect, according to the XSD. TopLink is used to query the database; TopLink
maps relational data to Java objects using the mapping instructions in the or-mappings.
xml file. These Java objects are then converted to XML structures following the Object-
to-XML (ox) mapping definition specified in the ox-mappings.xml file.

In addition to these new files, the composite.xml file is updated: A reference element is
added—a service that can be injected (wired) as a reference into other components.

Wiring the Database Adapter Service to the BPEL Component
In the composite editor, we can now wire this new RetrievePatientIdentifier reference to the BPEL
process to make it available as a partnerLink that can be invoked. Drag a wire from the reference
to the component, as shown in Figure 5-14.

FIGURE 5-14. Wiring the RetrievePatientIdentifier reference to the PatientDataService
component

Chapter 5: First Steps with BPEL and the Database Adapter 139

That in turn makes the RetrievePatientIdentifier partnerLink available in the BPEL process:

 <partnerLink name="RetrievePatientIdentifier"
 partnerRole="RetrievePatientIdentifier_role"
 partnerLinkType="ns1:RetrievePatientIdentifier_plt"/>

The partnerLinkType in this case is specified in the RetrievePatientIdentifier.wsdl:

 <plt:partnerLinkType name="RetrievePatientIdentifier_plt">
 <plt:role name="RetrievePatientIdentifier_role">
 <plt:portType name="tns:RetrievePatientIdentifier_ptt"/>
 </plt:role>
 </plt:partnerLinkType>

In order to call the RetrievePatientIdentifier service, we only need to add an Invoke activity in
the BPEL process that accesses the RetrievePatientIdentifier partnerLink.

Extending the PatientDataService BPEL Process Using the
RetrievePatientIdentifier Service
We are now all set to leverage this new RetrievePatientIdentifier service in the BPEL
process. However, the process does not always need to call the service: Sometimes the
PatientDataServiceProcessRequest will already contain the patient identifier. Only when it
does not should we invoke RetrievePatientIdentifier. Time to add a little process logic! That
gives us a good opportunity to introduce another important BPEL activity: Switch.

The Switch activity—not surprisingly somewhat akin to the Java switch statement and also
similar to the PL/SQL case statement—is used for making choices in the flow of the process.
Which of the paths should be taken? The switch contains one or (usually) more mutually
exclusive branches, only one of which can be executed. Each branch (except the otherwise
branch) has a case condition associated with it, and only when the Boolean XPath expression in
the condition evaluates to true is the branch executed. Only one branch can be executed—the
first branch in the switch whose condition is satisfied.

In our case, we want to invoke the RetrievePatientIdentifier service when the inputVariable
does not contain a patient identifier. To achieve that, we add a Switch activity and set the
condition for the first branch to test for the presence of the patient identifier:

count(ora:getNodes
 ('inputVariable'
 ,'payload'
 ,'/client:PatientDataServiceProcessRequest/patientId'
)
)=0
or
bpws:getVariableData('inputVariable','payload'
 ,'/client:PatientDataServiceProcessRequest/patientId') = ''

Add an Invoke activity in the first branch (the branch that is executed when the request
does not contain the patient identifier). We connect this Invoke with the RetrievePatient
Identifier partnerLink. In the Invoke dialog that appears, we can specify the name for the

140 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 141

Invoke—Invoke_RetrievePatientIdentifier—and the variables to use for input and output. By
clicking the green plus icon, we have JDeveloper conveniently create new variables of the
correct message types as specified in the RetrievePatientIdentifier WSDL. Choose local rather
than global as the scope for these variables (see Figure 5-15).

The configuration of the input variables and the call to the partner link have now been taken
care of. What to do with the outcome of the call? JDeveloper has created the BPEL variable
Invoke_RetrievePatientIdentifier_RetrievePatientIdentifierSelect_OutputVariable based on the
PatientsCollection_msg message type defined in the RetrievePatientIdentifier.wsdl. This variable is
populated during the Invoke activity with the query results. However, we want to have the value
of the patient identifier available in a global variable throughout the BPEL process—one with
a proper name at that. Therefore, create a new BPEL variable called patientIdentifier of type
xsd:integer. Then add another Assign activity, immediately following the Invoke activity, to copy
the value of the patient identifier from this generated variable to the global BPEL process variable
patientIdentifier. Remember, the condition for this branch checked that the patientId element was
initially empty. Figure 5-16 demonstrates how the Assign activity is added and how it is configured
with a single copy operation.

The PatientsCollection element in the generated XSD file RetrievePatientIdentifier_table.xsd
on which the PatientsCollection_msg is based is defined as a collection of one or more Patients
elements. We assume for simplicity’s sake that the query will either return a single record or none
at all, so the collection will never have more than one element. In the XPath expression we use to
extract the value of the id element from the Patients element, we do not need to include the array
index because we will get the first element in the array even if we leave it out. However, I do
consider it good practice to explicitly include the index in the array:

/ns5:PatientsCollection/ns5:Patients[1]/ns5:id

FIGURE 5-15. Adding an Invoke activity to the first branch of the Switch

Chapter 5: First Steps with BPEL and the Database Adapter 141

The square brackets with the index have to be typed in manually in the Copy operation editor
because there is no visual declarative support for it.

NOTE
An even better practice would be to explicitly communicate the
number of elements required (consumer) or returned (provider) in the
service interface. Alternatively, the BPEL process should explicitly
check for the number of elements returned before starting to access
them—because now we may run into exceptions for accessing
nonexisting nodes.

In the “otherwise” branch of the Switch activity, we need to include an Assign activity that
sets the patientIdentifier variable based on the value in the inputVariable. Add an Assign activity
to the otherwise branch. Specify a Copy operation that takes the value from the patientId element
in the PatientDataServiceProcessRequest node in the inputVariable and copies it to the variable
patientIdentifier.

At this point in the BPEL process, we know we have a patient identifier—either from the
RetrievePatientIdentifier service or received in the original request message. It is time to call upon
the database to make the patient data available to us. We will first need to create another Database
Adapter Service and then invoke it from the BPEL process.

FIGURE 5-16. Copying the patient identifier returned from the service call

142 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 143

Creating the RetrievePatientRecord Database Service
Several years ago, Frank’s team started work on a PL/SQL-based API for making patient records
available. Before that time, other departments came into the database through database links,
ODBC, and JDBC connections from all over the place, and performed queries directly against the
tables. This became an undesirable situation, for several reasons. For example, data-authorization
rules were hard to enforce, but even more importantly, changes to the table layout were virtually
impossible because of all the direct dependencies.

The RetrievePatientRecord database adapter service Frank is about to publish will be based
on this PL/SQL API. The function GET_PATIENT_RECORD in the package PATIENT_DATA_
SERVICES takes patient id (a number) as input and returns an object type: PATIENT_T. This is a
complex type that includes a table of PHYSICALCHARACTERISTIC objects, based on the
PHYSICALCHARACTERISTIC_T type. The database adapter can work quite well with such types;
in fact, it is probably the easiest way of returning nested data structures with data from multiple
records and several tables in a single roundtrip.

To create the Database Adapter Service, we go to the composite editor and drag a Database
Adapter component from the palette to the External References swimlane. Then we specify the
name—RetrievePatientRecord—and set the database connection and the JNDI location of the
Database Adapter instance in the same way as for the previous Database Adapter Service.

Then, on the next page, we select the Call a Stored Procedure or Function operation type.
Click Next. In the next step, we select the get_patient_record procedure (see Figure 5-17).
Continue to the end of the wizard—accepting all the defaults—and then click Finish.

At this point, JDeveloper generates more or less the same bunch of files as before: WSDL,
XSD, and JCA configuration. The XSD file contains the representation of the PATIENT_T type.

In the composite editor, we need to wire the new RetrievePatientRecord service to the
PatientDataService component, as shown in Figure 5-18.

Just like we have seen before, the wire adds this partnerLink in the BPEL process that now
allows us to add an Invoke step in the BPEL process to the RetrievePatientRecord service. Create
an Invoke activity immediately after the Switch activity. Have the variables generated for this
Invoke, just like before. Add an Assign step just before the Invoke activity to copy the value of the
variable patientIdentifier to the input variable used in the Invoke step.

FIGURE 5-17. Selecting the get_patient_record function in the Patient_Data_Service package

Chapter 5: First Steps with BPEL and the Database Adapter 143

Invoking the RetrievePatientRecord service returns a fairly complex XML document. The data
from this document should be copied into the outputVariable that populates the response message.
We can do so using the Assign activity. However, that would require a substantial number of
operations and a lot of work to put together. As an alternative to such a complex Assign step, we
can use a Transform activity that leverages XSLT to map one XML document to another, processing
many nodes at once rather than assigning them individually.

Drag the Transform activity to the composite editor and drop it after the Invoke of the
RetrievePatientRecord partnerLink, as shown in Figure 5-19. Then enter RetrievePatientData
RecordOutput2OutputVariable.xsl as the name for the Mapper file. Select the OutputParameters
part of the Invoke_RetrievePatientRecord_RetrievePatientRecord_OutputVariable as the source for
the transformation. Set the payload part of the outputVariable as the target. Click the Apply button
to save the changes and bring up the Mapper file editor.

The Mapper editor provides a visual way of editing an XSLT stylesheet that transforms one
XML document into another. See Appendix B for some background on XSLT, an XML language
for transformations of XML.

On the left (source) side, you see the structure of the patient data record that is returned by the
RetrievePatientDataRecord service. On the right is the XSD structure of the outputVariable. The
mapping (and therefore the XSLT transformation) is created by connecting nodes from the source
with the corresponding nodes in the target. Connect the nodes for initials, gender, and birth date.

The target has a name node, whereas the source offers a first name and a last name node. We
will use a function to combine the two input nodes to a single destination node, as illustrated in
Figure 5-20. Drag the concat function from the String Functions section on the Component Palette to
the center section of the mapping editor. Connect its output to the name node in the target. Connect
both the first name and last name node in the source to the input of the concat function. Double-
click the concat function to edit its parameters. Click the Add button and add a parameter with the
static value ‘ ‘ (a space between single quotation marks). Click OK to close the concat editor.

FIGURE 5-18. External reference RetrievePatientRecord wired to the PatientDataService
component

144 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 145

FIGURE 5-19. Adding a Transform activity to the BPEL process to populate the outputVariable
with the patient data record

FIGURE 5-20. Mapping the PatientDataRecord to the outputVariable

Chapter 5: First Steps with BPEL and the Database Adapter 145

In order to properly transform all physical characteristic items, we have to drag the for-each
construct from the XSLT Constructs section in the Component Palette to the physicalCharacteristic
node in the target. Next, we connect the db:PHYSICAL_CHARACTERISTIC_ITEM node in the
source to the for-each node that was just added to the target. Finally, we connect the child nodes
under db:PHYSICAL_CHARACTERISTIC_ITEM to the corresponding nodes in the target tree under
client:physicalCharacteristic. These steps are illustrated in Figure 5-21.

This completes the mapping as well as the BPEL process (see Figure 5-22), and even the entire
composite application. We are now ready to see it in action.

NOTE
If you still have the Assign activity that we created in the previous
section to assign some dummy data to the outputVariable, you should
now delete that activity from the BPEL process.

Deploying and Running the Composite Application
Deploy the composite application to the SOA Suite run-time infrastructure in the same way as in
the first section of this chapter. Now invoke the PatientDataService from the SOA Console’s Test
Web Service page. It may take a little bit longer than before, because we now have a process that
does some real work: It communicates with the database—once or twice—and has some XPath
querying and XSLT manipulation to perform.

As Figure 5-23 shows, it is interesting to take a look at the information about the composite
instance we can learn from the SOA console.

FIGURE 5-21. Configuring the mapping of the collection of physical characteristic items

146 Oracle SOA Suite 11g Handbook Chapter 5: First Steps with BPEL and the Database Adapter 147

We can get a visual presentation of the flow in this process instance, very similar to the BPEL
process design in JDeveloper; however, this one is the visualization of a real process instance, not
just the design or mold the instances are created from (see Figure 5-24). By clicking the various
steps in the instance, we can learn about the variables involved at each step. It is very much like
debugging a program—after it has already run. Chapter 16 delves deeper into the console and the
trace information it can provide us with.

For more background on the database adapter, see Chapter 9 of the Oracle Fusion Middleware
User’s Guide for Technology Adapters in the online FMW documentation library.

FIGURE 5-22. The complete PatientDataService BPEL process

FIGURE 5-23. Fusion Middleware Control—SOA console’s overview of the flow of messages
resulting from a single service call

Chapter 5: First Steps with BPEL and the Database Adapter 147

FIGURE 5-24. Flow trace in the SOA console of a BPEL process instance

148 Oracle SOA Suite 11g Handbook

Summary
This chapter introduced one of the important implementation languages for service composition
and orchestration: BPEL, the Business Process Execution Language. As the name suggests, BPEL
can be used for the implementation of business process flow logic—we will see more of that in
the next chapter. BPEL’s ability to coordinate calls to external services, process and manipulate
the XML messages and variables flowing in and out of these services, and deal with asynchronous
services and synchronous services alike make it also very suitable for the implementation of
composite services. An example is the PatientDataService we have discussed in this chapter.

External services such as the Database Adapter Services into Frank’s patient database that we
created in this chapter can easily be wired to BPEL processes using the SCA composite definition.
The database adapter is a powerful instrument to make all kinds of operations into relational
databases available in our SOA infrastructure as normal Web Services. Chapter 7 will illustrate
the use of the database adapter in conjunction with the Mediator component to further decouple
BPEL processes and other database services consumers from the database. Besides the database
adapter, Oracle SOA Suite ships with a variety of other adapters, such as the EJB/RMI adapter,
File adapter, and AQ adapter.

In this chapter we used the XML, XSD, and WSDL foundation that was laid down in the
previous chapter to build real services. All services in this chapter are described through the
WSDL document and all messages involved by the accompanying XSD files. The XPath language
is used to both retrieve and manipulate XML nodes, and is especially important in Assign
activities. We will see more of XPath in our discussion of XML transformations in Chapter 7.

So far, the flow logic of our BPEL processes has been limited. The activities discussed do not
take us beyond the most elementary programming steps: Receive and Reply to start and end a
process instance’s execution, Assign to manipulate variables, Invoke to call out to external services,
and Switch to choose between execution branches. The next chapter will add some interesting
programming constructs, such as loops, parallel flows, and basic event handling. Chapter 10 will
add the human workflow, notifications, and exception handling.

We concluded the chapter with a brief discussion of the deployment of composite applications
in a stand-alone SOA environment. Deployment is only complete when the required resources
(such as data sources for database connections) have been made available and run-time parameters
(such as the endpoints for external services) have been configured appropriately. Part III—and
especially Chapter 17—will discuss deployment and other administration aspects.

Chapter
6

Process-Oriented BPEL

149

150 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 151

he previous chapter introduced BPEL as one of the prominent implementation
languages for service components in the SOA Suite. BPEL is good for creating
components that call upon multiple Web Services, that may be asynchronous in
nature, and whose combined results are used to achieve some business purpose.
A BPEL process can resemble both a short-running composite service that

combines several automated elementary services as well as a business process, especially when
it is configured to have parallel activities, has a state that runs for longer than a subsecond,
and also involves notifications to and tasks performed by human participants. This chapter
introduces some of the more advanced BPEL concepts—especially the parallel activities, calling
asynchronous services, and handling events and exceptions. Chapter 10 will go into the
integration with human tasks, and Chapter 11 discusses workflows and links BPEL to BPMN as
another service component language that allows us to model and program business processes
in service components.

Note that three terms used more or less interchangeably in this chapter are associated with
BPEL: process, service, and component. In an attempt to make things a little clearer, you can
think of a BPEL process as a unit of compilation and encapsulation. As developers, we create or
program BPEL processes. These processes expose a Web Service interface through which they
can be instantiated. A BPEL process can be one of the (service) components in a composite
application.

This chapter works toward the implementation of the parts of the patient appointment process
(see Figure 6-1). Chapter 2 introduced this process at St. Matthews.

Each step in this business process can be further drilled down into in order to describe the actual
operational steps and their implementation. Several BPEL processes with many BPEL activities,
including a number of service calls, are required to put the Appointment process into motion. In this
chapter, we will take a closer look at a number of additional pieces of BPEL functionality that are
valuable in further specifying and implementing the parts of the Appointment process.

T

FIGURE 6-1. The patient appointment process, where patients miss, keep, or cancel (and
perhaps reschedule) appointments

Register
patient

Schedule
appointment

Prepare
instruction

Notify
patient

Keep

Cancel

Cancel &
reschedule

Chapter 6: Process-Oriented BPEL 151

We will see how we can structure a BPEL process—similar to how we can structure a Java
method into multiple methods and even multiple classes, or split a single PL/SQL procedure into
multiple program units and packages. We also discuss the concept of parallel (strings of) activities
in BPEL processes through the Flow activity. An important concept, introduced in the previous
chapter, is asynchronous services. We will see how BPEL can deal with calling asynchronous
services—and receiving their responses. And we have our BPEL process publish an asynchronous
service interface itself.

In this chapter we will see how a single BPEL process instance can receive multiple messages
during its lifetime. The initial request typically initiates the instance. However, as the BPEL
process instance continues running—potentially for hours, days, or even months—it not only can
call out to many services, it can also be called by partners that want to feed additional data into
the process or request information from the running instance. Correlation is the mechanism used
for routing such calls to the correct process instance. This chapter describes the correlation
mechanism and demonstrates what you need to do in order to make use of it. We will discuss this
notion of receiving additional requests in a running instance to allow inquiries into the state of
the appointment by external parties.

Another facet of BPEL is event handling: capturing events published external to the BPEL
process instance and processing them in a meaningful way. Note that events can arrive and be
handled parallel to normal process execution. We will deal with “cancel appointment” events
that need to reach the correct BPEL process instance to properly terminate it after releasing the
resources it has reserved. BPEL components can receive events through incoming WebService
calls—discussed in this chapter—and also in a more decoupled fashion from the Event Delivery
Network (EDN) in the SOA Suite. This EDN is discussed in Chapter 9. BPEL uses the Pick
activity—to explicitly wait at some point in line, in the normal process execution for an incoming
message to arrive—and eventHandlers that run parallel to normal processing, to capture messages
that arrive at random moments.

NOTE
The online complement to this chapter contains more fine-grained
step-by-step instructions, additional screenshots, and detailed code
examples for the steps discussed in this chapter; this will be helpful
if you want to work through the examples yourself, which I strongly
recommend because learning through your fingers is probably the
best way of thoroughly absorbing the material in this and the coming
chapters.

The Start of the Appointment Process
The appointment process is started when the patient’s referral to the hospital is received—directly
entered into the system by the general practitioner or more usually in the form of a handwritten
document. It contains the patient’s identification, potentially some insurance plan details, a
priority code that indicates the urgency, a summary of the doctor’s diagnosis of the patient’s
condition, and the type of appointment that is required: which type of medical specialist, which
lab tests, and a consult with an extended duration. Based on the referral, a new instance of the
Appointment application is started (see Figure 6-2).

152 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 153

The first step—register patient data—consists of verifying whether the patient is already
known at St. Matthews. If the patient is already known, his or her record (in Frank’s patients
database) is updated; otherwise, a new patient record is created.

In a later iteration of this process design, we may determine that if the patient is already
known, there can be circumstances that prevent the creation of an appointment, such as serious
debt owed to the hospital by the patient, past bad behavior by the patient, or litigation by the
patient versus the hospital.

When the patient is registered and the required information is available, we can send the
synchronous reply to whoever invoked the Appointment Service. This reply acts as the confirmation

FIGURE 6-2. The first part of the appointment as implemented as a BPEL process (note the
scopes used for RegisterPatientData and ScheduleNotifyAndWait).

Chapter 6: Process-Oriented BPEL 153

that the appointment will be scheduled, and it also includes the appointmentIdentifier. This
identifier can later on be used to retrieve additional information or cancel the appointment.

Scope and Sequence
Figure 6-2 illustrates the use of scopes in BPEL process definitions. A scope is a named container
inside a BPEL process that can be used to structure the process, similar to the way methods are
used in Java classes or procedures are used in PL/SQL package bodies.

At the level of a scope, we can define local variables that are only used and are visible within
the scope itself. We will see later in this chapter how we can create a compensation handler and a
termination handler in the context of a scope. These handlers are executed either to undo all
changes made in a scope that has successfully been completed—when, for example, a subsequent
phase in the process failed and all previous steps need to be rolled back—or to handle the forced
termination of an executing scope.

A scope is created in the BPEL editor by dragging a Scope activity from the Component
Palette into the BPEL process. Existing activities or new ones can be dragged inside the scope and
dropped in it to become part of the scope. Conversely, activities can be moved out of a scope, for
example, to another scope. Variables can be defined at the scope level in the same way as at the
process level, as we did in the previous chapter.

We have seen in the previous chapter how we use specially typed input and output variables
for calls to partnerLinks. These variables are usually only meaningful in the context of the Invoke
activity that uses them and in the Assign steps just before and after the invoke. An Invoke along
with these Assign steps and the required variables are suitable candidates for a scope.

Despite its similarity to Java methods or PL/SQL procedures, scopes cannot be called directly.
A scope is—or rather the activities inside a scope are—executed when the flow of the BPEL
process hits the scope. It makes no difference for the execution whether the activities are inside a
scope or not. Only for accessing local, scope-level elements such as variables or partnerLinks, or
for handling exceptions, does it matter whether or not an activity is inside a scope.

Scopes are quite useful when developing large BPEL processes in a structured fashion. Scopes
can be nested to any level. They allow clustering of related activities with meaningful labels,
making the BPEL process diagram much easier to understand. You can open or collapse scopes in
the visual BPEL editor, which allows you to focus on details where you need to and stick to a
high-level overview where that is more appropriate. Scopes also help with a top-down design of
the BPEL process, as we see in Figure 6-2. At this point, none of the scopes have been defined in
detail, yet we have the abstract outline of the process in place. Finally, when multiple developers
are working on a BPEL process, allocation of development tasks and merging of changes is
typically done at the scope level.

Another structured BPEL activity is the Sequence activity. A sequence contains one or
(usually) multiple BPEL activities that are executed sequentially. A sequence can be named and it
can be expanded or collapsed in the visual editor, just like a scope. Unlike a scope, a sequence
does not have its own variables or handlers—all it has are the sequentially executed activities.
Sequences are frequently used for grouping activities inside containers, such as Scope and Flow,
that do not allow multiple direct child activities.

When the scope RegisterPatientData is done—which includes a call to the PatientDataService—
and all data about the patient is available, the process will send the synchronous response to the
client by returning the processIdentifierId. The complement to this chapter shows how the scope is
to be implemented to call the PatientDataService service that we have developed in the previous
chapter.

154 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 155

The reply tells the client that the patient’s referral is now accepted by the appointment
process for further processing. The value for the processIdentifierId is the client’s key to further
interaction with the process—for example, a request for the appointment details or an indication
of the appointment’s cancellation. The value of this identifier can be derived from some unique
number generator. Options to derive this value include a database sequence or one of the XPath
functions generateGUID(), getInstanceId(), or getConversationId().

At any time—from the synchronous reply until the completion of the process instance—the
appointment details can be requested. Such a request is responded to in the HandleGetAppointment
DetailsRequest scope and is processed parallel to the ScheduleNotifyAndWait scope by an
onMessage event handler. You can see this event handler on the right side of Figure 6-3 (the
envelope icon attached to the entire ScheduleNotifyAndWait scope). The event handler is discussed
later in this chapter.

Flow for Parallel Execution of BPEL Activities
The BPEL process will continue after the reply has been sent to the client. At this point, two
actions are performed in parallel. Based on the type of appointment and some patient details, the
preparation instructions for the patient are compiled. At the same time, the AppointmentScheduler
is invoked with some key details on the patient, the type of appointment, the desired doctor
(if the patient is already undergoing treatment), and the scheduling preferences.

FIGURE 6-3. Using a flow to process PrepareInstructions and ScheduleAppointment in parallel

Chapter 6: Process-Oriented BPEL 155

The original process design—as discussed in Chapter 2—does not have this parallel step
because it was not considered necessary. However, with the two steps processed in parallel, the
patient receives her response faster—sometimes considerably faster, depending primarily on the
response time from the Scheduler service. Furthermore, the hospital wants to prepare for the
situation where the instructions may need some human intervention in special cases before being
sent to the patient. Even though that is currently not part of the process, the very real possibility of
that coming to pass is another reason for introducing the parallel steps in the process.

Parallel activities are realized in BPEL processes through the Flow activity. A Flow contains
two or more Sequence activities that are executed concurrently (see Figure 6-3). This means, for
example, that in two branches in the Flow activity an asynchronous call to an external service can
be made with both branches waiting for a reply at the same time. Obviously this is more efficient
than having to wait for the first response to come in before the second request can be sent out.
With a flow, the time it takes for the slowest service to respond determines the processing time of
the overall flow, not the times of all calls added together.

The current thinking at St. Matthews is that the instructions for the patient with regard to the
preparation for the appointment do not need to include the details of the appointment itself—such
as the date and time and the name of the doctor. The preparation can be created from the
information available from the referral and the RegisterPatientData step. The service that will
prepare the instruction does not have to wait for the ScheduleAppointment service—or the other
way round. Therefore, these two service calls are performed in parallel, using the Flow activity.
When the instructions should be more tailor-made—for example, instead of stating “Do not eat
anything solid 12 hours prior to the appointment,” the instructions might be “Do not eat anything
solid from 8.30 p.m. on August 30th until the appointment”—the PrepareInstructions step would
have to wait for the ScheduleAppointment step to complete and we would not use a Flow activity.

When both the instructions and the appointment schedule itself are in, the flow completes
and the next step—NotifyPatient—is executed. This will inform the patient of the scheduled
appointment by whatever means apply to the patient (e-mail, mail, telephone, and so on).

BPEL in SOA Suite 11g comes with various activities for sending notifications: Email, SMS,
VoiceMail, and IM (instant messaging or chat). These activities are Oracle-specific extensions to
BPEL—in the BPEL source code these are recognizable from their “bpelx”: namespace identifier.
SOA Suite 11g leverages the User Messaging Service (UMS) that was installed into the SOA
domain. UMS is configured through the Enterprise Manager Fusion Middleware Control to work
with the e-mail server, chat server, and SMS provider of your choice. Appendix C describes the
configuration of UMS for e-mail and chat; the complementary chapter provides instructions for
adding a call to the notification service to the process to send word of the appointment to the GP.

In practice you may want to (also) send notifications through a printed letter—a real one, on
paper—or have a telephone call conducted by a human staff member. In the latter case, this
would be done via a human workflow—more details in Chapter 10.

After sending the notification, the PatientAppointmentService process instance can sit back
and relax: Unless the appointment is cancelled, the process instance will wait for the patient to
arrive, shortly prior to the appointed time. For a no-show event, the patient does not arrive at all
for the appointment, as shown in Figure 6-4. We will consider the appointment a “no show” if
the appointment is four hours overdue and neither a cancellation nor a patient arrival has been
fed into the process instance.

156 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 157

NOTE
It may be better design to not have our PatientAppointmentService
process wait for days or weeks for the arrival of the patient, but
instead create a separate SOA application that handles the process
that starts with either the patient arrival or a request for cancellation
or rescheduling. Resource usage and administrative flexibility are
among the design considerations. We will leave that very meaningful
discussion for another time.

If the patient wants to reschedule the appointment, she can call or e-mail the hospital to
change the appointment. This is treated as a “cancellation with reschedule” request. If an
appointment is cancelled—by the patient, the doctor, the insurer, or the hospital staff—the
appointment should be removed from the doctor’s schedule. In other words, the effect caused by
scheduling the appointment through the call to the scheduler service needs to be undone. In
BPEL terminology, this is called “compensating,” and BPEL has dedicated compensation handlers
that can be invoked to undo the effect of scopes that were earlier completed in a BPEL process
instance. These are discussed later in this chapter. Note that compensation is not achieved
automatically. Developers need to define and implement the compensation using the various
BPEL activities available.

FIGURE 6-4. After notifying the patient of the appointment, the process waits for one of three
events using a Pick activity.

Chapter 6: Process-Oriented BPEL 157

Invoking a Synchronous Web
Service: Prepare Instructions
The first of the two parallel activities in the ScheduleNotifyAndWait scope (refer to Figure 6-2) is
a call to the ConsultPreparationInstruction service.

Depending on the type of appointment, scans that could be performed, and the lab tests that
may be run, a patient may need to prepare in a special way for an appointment. He or she may
be required to refrain from eating during the 24-hour period preceding the appointment. Or the
patient may need to bring a stool or urine sample. The patient could also be asked to fill out a
questionnaire or bring specific documents (for example, with regard to inoculations or findings in
external examinations). In the past a lot of time has been wasted—and a lot of aggravation
caused—by not providing patients with the correct instructions for this preparation. Mary and her
staff have been very careful in explicitly defining this step in the Appointment process.

The instructions are prepared based on the referral that starts the process and some additional
patient details. The fairly simple ConsultPreparationInstruction Web Service can be used for
gathering these instructions. It is invoked with a request message that specifies the type of
appointment, several patient details (when available, such as age, [most recent measurement of]
weight, and gender), and the urgency label. The service returns a response with the instructions
for the patient, retrieved from St. Matthews’ content management system, which also provides
documents for “St. Matthews-online.” Some images may be included as Base64-encoded content.

The call to this (or any) Web Service is added to the BPEL process through a few simple steps
(assuming we have the WSDL for the service).

 1. Open the BPEL process editor.

 2. Drag a WebService Adapter to the external reference lane in the BPEL editor.
In the pop-up, configure the WebService binding by setting the name to
ConsultPreparationInstructionService and browsing for the WSDL file (from the file
system, the deployed Web Service on the SOA Suite, or the WSDL resource in the MDS
Repository—more on MDS in Chapter 18).

 3. Open the PrepareInstructions scope in the Flow activity inside ScheduleNotifyAndWait.

 4. Drag an Invoke activity from the palette to the PrepareInstructions scope. Link this activity
to the ConsultPreparationInstructionService partnerLink.

 5. Configure the Invoke activity in the dialog that appears when you create the link to the
reference. Have local variables created by clicking the green plus icon for both variables
and checking the Local Variable radio button.

 6. Add an Assign activity prior to the Invoke activity. Configure it to set the local variable
used as input for the call to the ConsultPreparationInstructionService.

 7. Add an Assign activity following the Invoke activity. In this activity, we should take the
relevant parts in the result from the call to ConsultPreparationInstructionService, which is
stored in the local variable, and copy it into a global variable.

See the online chapter complement for more detailed instructions and screenshots of the steps
described here.

158 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 159

Invoking an Asynchronous Service:
Calling the Appointment Scheduler
One of the crucial steps in the Appointment process obviously is picking a specific date, time,
room, and doctor for the patient’s appointment. The hospital has defined a service interface for
this action—an asynchronous service that can be invoked by any party in the hospital, including
the new Appointment process that we implement in the context of the eAppointment project.

It is not necessarily clear to Margaret and her staff whether there is an automated facility—
some fancy, smart scheduling tool—that implements this service or if there are some staff
members tasked with scheduling appointments, and they do not need to know either—that is
encapsulation and decoupling for you.

Whatever the case, the Appointment process leverages this Scheduler service and is thereby
relieved from the responsibility of updating the central resource schedule where doctors’ agendas,
as well as schedules for rooms and equipment, are maintained. It is also the scheduler’s responsibility
to try to schedule multiple appointments for a patient adjacently during the day, thus saving the
patient additional trips to the hospital as well as too-long episodes in waiting rooms.

The Scheduler service is called with the appointment identifier, the patient identifier, an
indication of the appointment type, the identifier for the doctor if this is a follow-up appointment,
an urgency specification, and possibly preferred date/time combinations.

The Scheduler service is an asynchronous service. After the request is made, it can be
anywhere between several minutes up to more than a day before the service makes the return call
with its results, although it is fair to say that most requests are responded to within the hour. The
essence of an asynchronous service, as we discussed previously in Chapter 5, is that the service
and its caller perform a little handshake where they both have to play the role of caller and
callee. The SchedulerService publishes an inbound and an outbound portType. The first one is
implemented by the Scheduler itself, whereas the latter is actually implemented by the caller
because that is where the SchedulerService will call to deliver its response. So in summary, in a
synchronous call, the service client invokes the service that returns the response to the client in
the same call; in the meantime the client is blocked. In an asynchronous call, the service client
invokes the service, resumes its flow (is not blocked), and at some point waits for the service to
call the service client with the result.

Implementing the (Mock) Asynchronous SchedulerService
Let’s take a closer look at how to deal with asynchronous services. We will employ a simple
“mock” implementation of the SchedulerService. It takes an appointmentId, a patientId, and a
type of appointment as input. Based on that information, it comes up with a date and time for the
appointment, as well as a free-format text element with the name of the doctor and the location
where the appointment takes place.

An asynchronous BPEL process is easily created with these steps:

 1. Create a new SOA project, called SchedulerService.

 2. Select the option Composite With BPEL.

 3. Choose the Asynchronous BPEL Process template.

Chapter 6: Process-Oriented BPEL 159

The BPEL process is now created with the necessary setup in the WSDL, with two portTypes
and two PartnerLinkTypes:

<!-- portType implemented by the SchedulerService BPEL process -->
 <portType name="SchedulerService">
 <operation name="initiate">
 <input message="client:SchedulerServiceRequestMessage"/>
 </operation>
 </portType>
 <!-- portType implemented by the requester of SchedulerService BPEL process
 for asynchronous callback purposes -->
 <portType name="SchedulerServiceCallback">
 <operation name="onResult">
 <input message="client:SchedulerServiceResponseMessage"/>
 </operation>
 </portType>

The SchedulerServiceCallback portType is the special one. It basically describes the service
interface that any client of the SchedulerService should implement in order to be asynchronously
called back with the response from the SchedulerService.

The partnerLinkType definition in the WSDL document is also special: Instead of a single role
element, we now have two. The SchedulerService interacts in two ways with external partners.
One way—the familiar one—is via the SchedulerService portType; this interaction is associated
with the role of SchedulerServiceProvider. At this point we do not explicitly state who will
assume this role, although it is likely in this case to be the SchedulerService itself.

The other interaction—the special one that is introduced because of the asynchronous nature
of the service—is via the callback portType SchedulerServiceCallback. This portType has to be
implemented by the external partner. This interaction is associated with the role Scheduler
ServiceRequester. The asynchronous callback to the requester is handled by the SOA Suite using
WS-Addressing to help determine the callback address.

The SchedulerService BPEL process has a partnerLink based on that special PartnerLinkType, for
the role SchedulerServiceProvider, that is used in the Invoke activity that returns the asynchronous
response. Later on, in the consuming AppointmentProcess BPEL process, we will again create a
partnerLink based on these PartnerLinkTypes; however, this time with myRole set to Scheduler
ServiceRequester because that partnerLink will then be used to the SchedulerService from the
AppointmentProcess.

Figure 6-5 shows the visual presentation of the BPEL process definition.
We can deploy the SchedulerService process to the SOA Suite and test it in the Fusion

Middleware Control. However, even though the tester will call the service, it will not handle,
receive, or show the asynchronous response. We will only be able to inspect the response by taking
a closer look at the message flow trace for the tested instance of the SOA composite application.

Calling the Asynchronous SchedulerService
Now that we have deployed and tested the SchedulerService, we need to call it from the
AppointmentService. Calling an asynchronous service is not at all straightforward from most

160 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 161

programming languages and environments. Making the call is not the challenge, but receiving
the response is, however. The difficulties include:

 Where can the response be sent to? ■

 What will the program do while it is waiting for the response? ■

 How is a certain response fed to the proper process thread (Java) or session (PL/SQL)? ■

 When do we conclude that no response will be coming and what should be done in that ■
case?

BPEL, in comparison, makes it almost trivial to call an asynchronous Web Service and subsequently
receive the response. We will see this in action when we add a call to the SchedulerService in the
PatientAppointmentService.

With the PatientAppointmentService SOA application open in JDeveloper, we drag a
WebService Adapter to the External References lane in the composite editor. Type SchedulerService
as the name, browse for and select the WSDL for the SchedulerService (for now, just from the file
system), and select the SchedulerService and SchedulerServiceCallback, respectively, for the port
types. Next, wire the SchedulerService reference to the PatientAppointmentService BPEL component,
as shown in Figure 6-6.

FIGURE 6-5. The asynchronous SchedulerService

Chapter 6: Process-Oriented BPEL 161

Now open the BPEL editor for the PatientAppointmentService and create a new variable at
the level of the ScheduleNotifyAndWait scope. This variable is called AppointmentSchedule and
is based on the SchedulerServiceResponseMessage.

Drag an Invoke activity from the Component Palette and drop it in the ScheduleAppointment
scope inside the Flow activity. Connect this Invoke activity to the SchedulerService PartnerLink.

Have the input variable created as a local variable—that is, inside the current scope. The
output variable field is disabled, and that is about the only clue as to the asynchronous nature of
the partner link: There is no—synchronous or immediate—output from this call.

In order to receive the asynchronous response from the SchedulerService, we need to add a
Receive activity to the scope ScheduleAppointment following the Invoke activity (see Figure 6-7).
The Receive is associated with the processResponse operation in the SchedulerService—the
operation in the special SchedulerServiceCallback portType we discussed earlier. If we wanted,
we could add activities between the Invoke and Receive activities to execute logic that could be
done in parallel to the scheduling.

This is the first time we have seen two Receive activities in a BPEL process. Until now,
Receive was always the first BPEL activity, the starting point for the process. And now we see a
second purpose for Receive: handling the asynchronous response to an earlier Invoke activity,
without creating a new instance of the BPEL process. The check box Create Instance controls
whether upon execution of the Receive activity a new BPEL process instance should be created.
In this case, the check box should be unchecked: No new BPEL instance and no new composite
instance are created.

FIGURE 6-6. Associating the SchedulerService reference with the PatientAppointmentService
BPEL component

162 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 163

Sending Notifications from the BPEL Process
By the time the Flow activity is complete and the NotifyPatient activity is executed, the
AppointmentSchedule variable contains the result from the ScheduleService and the variable
PrepareInstructions holds the instructions for the patient on preparing for the appointment. That
means we have all the information required to send an e-mail or some other form of notification
to the patient to inform her about the appointment.

FIGURE 6-7. Invoke and Receive activities to complete the handshake with the asynchronous
SchedulerService

Chapter 6: Process-Oriented BPEL 163

The online chapter complement demonstrates how the BPEL process can use the Email
activity to send such notifications.

Receiving Request Messages
in Running BPEL Instances
BPEL has a unique capability among all the service engines and languages in the SOA Suite: a
BPEL process can receive even after it has started running—and this goes beyond processing
synchronous or even asynchronous responses to service invocations. Most computer programs
are initiated by an original invocation and return a result once they are complete—they cannot
easily or at all be accessed from the outside while they are running. A BPEL process can expose
multiple operations—one of which will initiate the instance while others feed messages into a
running instance.

We have already seen how BPEL processes can continue to run after they have returned a
response message. To this special behavior we now add the capability of receiving subsequent
messages—either by explicitly waiting for them to arrive or by handling them as unsolicited
events. In both instances, the key ingredient to this functionality is a BPEL mechanism called
correlation—the ability to match an incoming message with one of potentially many running
instances.

Receiving messages into a running instance can be done using a Receive activity—as we saw
for the reception of the asynchronous response from the SchedulerService. Another method is
through an onMessage event handler that we can attach to a scope in the BPEL process. An event
handler specifies an asynchronous agent that runs for as long as the scope is running and can do
one of two things: wait for a specific moment in time and then act, or receive an incoming
message of a specific type and act on it. We will use this latter capability to handle requests for
information about the appointment.

A third method for a running BPEL process instance to deal with incoming messages is inside
the Pick activity. A BPEL Pick activity is included in a sequence like any other BPEL activity. It, too,
deals with events: It instructs the BPEL engine to pause the BPEL process instance until one of
potentially many events occurs. The events, as in the case of the event handlers, are either the
elapsing of a certain time duration or the reception of a specific message. Unlike the event handlers
that sit idle in the background for the entire lifespan of the scope, impacting the BPEL process only
when the event they are listening for occurs, the Pick activity stalls the process—or at least the
branch in which it lives, because there can be other branches in a common Flow parent—until one
of the events for which it is configured takes place. No activity that follows the Pick activity is
executed unless one of the Pick events occurs. Figure 6-4, earlier in this chapter, shows how a Pick
activity controls the flow in our process after the appointment has been scheduled.

It contains three alternative continuations of the process—of which only one will actually
take place in any process instance. Each alternative is either associated with a time event
(onAlarm) or with the arrival of a message—or more specifically, in the invocation of an
operation on a parterLink’s portType.

The onAlarm event handler has been specified in this example. It will trigger—if neither of the
two onMessage event handlers has been triggered—four hours after the start time of the appointment.
The add-dayTimeDuration-to-dateTime XPath function has been used; it first retrieves the start time
of the appointment and adds a dateTime duration that is specified in the string P0Y0M0DT4H0M0S,
which means four hours.

164 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 165

One of the other candidate paths is the cancellation of the appointment—associated
with the cancelAppointment operation in the PatientAppointmentService portType on the
PatientAppointmentService partnerLink. This path should be executed when a cancellation
message is received for the appointment.

Consuming an Asynchronous Event: Handling a Cancellation
A cancellation of a scheduled appointment can arrive at St. Matthews in a variety of ways. It can
come in through the regular mail, by fax, or through e-mail; or it is communicated by telephone.
A cancellation can arrive in a batch from an insurer or can be entered directly in a web
application by a family doctor. Finally, an appointment should be cancelled when the “death of
the patient” event is received. A cancellation can be accompanied by a request to (re)schedule—
although obviously not in the last case. An appointment can be cancelled by various parties for
several reasons. The patient can cancel because the physical symptoms have disappeared, the
schedule time does not fit the patient’s agenda, the patient has found another healthcare provider,
or the patient’s financial situation does not allow for the hospital visit. The appointment can also
be canceled by the insurer because it is not covered by the policy or by the hospital because
either the required facilities or the doctor is not available.

The cancellation can arrive at any time, from the moment the appointment was scheduled until
the time it takes place. It enters our SOA infrastructure as a Web Service request that should be fed
into the BPEL process instance that was created and is still running for that particular appointment.
The BPEL process instance receives the request in the relevant event handler within the Pick activity
and should then either complete the instance entirely or return to the “schedule appointment” step
in case a request to reschedule was part of the cancellation request. In both cases, the reason for
cancelling the initial appointment should be recorded because it may provide clues as to how to
improve the appointment process and/or optimize the use of resources at St. Matthews. The
cancellation should also be reported to the automated Appointment Manager Service, which will
notify the doctor and update the resource schedules.

The cancellation Web Service request needs to specify exactly which appointment has to be
cancelled—just like we would have to do when we cancel the appointment by telephone or
e-mail. The appointment is identified by the identifier that was determined early on in the BPEL
process and returned in the synchronous response sent from the reportAppointmentProcess
Identifier activity. This same identifier is used by the SOA Suite run time to associate the incoming
cancellation request with the correct running SOA composite application instance. A precondition
for this is that the used identifier should be unique across all process instances. The mechanism
that makes this match between an inbound request and an existing instance is called correlation.

Correlation for the PatientAppointmentService
Correlation in general deals with the following scenario: A request message arrives at the SOA
Suite. It is not intended to start a new composite application instance. Instead, it needs to be routed
to an already running instance. It is up to the engine to find the correct instance to hand the
message to. In this case, the request to cancel an appointment needs to be handed to the instance
that was created for that particular appointment. Refer to Figure 6-8 for an illustration of this.

Of course, the engine needs to be able to extract some sort of identifier from the request message
to correlate that message with a running instance. In our example, the PatientAppointmentService
was initially invoked on behalf of a patient who needed an appointment. The service responded with
a message containing the appointmentIdentifier. Requests for additional information with regard to
that particular appointment request should contain this identifier, and each running instance of the

Chapter 6: Process-Oriented BPEL 165

PatientAppointmentService, too, should be identifiable through that identifier. It is the linking pin to
correlate new request messages with running instances.

Correlation of instances of composite applications is built on the correlation of BPEL process
instances; a composite application without a BPEL service component does not support
correlation. The message that needs to be correlated to a running composite application instance
needs to be sent into the BPEL component—and therefore be sent to a service exposed by the
application that is wired to the BPEL component.

In order to make the correlation mechanism work, we have to configure the BPEL process to
recognize the appointmentIdentifier as that correlation key.

An instance of a BPEL process can be identified for correlation using a correlation set. Such a
correlation set is a combination of one or more properties, in a way that is very much like a
composite primary or unique key database constraint. Properties are defined at the process level,
are of a certain type, and are mapped to values in the messages sent from or received by the
process. A BPEL process can have multiple correlation sets—just like a database table can have
multiple unique keys.

The PatientAppointmentService has a single correlation set that consists of a single property. Let’s
call this set the appointmentIdentifierSet. We can create a correlation set from the structure window
by clicking the green plus icon with the Correlation Sets node selected, as shown in Figure 6-9.

The single property we require in this correlation set is called appointmentIdentifier and is of
type String. The property, too, is created in the structure window.

Next, we can add the property to the correlation set and thereby specify that instances of the
PatientAppointmentService BPEL process can be uniquely identified by the value of this property
(see Figure 6-10).

However, what is the value of that property? When and how is that determined? How does the
property relate to the variables in the BPEL process or the messages sent to or from the process?

Correlation always takes place in the context of a message exchange. Either when the BPEL
process is receiving a message (onMessage and Receive activities) or when it is sending a message
(Invoke and Reply) does correlation come into play. And only at such times does the engine need to
establish the values of the properties in the correlation set that is attached to the message exchange.

FIGURE 6-8. Correlation between an incoming message and running composite application
instances

Cancellation
request

Appointment
identifier #361

PatientAppoi...

?

19
7

PatientAppoi...

36
1

PatientAppoi... 48
5

PatientAppoi...

81
2

SOA Suite

166 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 167

FIGURE 6-9. The correlation set appointmentIdentifierSet and the appointmentIdentifier
property for the PatientAppointmentService

FIGURE 6-10. Editing the correlation set—specify which properties together uniquely identify an
instance of the BPEL process

Chapter 6: Process-Oriented BPEL 167

The value of a property is associated with the content of the messages sent to or from the
process at such exchange moments. For example, the appointmentIdentifier property gets its
value from the outgoing PatientAppointmentServiceResponseMessage that is returned from the
process in the first, synchronous Reply activity. When the cancellation message exchange takes
place, the property will get its value from the incoming AppointmentCancellationRequestMessage.

These associations between the property and a particular message exchange are specified
using property alias definitions. A BPEL process can contain one or more property aliases that
map a property to a specific message part—and to be precise, a specific XPath expression to
extract a value from within that message part. This message part is used in the exchange through
one of the partnerLinks in the process.

In the case of the PatientAppointmentService, we will eventually have four property aliases,
because the appointmentIdentifier is associated with four message exchanges (initial appointment
request, cancellation, status request, and patient arrival). This is shown in Figure 6-11.

The identity of the process instance (the values in the correlation set) is established only
once—obviously, because that cannot change later on. Establishing the identity takes place through
initialization of the correlation set and capturing the values of the properties in the set at that
moment in time. In our case, this happens when the PatientAppointmentServiceResponseMessage is
sent by the synchronous reply operation labeled reportAppointmentProcessIdentifier. The value of

FIGURE 6-11. The correlation definitions for the PatientAppointmentService: the correlation set,
the property, and the four property aliases

168 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 169

the appointmentIdentifier element in the AppointmentServiceProcessResponse element in the
response message is read and set as the value for the appointmentIdentifierSet—a value that will
never change for the instance of the BPEL process.

On each subsequent message exchange, the identification of the process instance, as
determined in the correlation set, can be compared to the value as extracted from incoming
messages. That allows the engine to link the incoming message to the instance with the same
value for the correlation set.

Figure 6-12 illustrates the steps in the correlation processes that are described as follows:

 1. The synchronous Reply activity initiates the correlation set, and the value is extracted
from the response message and used to set the instance identifier.

 2. The value for the appointmentIdentifierSet correlation set is extracted from the incoming
Status Request message based on the property alias defined for that message and
compared with the identifiers for all running instances to find the matching instance.

 3. When the PatientArrival message comes in, the property alias definition is used to
extract the correlation set value that is then used to find the matching instance of the
PatientAppointment service.

FIGURE 6-12. The steps in the correlation process

PatientAppoi... 19
7

PatientAppoi... 36
1

PatientAppoi...

48
5

PatientAppoi... 81
2?

PatientAppoint
mentService

Request

Patient arrival

Status request

Cancellation
request

PatientAppoi...

76
3

Appointment identifier #763
Property: appointmentIdentifier
Message type: PatientAppointmentServiceResponseMessage
Part: payload
Query: /client:AppointmentServiceProcessResponse/client:appointmentIdentifier

Appointment identifier #763
Property: appointmentIdentifier
Message type: PatientArrivalForAppointmentRequestMessage
Part: payload
Query: /client:PatientArrivalForAppointmentRequest/client:appointmentIdentifier

1

2
3

4

SOA Suite

Chapter 6: Process-Oriented BPEL 169

We have to specify the four property aliases and indicate for each one—for each message
exchange that will work with the correlation set—how the value is derived from the incoming or
outgoing message.

To create a property alias (refer to Figure 6-13), select the node property aliases in the structure
window. Click the green plus icon to add a new property alias. A pop-up window appears in
which we first of all need to select the property for which we want to define a property alias:
appointmentIdentifier. Next, we have to select the message type and part for which we want to
define the property alias. Select the payload part in the PatientAppointmentServiceResponseMessage.

FIGURE 6-13. Configuring the property alias for the appointmentIdentifier property mapped to
the PatientAppointmentServiceResponseMessage payload part

170 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 171

In the Query field, we must specify the XPath expression to retrieve the value for the property. Hint:
Pressing ctrl-spacebar brings up a list of available XML elements to add to the XPath expression.

The final step in making correlation work is to configure the activities that send (Reply) and
receive (onMessage handler) the messages that need to be correlated.

First of all, the Reply activity. This activity is special because it needs to instantiate the
correlation set. Open the editor by double-clicking the Reply activity. Go to the Correlations tab.
Click the green plus icon to add a correlation set that is associated with this message exchange.
Select the appointmentIdentifierSet. JDeveloper will populate the properties column for us. You
need to set Initiate to Yes to indicate that this Reply step is the moment when this correlation set
is instantiated and the identifier for this process instance is set. Figure 6-14 illustrates these steps.

FIGURE 6-14. Configuring the correlation set appointmentIdentifierSet and its initiation for the
Reply activity

Chapter 6: Process-Oriented BPEL 171

Through this definition, we have ensured that when this Reply activity is executed, an
instance of this BPEL process is assigned an identity that can be used for correlation purposes.

As an aside, a BPEL process can have multiple identities through multiple correlation sets
that have different properties and different values, and can be established at different points in
time. The PatientAppointmentService, for example, could have a second correlation set that also
identifies the appointment through a combination of the patientIdentifier and the date and time
of the appointment.

Correlation for the Appointment Cancellations
We have laid the foundation for the capability to receive a cancellation request for a scheduled
appointment. We have configured a correlation set and ensured that the instance identity is
determined when the synchronous reply takes place.

Next, we have to add an onMessage event handler in the Pick activity to handle reception of
an AppointmentCancellationRequestMessage when the cancelAppointment operation is called on
the PatientAppointmentService. Then we need to configure this onMessage handler to support
correlation for this message exchange.

In the BPEL design editor, find the Pick activity and click the Envelope icon to add an onMessage
branch. A new branch is added to the pick. Drag a scope from the Component Palette and drop it on
this branch. Call the scope Cancellation. Double-click the onMessage icon to configure the message
exchange it will implement. Figure 6-15 illustrates these steps.

The partner link involved in the onMessage activity is the PatientAppointmentService. The
relevant operation in the port type associated with this partner link is the cancelAppointment
operation. Specify the input variable as locally created.

FIGURE 6-15. Configuring the message exchange and correlation for the onMessage branch that
will handle the cancellation requests

172 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 173

Next, click the Correlations tab. The only correlation set that is involved with this onMessage
activity is the appointmentIdentifierSet. It should not be initiated, because that already happened
through the outgoing message sent from the Reply activity. For cancellations, we will use the
value assigned to the property in the correlation set at that time to correlate with the incoming
cancellation message’s property value.

If you have not already done so, now would be a good time to create a property alias for the
appointmentIdentifier property, mapping it to the incoming AppointmentCancellationRequestMessage.
Select the property and click the edit icon. This will take you to another editor window where you can
create the alias with its XPath expression against the message. The XPath expression for this property
alias should query the appointmentIdentifier element in the AppointmentCancellationRequest.

Cancelling the Appointment: Introducing the While Loop
When the appointment is cancelled, it can be with a request to reschedule. Otherwise, the
appointment should just be removed from the hospital’s schedules and the doctor’s agenda, and
the PatientAppointService instance will stop. When the appointment should be rescheduled, the
instance should live on and return to the beginning of the ScheduleNotifyAndWait scope.

BPEL does not have the concept of method calls or goto activities—one area where BPMN
allows for more flexibility in the process design than BPEL (see Chapter 11 for an introduction of
BPMN). However, BPEL has a While loop that we can use in this case to introduce some level of
iteration into the BPEL process. BPEL 2.0—which is supported by SOA Suite 11g—has added the
loop constructs For Each and Repeat Until.

The PatientAppointmentService has a fairly large chunk that can be reiterated when the
appointment gets canceled with a reschedule request: everything from gathering preparation
instructions, scheduling the request, and notifying the patient, to waiting for the patient’s arrival
needs to be repeated after the reschedule request—and is therefore inside the While activity (see
Figure 6-16). The While activity is configured with a Boolean expression. As long as that expression
evaluates to true, the activities inside the While will be executed. The PatientAppointmentService
contains a global Boolean variable called needToSchedule. The value of this variable is tested in the
While activity and determines whether or not another iteration should be made in the While loop:

<while name="ScheduleAndIfNecessaryScheduleAgain"
 condition="bpws:getVariableData('needToSchedule')">
 <scope name="ScheduleNotifyAndWait">...</scope>
</while>

The variable needToSchedule is initialized as “true” to ensure that the ScheduleNotifyAndWait
scope is executed at least once.

When the Cancellation message is received, it is inspected to see whether it contains a
request to reschedule. If it does, the variable needToSchedule is left at true; otherwise, it is set to
false. In the latter case, the While loop is terminated.

Using the Replay Fault to Return to the Beginning of a Scope
Instead of using the While activity (or another iterator construct), we can use a special BPEL fault
to replay a scope: When the fault is thrown, for example, under certain conditions at the end of a
scope, then that entire scope is executed again. The online chapter complement describes this
fault and shows how we can redesign the PatientAppointmentService, without the While, using
this replay fault.

Chapter 6: Process-Oriented BPEL 173

FIGURE 6-16. The While loop and the onMessage branch handling the cancellation request

Correlation and Asynchronous Service Calls
Correlation is the primary mechanism used by the SOA Suite run time to match up
incoming messages with existing instances of composite applications. Yet we did not
discuss correlation when we introduced the implementation of our calls to asynchronous
services, even though the response from an asynchronous service such as the
SchedulerService is returned in the form of a service call to the callback portType in the
PatientAppointmentService.

The reason for this is that the BPEL engine handles this automatically under the covers
using the WS-Addressing standards. In other scenarios we have to implement/configure this
ourselves because the components we interact with are not BPEL components. We do not
need to make any changes to the BPEL process, the composite definition, or the WSDL file
in order to leverage the WS-Addressing method for correlation between BPEL process

(Continued)

174 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 175

FIGURE 6-17. Complex conversation pattern that requires custom correlation. The initial request
is sent to ServiceA and the final response is sent by ServiceB to the callback port.

ServiceB

PatientAppo...

ServiceA

instances and the asynchronous services they invoke. The BPEL engine run-time framework
will add headers to the SOAP message that is sent when an asynchronous Web Service is
invoked. These headers—based on the WS-Addressing specification—contain the endpoint
location (reply-to address) that specifies the location at which a BPEL client is listening for a
callback message and the Conversation ID, which is a unique identifier for the BPEL
process instance that sent the request.

When the asynchronous service sends the response by invoking the callback service, it
can use the information from the WS-Addressing headers to target the response at the right
client. When the asynchronous service is itself a BPEL process, like our SchedulerService,
the headers are leveraged automatically by the BPEL engine, completely transparently to us
as developers.

There are several situations where the built-in, default WS-Addressing correlation
mechanism does not suffice when we invoke an asynchronous service. One of those is the
case where the asynchronous Web Service provider does not support WS-Addressing and
correlation is required to map the response message to the process instance. Another case is
a more complex conversation pattern that involves more than two communication partners
and a final response that is not returned by the partner that received the original call that
started the conversation, as illustrated by Figure 6-17. In this case, the BPEL process should
initiate a correlation set and make sure that its value is passed along all services
participating in the conversation and returned in the eventual response that is sent to the
callback port of the BPEL process.

See the FMW documentation for more information about WS-Addressing, the way it is
used in the BPEL engine, and ways to inspect the contents of the SOAP message (and the
WS-Addressing headers) using an OWSM logging policy or TCP Listener.

Chapter 6: Process-Oriented BPEL 175

Request Appointment Details from the
PatientAppointmentService Instance
BPEL process instances can use another asynchronous way of accepting incoming messages next
to Receive activities and the onMessage branches of Pick activities. We can attach event handlers
to any scope in the BPEL process as well as the main process itself. These handlers are active
during the entire lifetime of the scope they are attached to—listening all the while for either the
onAlarm event to happen or messages to arrive. An event handler does not impact the scope it is
associated with—it runs in a parallel thread while the scope is executing. When an event handler
is triggered, it can, however, decide to halt the execution of the scope.

In the PatientAppointmentService process, we make use of the event handler mechanism to
listen for status request messages—an example of a common-use case where a BPEL process
allows clients to inquire after its current status, progress, and variables. Such requests are typically
handled by event handlers attached to a fairly high-level scope or even the main process. These
handlers frequently use several global variables to retrieve status values from several global
variables to return to the caller.

To configure the getAppointmentStatus event handler, locate the scope ScheduleNotifyAndWait.
Click the Add onMessage Branch icon in the scope’s menu bar; refer to Figure 6-18. A new
onMessage event handler is added in the diagram. Now drag a sequence from the Component Palette
and drop it in the onMessage branch. Call the new sequence HandleGetAppointmentDetailsRequest.

FIGURE 6-18. Configuring the getAppointmentStatus onMessage handler for the
ScheduleNotifyAndWait scope

176 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 177

Double-click the envelope icon to bring up the onMessage editor. Select the partnerLink
(PatientAppointmentService) and operation (getAppointmentStatus) in this editor and have the
input variable created as a local variable. Next, go to the Correlations tab and select the
appointmentIdentifierSet correlation set. If you have not already done so, create a propertyAlias
that maps the AppointmentStatusRequestMessage to the appointmentIdentifier property.

Next, we should flesh out the sequence in which the work takes place that should be performed
when a request for the appointment status is received. Add a Reply activity to this sequence, linked to
the getAppointmentStatus operation in the PatientAppointmentService partner link. No correlation
settings are required for this outgoing message exchange because it involves a synchronous
invocation. Have the output variable created as a local variable because we only use it in the scope of
the event handler. Then add an Assign activity to the sequence, right before the Reply step. Copy the
relevant values to the ReturnAppointmentStatus_getAppointmentStatus_OutputVariable that is
returned to the client asking for the appointment status. These steps are illustrated in Figure 6-19.

Note that event handlers can perform actions on behalf of the scope they are attached to, in
reaction to messages or the reaching of specific moments in time. The handlers can send responses,
make service calls of their own, and both read and write the values of variables local to the scope
or defined in higher-level scopes. Their most far-reaching prerogative is the termination of the
scope—using the Terminate activity. However, while the event handler is still running, the scope
also continues to execute activities.

By the way, in the case of the PatientAppointmentProcess, we have used an onMessage
branch in the Pick activity rather than an onMessage event handler to process an incoming
cancellation request. In this case, that choice is fairly arbitrary—both approaches would be able
to achieve the same effect.

FIGURE 6-19. Returning the Appointment status from the onMessage event handler

Chapter 6: Process-Oriented BPEL 177

Other BPEL Activities
This chapter and the previous one have introduced and applied the most common BPEL
activities. However, there are several more that can be used in BPEL processes. These are
shown in Figure 6-20 and briefly discussed here. Some activities listed here are Oracle’s
extensions to BPEL that you will not find in other BPEL engines. The BPEL language has a
standard way for vendors to add nonstandard extensions to the language. Oracle has used
this extension mechanism to add a number of useful activities that developers can embed in
their BPEL processes to run on Oracle’s BPEL engine. Other engines would simply ignore
those unknown extensions—however, they would consider the process definitions valid.
Needless to say, such extensions on the one hand add possibly valuable functionality while
limiting the cross-container portability on the other.

Terminate is a powerful activity: It immediately ends execution of the process instance,
performs no fault handling or compensation, returns no replies to consumers, and completely
concludes the instance. The Exit activity—introduced in BPEL 2.0—replaces Terminate.

Empty is not powerful at all—it does what its name suggests, which is nothing at all.
Empty is a no-operation instruction (like null; in PL/SQL) and can be used when you want
nothing to be done but need an activity, for example, as a temporary placeholder for
activities that will be added later on or as the contents of a fault handler.

Wait instructs the BPEL engine to halt processing for a certain specified period or until a
certain deadline is reached. Note that the wait only applies to the branch it is in; processing
can continue in parallel branches.

BPEL 2.0 has added many new elements to the BPEL language, including RepeatUntil,
ForEach, If, Exit, Validate, ExtensionActivity, and Rethrow. It also introduces a very useful
repeatEvery feature to onAlarm event handlers and a TerminationHandler.

FlowN is an Oracle extension to BPEL that allows a dynamically determined number of
parallel branches to be executed on all elements in a collection. FlowN is similar to the
BPEL 2.0 ForEach activity that can also execute a dynamically calculated number of steps,
either sequentially or in parallel. ForEach is functionally richer—it not only can do either
sequential or parallel processing, but also can end as soon as an indicated minimum
number of parallel branches has completed. The latter would be useful, for example, if we
want to solicit quotes from a number of vendors and as soon as we have at least three
quotes in, we can continue with the process.

Validate explicitly validates the contents of one or more variables in the BPEL process
against their XSD definitions. When a violation is detected, the BPEL engine will throw a
bpelx:invalidVariables run-time fault. Note that Validate was added as a standard activity to
the BPEL 2.0 specification.

Java Embedding allows us to add Java code to a BPEL process—typically small snippets
of Java that may call out to more complex objects living in the same JVM as the SOA Suite
or through remote EJB calls, even to objects external to the JVM. The Java code has access
to the variables of the BPEL process. Exceptions thrown in the Java code are translated to
BPEL faults and can be handled using the BPEL fault-handling mechanism. Java Embedding
seems especially useful for nonreusable complex calculations, special validations, or
additional logging. The ADF-BC and EJB Service Adapters also allow interaction between
BPEL processes and SDO-enabled Java objects, whereas the Spring Java component
supports simple interaction with POJOs (Plain Old Java Objects). Chapter 12 in this book
discusses the interaction between SOA composite applications and Java in more detail.

(Continued)

178 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 179

FIGURE 6-20. Miscellaneous BPEL activities

Signal and ReceiveSignal are Oracle-specific extensions to BPEL for the coordination
between Master and Detail processes. This coordination is much like a lightweight
alternative for correlated asynchronous services. The book’s wiki describes how these
activities can be used.

Create Entity, Bind Entity, and Remove Entity are activities that provide support for
entity variables in SDO (Service Data Objects) format that are bound to an underlying data
service provider—for example, an ADF-BC SDO-enabled Web Service or an EJB. An entity
variable acts as a data handle to access and plug in different data provider service
technologies behind the scenes. During compilation and run time, the BPEL engine
delegates data operations to the underlying data provider service. When dehydrating the
BPEL process instance, only the unique key that is needed to link up with the data service is
stored, not the current values in the variable. See Chapter 21 for more details on SDO.

Phase is not really a BPEL activity—it is the representation of a BPEL design pattern
using two layers of process design and implementation: the first layer is the abstract
description of a certain step in the process, including the scopes, and the second layer is
the specific implementation of that step.

Transformation is not really a BPEL activity either, even though it looks that way in the
Component Palette. It is a specially configured Assign activity with a developer-friendly
editor that helps us specify XML transformations (XSLT) for variables in the BPEL process, as
we saw in the previous chapter. A transform assigns null values to target parts of the
variables that aren’t included in the transformation. Assign doesn’t have this behavior.

Chapter 6: Process-Oriented BPEL 179

Dealing with and Compensating
for Exceptional Circumstances
Although, of course, we would like to think that everything in our BPEL processes always happens
according to our plan for a happy flow, in actual practice that is unlikely to happen. Several types
of faults and exceptions are bound to occur and should be catered to. Sometimes we can recover
from exceptions—by retrying an operation after a little waiting time or through an alternative
execution path. However, some exceptions we have to accept as irrecoverable. For a process
instance that runs into such an exception, we may need to roll back some of the work that was
already done by the process before it failed with the exception. In BPEL terminology that is called
compensation.

Handling Exceptions in BPEL Processes
We can discern a number of exception categories—from fairly technical to more functional and
business process-oriented.

At a rather technical level, we have to prepare for the unavailability of infrastructure components
or other technical problems with services invoked from the BPEL process.

The external references may also return (predefined) business exceptions in response to the calls
from our process, in the form of SOAP faults as specified in the WSDL for the service. Business
exceptions are normal situations in business processes, ranging from “the product on order is sold
out” and “credit card payment is not validated by the card issuer” to “the type of appointment
requested is not available at St. Matthews.”

Between these categories is the type of fault that is returned due to validation errors (“the XML
request message does not comply with the XSD definition“) and security issues (“the authentication
failed” and “you are not authorized to invoke this service”). Our BPEL process can also cause
faults because of programming errors (for example, by performing erroneous XPath operations).

Finally, the last category of exceptions is the type of exception we willingly throw to cause
the current scope to be immediately terminated—almost a programmer’s trick for want of a break
activity in BPEL.

If one of the exceptions described previously occurs in a BPEL process—and we do not catch
it—the process instance ends up in a faulted state. If the instance is synchronously invoked by a
partner, the partner will receive a SOAP fault as a reply. If the instance is part of an asynchronous
conversation, its invoker will continue to wait for the response message because there won’t
be one.

Let’s see how we catch faults in a BPEL process—to prevent faults from causing a process to
fault out.

Catching Faults
The main process activity, as well as every scope in a BPEL process, can have a faultHandler
associated with it that contains one or more Catch activities that can each handle a specific
type of fault (or all faults) when it occurs in the scope they are defined against—or in one of
that scope’s descendants or nested scopes. Each fault type in a BPEL process is identified
through its name. Catch activities specify the fault type they want to catch through that name.
Here’s an example of a Catch for the standard fault selectionFailure (defined in the namespace

180 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 181

http://schemas.xmlsoap.org/ws/2003/03/business-process/, represented here by the prefix
bpws), which is thrown, for example, when an XPath expression has returned an empty result:

<faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <empty name="HandleSelectionFailure_gracefully"/>
 <terminate name="Terminate_process_isNOTgraceful"/>
 </sequence>
 </catch>
</faultHandlers>

The BPEL 1.1 standard specifies 11 standard faults, all in the same namespace: selectionFailure,
conflictingReceive, conflictingRequest, mismatchedAssignmentFailure, joinFailure, forcedTermination,
correlationViolation, uninitializedVariable, repeatedCompensation, and invalidReply. All these faults
are typeless, meaning they don’t have associated messageTypes and a Catch activity for these faults
should not specify a fault variable.

Other faults have data associated with them—for example, the run-time faults thrown by the
BPEL run-time engine as the result of problems with the running of the BPEL service component
or the Web Services it invokes. A number of such run-time faults is predefined: bindingFault,
remoteFault, and replayFault. These faults are included in the http://schemas.oracle.com/bpel/
extension namespace. They are associated with the messageType RuntimeFaultMessage, which
contains three parts—each of type string—called code, summary, and detail, respectively.

A Catch activity for a fault that has associated data can specify a faultVariable that will be
initialized with the fault’s data when the Catch is activated. Figure 6-21 shows the RegisterPatientData
scope with a number of fault handlers defined against it. One of them is the following Catch that is
defined to intercept a remoteFault. The RemoteFaultMessage variable used here needs to be defined
based on the message type associated with the fault. In this case, we need to add the RuntimeFault.
wsdl with the required messageType to our project:

<scope name="RegisterPatientData">
 <variables>
 <variable name="RemoteFaultMessage"
 messageType="bpelx:RuntimeFaultMessage"/>
 </variables>
 <faultHandlers>
 <catch faultName="bpelx:remoteFault"
 faultVariable="RemoteFaultMessage">
 <empty name="HandleRemoteFault_butHow"/>
 ... additional BPEL activities that handle the
 ... they can access the fault’s details in RemoteFaultMessage
 </catch>
 </faultHandlers>

In addition to fault-specific Catch elements, we can make use of the catchAll—similar to
“when others” in PL/SQL and “catch(Throwable e)” in Java. When no fault-specific Catch is
around to take care of the current fault, this all-purpose safety net steps in to handle it. We can
find out the name of the fault our catchAll is dealing with using the Oracle BPEL-specific XPath
function bpelx:getFaultAsString(), which we can use, for example, to assign the name of the fault
to a local variable.

Chapter 6: Process-Oriented BPEL 181

So far we have discussed faults that originate in our external partners or in the BPEL run-time
engine. There is another category of faults: The faults defined in our own process and thrown in
our own logic. These faults are used to control the flow in the BPEL process. By throwing a fault,
we interrupt the execution of a scope and hand control to a fault handler for that type of fault.
Thus, we can make out-of-line jumps across the process that can be very useful. So in reality, it is
more of a control (or flow) type of activity than an exception in the meaning we discussed before.

We use the BPEL Throw activity to instantiate a fault of a specific type. The type of the fault
thrown does not need to be predefined in the WSDL or BPEL process—we can just throw any
fault (name) we like. We can associate data with the fault by specifying the faultVariable attribute:

<scope name="RegisterPatientData">
 <variables>
 <variable name="localFaultNameString"
 messageType="client:PatientAppointmentServiceFaultMessage"/>
 </variables>
<faultHandlers>
 <catchAll>
 <sequence>
 <assign name="RetrieveFault">

FIGURE 6-21. BPEL scope RegisterPatientData with FaultHandlers

182 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 183

 <copy>
 <from expression="concat('the original fault', ora:getFaultName())"/>
 <to variable="localFaultNameString" part="faultPayload"/>
 </copy>
 </assign>
 </sequence>
 <throw name="Throw_PatientNotFoundFault"
 faultName="client:PatientNotFoundFault"
 faultVariable="localFaultNameString"/>
 </sequence>
 </catchAll>
</faultHandlers>

The variable used as the fault variable needs to have been defined earlier in the scope or
on some higher level. It needs to be based on a message type—not a simple or complex XML
element—in one of the WSDL documents associated with the application.

Faults that are thrown like this can be caught by higher-level faultHandlers. In this example,
the PatientNotFoundFault fault is thrown in the catchall handler of the RegisterPatientData scope.
The fault is handled by a Catch action at the process level:

<process name="PatientAppointmentService"
...
 <variables>
 ...
 <variable name="faultNameString"
 messageType="client:PatientAppointmentServiceFaultMessage"/>
 </variables>
 ...
 <faultHandlers>
 <catch faultName="client:PatientNotFoundFault"
 faultVariable="faultNameString">
 <empty name="CatchFaultThenNothing"/>
 </catch>
 </faultHandlers>

When we run the PatientDataService and feed unknown patient data in, the PatientNotFound
fault will be thrown because of the RemoteFault that occurs when the PatientDataService returns
a fault. That fault is then caught at the process level. Figure 6-22 shows the results in the run-time
console.

Sometimes we can recover from the faults—by retrying an operation after a little waiting time
or through an alternative execution path. However, some exceptions we have to accept as
irrecoverable. The best we can do for such faults is ensure that we turn them into meaningful
faults as specified in the WSDL, with relevant associated data, and inform the consumer of the
BPEL process. The latter is done in one of two ways, depending on whether the BPEL process was
invoked synchronously or asynchronously. In the synchronous case, the fault is returned via the
Reply activity:

<faultHandlers>
 <catch faultName="client:PatientNotFoundFault"
 faultVariable="faultNameString">

Chapter 6: Process-Oriented BPEL 183

 <reply name="reportAppointmentFault"
 partnerLink="PatientAppointmentService"
 portType="client:PatientAppointmentService" operation="process"
 faultName="client:PatientNotFoundFault"
 variable="faultNameString"/>
 </catch>
</faultHandlers>

In the case of asynchronous conversation, the BPEL process sends a response to the consumer
by calling an operation on the callback portType. If the process wants to communicate about faults
with asynchronous consumers, it should specify the callback portType to include an operation that
deals with such messages. Note that a third way to communicate a fault in a service is through a
notification—an e-mail or chat message to a human operator or an event on the Event Delivery
Network.

SOA Suite Fault Management Framework
Outside BPEL processes and SOA composite applications, at the level of the Fusion Middleware
Control, we can use the Fault Management Framework to also catch faults that occurred in BPEL
processes or other service components. This framework allows us to define fault policy bindings

FIGURE 6-22. Throwing and catching a business fault, defined inside the BPEL process

184 Oracle SOA Suite 11g Handbook Chapter 6: Process-Oriented BPEL 185

that prescribe automatic actions to be taken when a certain fault occurs. Such automated actions
include retrying the faulted operation, executing Java logic that may provide an alternative
workaround, and engaging a human administrator to handle the exception. The Fusion
Middleware Control provides insight into all exceptions and allows the administrator to recover
from recoverable faults. You will read more on this functionality in Chapter 16.

Undoing BPEL Scope Results Through
Compensation Handlers
BPEL processes can run for fairly long times—from less than a second to hours, days, or even
months. And in such a long period, many things can happen—things that may have an impact on
the running process. An example is the PatientAppointmentService: In the early stages of the BPEL
process, an appointment is scheduled for a patient through a call to the SchedulerService. That
service takes care of allocating resources such as a room and a doctor for the appointment and
recording the appointment in the agendas of all people involved. The patient is then notified—for
example, via e-mail—and the process goes into hibernate mode until the time of the appointment.
However, that happy flow may be interrupted when a cancellation request is sent to the process
instance. When that happens, some of the results produced earlier on in the process by scopes that
have already been successfully completed may need to be undone. In this case, we cannot—nor do
we need to—undo the notification that was sent to the patient. However, the allocation of resources
and the agenda entries created by the SchedulerService should be undone. We need to free up
those resources to make them available for other engagements.

For situations like this—when at some stage in a BPEL process instance we find out that we
need to roll back the changes caused by earlier actions in the process—the BPEL specification has
the concept of compensation. Through a compensation handler that we create for a certain
scope, we program the logic that should be executed to undo the side effects produced by that
scope. For every scope that makes changes, calls services, and causes transactions to occur, we
should consider implementing a compensation handler that undoes those changes or at least
takes the appropriate action. Note that an appropriate action to execute when a scope needs to
be compensated could consist of sending an e-mail to an administrator instructing her to make
certain manual service calls or even database changes in those cases where the services that were
called do not expose a compensate or rollback operation.

It is important to realize that a compensation handler is only ever executed for a scope that
has been completed successfully. Compensation handlers are executed automatically for scopes
that have been completed successfully and are nested in a parent scope that contains another
nested scope that caused the compensation itself (for example, by means of an exception). Scopes
that already have completed may have committed transactions themselves or invoked services
that completed transactions. Compensating for those local or remote transactions is not a simple
technical rollback but usually a functional challenge that requires from external services that they
publish compensation operations (unhire car, unallocate doctor, and so on).

We can also explicitly invoke compensation handlers through the compensateScope activity,
which we can execute for a specific scope from a faultHandler or compensationHandler on the
parent scope.

In the case of the PatientAppointmentService, we want to compensate for the appointment that
has been scheduled when that appointment is cancelled (see Figure 6-23). The appointment needs to
be unscheduled—the scheduler service needs to know that the appointment is cancelled and the
allocated resources are freed up. The actions that need to be performed for the compensation are
defined in the compensation handler that is defined against the scope that schedules the appointment:

Chapter 6: Process-Oriented BPEL 185

<scope name="ScheduleAppointment">
 <variables>...</variables>
 <compensationHandler>
 <sequence name="UnscheduleAppointment">
 <assign name="AssignValuesForCallToUnschedule">...</assign>
 <invoke name="InvokeUnscheduleService" .../>
 </sequence>
 </compensationHandler>

The parent scope contains a fault handler that catches the appointmentCancellation fault.
When that fault is caught, the ScheduleAppointment scope is explicitly compensated. That results
in that scope’s compensation handler being invoked by the BPEL engine.

The onMessage branch in the Pick activity that listens for cancellation messages will throw
the appointmentCancellation fault that indirectly results in the appointment being scheduled (see
Figure 6-24).

Note that a compensateScope activity will only execute the compensation handler for the
scope it explicitly targets. The compensation handlers for the nested scopes are not automatically
called as well—these should be called by the compensation handler in the parent scope.

FIGURE 6-23. The compensation handler defined on the ScheduleAppointment
scope and invoked from the fault handler for the appointmentCancellation fault on the
ScheduleNotifyAndWait scope

186 Oracle SOA Suite 11g Handbook

Summary
In this chapter we looked at some more advanced BPEL activities that help us to create coarse-grained
composite services that invoke various finer-grained synchronous and asynchronous services. These
activities are also helpful when we use BPEL to implement a longer-running business process that
involves human actors as well as automated services. Chapter 10 will discuss the integration of human
tasks in BPEL processes.

Correlation is an important BPEL mechanism that we discussed in this chapter. Correlation
is used by the BPEL engine to direct incoming messages to already-running instances of BPEL
processes. This allows consumers to update or interrupt existing instances or retrieve specific
information about them.

The last part of the chapter introduced fault handling in BPEL processes and discussed the
concept of compensation handlers that can be triggered upon business exceptions. These
handlers are used to undo the business effects produced by specific scopes in the BPEL process
instance that have already been executed.

The online chapter complement demonstrates in great detail and through step-by-step instructions
how the BPEL processes outlined in this chapter are to be created, deployed, and executed.

FIGURE 6-24. An appointmentCancellation fault is thrown when the appointment is cancelled.
This fault is caught at the ScheduleNotifyAndWait scope and compensated for.

Chapter
7

Mediator Service
for Straight Talk and

No Nonsense

187

188 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 189

ow that we have introduced BPEL as a service component type, we will move on
to another SCA component type that often works together with BPEL components:
the Mediator. This is an important component in the SOA Suite that takes on
some of the core responsibilities described in Part I for the enterprise service bus.

Under close scrutiny, one could argue that all that is happening in SOA composite applications
is a more or less constant flow of XML messages—for example, the incoming request message that
flows to a service component, one or more messages from that service component that flow to
adapter services or other service components, and eventually a response message that flows back to
the invoker. Mediator components facilitate these XML message flows in composite applications—
by performing validations, transformations, both content- and header-based routing and filtering on
messages, as well as adaptation from synchronous to asynchronous, and vice versa, and various
other operations.

In this chapter, we will see how to use the Mediator in composite applications. The Mediator
will help us connect mutually incompatible components and services. We will also see how the
Mediator component is the perfect way to introduce entry points as well as exits to our composite
applications through the use of adapter services, without creating dependencies between the adapter
services and the service components in our application.

The file adapter is one of the technology adapters that is typically used in conjunction with a
Mediator component. It can read incoming files as well as initiate new instances of composite
applications to process the contents from these files. It can also write message out to files. This
chapter introduces the file adapter and demonstrates how it can be used together with the Mediator.

Note that the online chapter complement available on the book’s wiki contains detailed
instructions and more screenshots illustrating individual steps in the examples outlined in this
chapter.

The Mediator: From the Real World
to the World Inside the SOA Suite
St. Matthews interacts with the outside world (patients, suppliers, healthcare providers, and so on)
using hundreds of requests and events every day—people calling, e-mailing, writing letters,
faxing, or visiting in person with specific questions, commercial offers, or complaints. They want
to speak to doctors, managers, lab staff, IT specialists, or other hospital staff. The hospital has a
pool with secretarial staff trained in handling these requests. They perform a number of very
important functions, for both the callers and the professionals that will eventually deal with the
request. These functions include:

 Screening crank calls and rejecting requests that are irrelevant, disallowed, incomplete, ■
or impossible to deal with; they will make a log entry of each call.

 Dealing with callers from many different backgrounds, different terminologies (doctors, ■
chiropractors, dentists, ambulance drivers, teenage mothers), and various languages; the
switchboard acts as the first point of contact for external parties as well as between staff
from different departments inside the hospital.

 Ensuring that all required information is assembled before the request is passed on, to ■
enable the professional who will have to process the request to do this as efficiently and
effectively as possible.

N

Chapter 7: Mediator Service for Straight Talk and No Nonsense 189

 Routing the request to the right professional at St. Matthews in the internally agreed-upon ■
way. Depending on the type of request and the professional it is forwarded to, that might
mean using a certain paper form, entering the request into an internal application, or
e-mailing a free-format message.

 Possibly following up on the request. The caller may have held the line, waiting for an ■
answer. Alternatively, the requester can be called, mailed, e-mailed, or faxed back with
a response to the request. Note that the response is sent in the format prescribed by the
communication protocol of St. Matthews; this frequently means substantially rewording
the reply from the hospital professional.

The pool is staffed at least from 7 a.m. until 8 p.m., thus making the hospital much more
available than any individual professional could ever be. Outside these hours, a voice response
system is active that allows recording of requests. Multiple requests that end up with the same
professional can be handled simultaneously by different members of the pool.

One important consequence of the pool is the insulation it provides between external parties
requesting services from the hospital and the professionals in the hospital ultimately rendering
those services. The internal workings of the hospital can remain invisible to the caller—he does
not need to know or understand them, and when they change, it will have no effect on his next
call. Besides, the specialists will have more time left to do what they do best: treat patients instead
of making appointments and so on. This insulation makes life so easy that many professionals
working in the hospital also use the pool to request services, rather than approaching their
colleagues themselves.

The Mediator Inside the SOA Suite
A Mediator performs a similar role in the SOA Suite as this hospital switchboard: It is the ultimate
messenger boy. Incoming requests to the services published in the hospital’s business domains
can be dealt with in very much the same way as the requests are processed by the pool of
secretarial staff.

Mediators can help provide a friendly interface for consumers: They can transform incoming
XML messages in a consumer-friendly format to the usually more specific, formal, strict format
mandated by some internal service that the messages are routed to. The responses can also be
transformed by the Mediator to a format that is easier for the client to understand before being sent
back—very much like the hospital switchboard rephrasing patients’ requests and doctors’ replies.

Frequently we have little or no control over the XSD of one side of message exchanges (that
is, of the external services we call). For example, when adapter services such as the database
adapter, file adapter, or AQ adapter either initiate the exchange or are at the receiving end, the
XSD representation of the message structure is typically generated for us. The same is the case
with messages sent from the composite application to external services: We do not always control
the XSD for the messages accepted by those referenced services. An important function of the
Mediator is to provide a mapping between the (canonical) model used within the composite
applications (or even within the enterprise) and the various event and message structures
delivered or required by services outside the composites.

The Mediator can receive XML messages, validate them, and route them based on their
contents to the appropriate target service at the current endpoint for that service. The Mediator
can also call one or more other services using as input a combination of the original request
message and the responses received from earlier service calls. It implements the so-called VETRO
(Validate, Enrich, Transform, Route, and Operate) pattern.

190 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 191

The Mediator can call both synchronous/asynchronous and fire-and-forget services and
provide a bridge between these two. It provides its own operations either synchronously/
asynchronously or as fire-and-forget, as desired. A Mediator component can also process business
events in addition to receiving service invocations—more on events in Chapter 9—and route the
event payload to the appropriate service provider. Instead of routing messages to other services, it
can also broadcast business events.

Mediators work well with adapter services that support alternative means of initiating service
execution than from formal invocation alone. Adapter services can feed data into the composite
application picked up from external sources such as files on the file system or an FTP server, from
e-mails, from new or changed database records, from queues or topics in MQ Series, Oracle
Advanced Queuing, or Java Messaging Service (JMS). Execution of the Mediator is not started in
this case because of externally originated service calls but by the adapter service that was
triggered to process some data from an external source. For example, the arrival of a file in a
designated directory may trigger the execution of a composite application. In a similar way,
Mediators work with adapter services to feed data to external targets, such as a file, database,
e-mail, or queue.

Mediator components can be used to implement a variety of integration patterns, such as
service virtualization, service aggregation, publish and subscribe, fan-in, and fan-out. The
Mediator plays an essential role in achieving decoupling and flexibility as well as reuse—the
essential ingredients for a successful SOA implementation.

Enterprise Service Bus: Mediator vs. Oracle Service Bus
Oracle SOA Suite contains two components that implement many characteristics of what
the industry has dubbed the enterprise service bus (pattern). An enterprise service bus (ESB)
provides decoupling between senders of service requests and the service providers. Among
the operations that we typically associate with an ESB are reliable messaging (receive and
send onward—do not hang on to a message any longer than you need to ensure it is
delivered), VETRO (Validate, Enrich, Transform, Route, Operate), service virtualization, split
and merge messages, queuing to handle unavailability of the service provider or throttle
peak loads, error handling, support for various message exchange patterns, and providing
some adaptation, for example, from an asynchronous provider to a synchronous requester.

The ESB pattern can be applied at various levels in the organization. We can discern,
for example, between the application level (for the message flow between components of
the same application), the domain level, the enterprise level, and the external level (for
message exchanges with parties outside the corporation).

Oracle SOA Suite 11g contains the Oracle Service Bus (OSB), the next incarnation of
BEA’s AquaLogic Service Bus (ALSB), as well as the Mediator component, the next
generation of the Oracle Enterprise Service Bus (OESB) that was introduced in the 10.1.3
release of the SOA Suite.

The Mediator is tightly integrated into the SOA Suite. It is primarily an intracomposite
mediation component that is deployed within a composite. OSB is often used to connect
multiple domains within the enterprise as well as to provide a service interface with
external parties.

This chapter discusses the Mediator component. In Chapter 13, we will take a close
look at the Oracle Service Bus.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 191

Note that the execution of a Mediator (instance) is typically very lightweight when compared,
for example, with a (stateful) BPEL process instance.

In short, the Mediator service engine provides a lightweight framework to mediate both at the
data and protocol levels between various producers and consumers of services and events within
the SCA service fabric and on its boundaries. It is the “man in the middle” between adapter
services, service components such as BPEL and Human Task, and external parties.

Note that the use of Mediator as man in the middle is not required per se by SOA Suite.
However, it is a best practice and provides several benefits that are discussed in this chapter.

Processing Files with Appointment Requests
Some family doctors will send the requests for appointments for their patients once per day in a
single file with comma-separated records. This file can be uploaded via a website or sent as an
e-mail attachment to a central e-mail address at St. Matthews. These files are collected in a shared
directory and need to be processed. The individual appointment requests that possibly arrive in
batch files need to be turned into calls to the Patient Appointment Service we discussed in the
previous chapter.

Introducing the Mediator and the File Adapter:
Routing and Transformation
Using the file adapter, we can create services with the capability to read incoming files and turn
the records in these files into XML messages—or that write files in various formats based on
inbound XML messages. The File Adapter Service we will create reads from files. It is wired to a
Mediator component that routes incoming messages fed in by the file adapter to consuming
services. The File Adapter Service could also start BPEL process instances; however, consider it a
best practice to link adapter services to Mediators that perform forwarding and transformation of
the XML messages produced by the adapter services.

The Mediator, in this case, routes the appointment requests retrieved from the files to the
Patient Appointment Service. It will have to perform some message transformation because the
structure and some of the data elements in the files are not perfectly matched with the Patient
Appointment Service interface.

The file format was specified many years ago and is used by several hundreds of doctors. The
format is a given, and is nonnegotiable. The service interface for the Patient Appointment Service
was specified in the previous chapter. It was not specifically designed with these doctors and
their files in mind, but we will work with it “as is.” The Mediator will help us bridge this gap.

For our discussion here, we will assume a much simplified format for both the CSV file and
the input message for the Patient Appointment Service.

NOTE
On the book’s wiki, you will find the screenshots for all steps
described in this section. The most important ones are included here
as well.

File Adapter Service for Reading the Files with Appointment Requests
Creating the File Adapter Service is a simple wizard-driven process. Let’s first run JDeveloper and
create a new SOA application with an empty composite. Next, drag and drop File Adapter in the
SOA Component Palette to the Exposed Services lane on the left side of the Composite Editor.

192 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 193

The Adapter Service Configuration Wizard opens, as shown in Figure 7-1. It lets us configure a
service based on the file adapter, described by a WSDL and supported by an XSD.

Obviously, the CSV files uploaded by the doctors do not adhere to an XSD specification.
Fortunately, the file adapter can be configured to take files in CSV format and produce XML
messages from the records in the files that can then be picked up by a Mediator for further
processing. Note that in this case the Mediator is not invoked by an external party but rather
triggered by the File Adapter Service that itself is kicked off whenever polling reveals a new file
present to be processed. Also note that a single file can trigger the instantiation by the File
Adapter Service of multiple instances of the composite application in the case of a file that
contains multiple records, where each record results in an XML message that triggers a composite
instance. This pattern—one file is dissected to trigger multiple instances—is called debatching.

The specific file format of the incoming file does not need to dictate the request message
structure specified for the BPEL process that the contents of the file eventually are fed into, because
the Mediator will do the mapping or transformation between the two structures. If the file structure
changes, or if it turns out that the BPEL process can only handle selected records from the files,

FIGURE 7-1. Adding an inbound file adapter service to the composite application

Chapter 7: Mediator Service for Straight Talk and No Nonsense 193

or if we decide that we want to audit or log the records that we process from the file, we can add
those capabilities to the Mediator without having to modify the BPEL process. In general, anything
we can do with a Mediator is probably best done in a Mediator, rather than in, for example, a
BPEL process. A Mediator is faster and lighter weight in terms of resource usage.

The File Adapter Service is configured through the wizard (see Figure 7-2). We have to
specify the structure and format of the file—single message or multiple messages (debatch or not),
single record type or multiple record types. In this case, the file contains multiple messages
(records) of a single record type. Next up are the location (directory) from where the service
should read the files as well as the name pattern for the files to process. This name pattern is used
as a filter that determines which of the files in the directory should be processed by the File
Adapter Servicer. Both “.” (single character) and “*” (any number of characters) can be used as
wildcards in the name pattern. We can also use regular expression operators to create more
complex filename filter expressions.

We should specify a logical directory name, rather than a physical directory path, as to not
couple the service definition to a deployment characteristic. In the composite.xml file or through
the environment-specific configuration plan (or even at run time through the Fusion Middleware
Control), we can specify the physical directory with which the logical directory is associated.
More on this in Chapter 17. We can indicate that files in subdirectories should be processed as
well—by marking the check box Process Files Recursively.

We typically do not want the file adapter to start processing immediately when the file first
appears: It may take some time before the file is completely transferred, especially when it is
large. By setting a wait interval, we instruct the file adapter to postpone the processing of the file
until that interval has passed.

FIGURE 7-2. Configuring the File Adapter Service

194 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 195

Files that have been processed by the File Adapter Service are usually removed from the
directory where they were uploaded; this behavior is configured through the check box labeled
“Delete Files?” If desired, we can have all files that have been processed archived to another
directory for which we can again specify both the physical or the logical directory. Be careful not
to archive into a subdirectory of the receiving directory and configure the adapter to recursively
process files in subdirectories. That would be a snake eating its own tail and choking on it.

Then we can use the Native Format Builder to create a specially annotated XSD schema that
describes the field and record delimiters and the structure of the record(s), as shown in Figure 7-3.
This step does not need to be performed if the file contents are already in XML format. The easiest
way to collect this information is by scanning a sample file that has the same structure as the files
that this File Adapter Service will process when deployed. When we browse for such a sample
file and locate it, the Native Format Builder will do a best effort so as to prepopulate the field
definitions.

We can further refine this structure, for example, by providing field names that will be used
for XML element names (see Figure 7-4). Based on this information, the builder creates the XSD
that describes the XML message created from the records in the file.

FIGURE 7-3. Using the Native Format Builder to create an XSD for the CSV file format

Chapter 7: Mediator Service for Straight Talk and No Nonsense 195

FIGURE 7-4. Further fine-tuning the Native Schema Builder

196 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 197

When we close the wizard, the service is displayed in the Composite Editor. The WSDL and
XSD files are generated as well as the ReadFileDoctorsAppointmentRequests_file.jca file that
contains the configuration details for the file adapter. The composite.xml file contains the service
element for the File Adapter Service ReadFileDoctorsAppointmentRequests. It also has the JCA
binding properties through which we can configure the physical path for the logical directory
used. Note, however, that we would typically specify the physical paths in the configuration
plans or even maintain them at run time.

File Adapter Service for Writing Records to a Log File
In addition to reading all incoming files and having them processed by the Patient Appointment
Service, the hospital wants to track all appointment requests that are received in this manner in a
log file. Especially in the early stages after this new service is introduced, such a file is deemed
necessary for clearing up cases of missing requests and settling disputes with external parties.

NOTE
The SOA Suite provides logging policies (see Chapter 15) and
composite sensors (see Chapter 16) to support tracking actions and
messages in applications without (much) impact on the application.
Using a file adapter for logging for debugging purposes is not a best
practice because it is too intrusive on the application. However, it is a
good technical demonstration of how to use a file adapter.

The file adapter is once again our friend: Not only does it read files, it can write files as well.
We can configure an outgoing File Adapter Service that creates a file-per-appointment request, a
file for a preset number of requests, or one that keeps appending a record for each request to an
ever-growing file. It is this latter option we are particularly interested in for now.

It is easiest to configure the Native Format Builder using a sample file of the output format
we desire. The first thing to do, therefore, is to create a sample file that looks just like the log
file we want this service to create for us. Our sample file has end-of-line delimited records
with comma-separated fields of Date, Doctor Id, First Name, Last Name, Gender, Urgency,
and AppointmentType.

The steps for creating the Outgoing File Adapter Service, shown in Figure 7-5, are as follows:

 1. Drag and drop File Adapter to the References lane in the Composite Editor.

 2. Configure the File Adapter Service using the sample file for creating the XSD through the
Native Format Builder.

 3. Make sure to use a Logical Directory name when specifying the directory where the log
file is to be created. At some point between now and the deployment of the application
the property created for the logical directory should be set, referring to an existing
directory on the file system on which the SOA Suite is running.

 For now we will create a single log file with entries for every appointment request we
receive. The file has a static name: AppointmentRequestsLog.txt. Later on we will see
how we could distribute the appointment requests over log files per day, appointment
type, doctor ID, or even the first letter of the last name of the patient.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 197

 4. To indicate that the service should add a record to an existing file, we need to check the
check box labeled Append To Existing File.

 5. Specify the format of the log file by sampling a file with the desired comma-delimited or
alternative format and have the XSD generated by the Native Format Builder.

The composite.xml file is updated with a new reference for the outbound File Adapter
Service. Other components can create wires to this reference and thus call the File Adapter
Service.

Using a Mediator to Process the Doctor’s Incoming Appointment Request Files
At this point, we have an incoming File Adapter Service that sends XML messages based on the
files it reads—but that go nowhere—and an outgoing File Adapter Service that is ready to process
XML messages and send them into a file. However, nothing is connected, so nothing will happen
when we deploy the composite application as is.

FIGURE 7-5. Creating the outbound File Adapter Service

198 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 199

It is time to bring a Mediator onto the stage that will link the Incoming File (Service) with the
Outgoing Log File (Service) by taking the messages from the former and, after transforming them
into the appropriate structure, routing them to the latter (and any other relevant target services).

We create a Mediator by dragging a Mediator service component from the Component
Palette and dropping it in the Components lane in the Composite Editor—as done in Figure 7-6.
A dialog appears that has us provide a name for the Mediator service (HandleDoctorsAppointment
Request, in this case). We will specify the interface later—by means of wiring the output from the
File Adapter Service to this Mediator, so we choose the template Specify Interface Later.

In general, we would prefer a “contract first design” approach, where we start with the XSD
and, based on that, the WSDL that specifies the interface of the Mediator. However, when we use
technology adapters, that approach is not feasible because the adapter will derive an XSD from
whatever source or target it accesses—the XML structure derived from the CSV file structure in
this case—and we have to work with it. When the Mediator sits between a Technology Adapter
Service on one side and a predefined service component or another adapter service on the other,
it has no room left to define its own contract.

When we finish the Create Mediator Wizard, the files HandleDoctorsAppointmentRequest.
mplan and HandleDoctorsAppointmentRequest.componentType are created. The former file
contains the definition of the Mediator’s internal operations, and is nearly empty at this stage. The
latter describes the Mediator as an SCA component, with its services and references. The composite.
xml file is extended with the component element for HandleDoctorsAppointmentRequest. Note that
we will not expose this component at the composite level, so no Service element is created for it.

In the Composite Editor, we will now wire the incoming file adapter service to the Mediator
by simply dragging the ReadFileDoctorsAppointmentRequests Service diamond to the Mediator

FIGURE 7-6. Add Mediator HandleDoctorsAppointmentRequest to the composite application

Chapter 7: Mediator Service for Straight Talk and No Nonsense 199

(see Figure 7-7). Thus, we indicate that the service will send a request for every record (file) it
processes to the Mediator. This request will have the structure prescribed in the XSD file created
by the Native Format Builder.

At this point, we have specified that the File Adapter Service that reads doctor appointment
request files from a central directory feeds the XML messages it creates from the records in
those files into the Mediator. The input data structure for the Mediator is now known because it
is based on the XSD produced by the File Adapter Service. We now need to specify what the
Mediator should do with those XML messages. Where do we want each doctor’s appointment
request to go?

In this case, we want records of the appointment requests to be collected in one large log file.
And, more importantly, we want each request to be sent to the Patient Appointment Service for
processing, leading to a real appointment for a real patient.

We instruct the Mediator on where to send messages by configuring routing rules. The main
parts of a routing rule are as follows:

 Target service ■ The destination of the XML message, which is an operation on a
component in the composite application or an external reference hooked into the
composite application. Instead of a target service, we can also specify an event to
be published or an echo operation to be performed; the latter would just return the
transformed request.

 Mapping ■ How should the input XML message be transformed into an XML format
understood by the target service?

 Filter Condition ■ (optional) What condition should the payload (content) or headers
of the message satisfy in order for the message to be sent to this target service (content-
based routing)?

Other optional elements of a routing rule are validation using a Schematron file, manipulation
of message header properties, and a Java callout—a custom Java class that can be used for
logging, auditing, message preparation and manipulation, and anything else before, during, or
after the transformation and routing of the message.

FIGURE 7-7. Wire the Mediator to both inbound and outbound File Adapter Services

200 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 201

Note that a Mediator can send a message to multiple target services, with a specific mapping
and possibly a filter condition for each target service. These target services can all be called at the
same time (in parallel) or sequentially—where the next call is only made when the previous call
is complete. The reply from one target service can be forwarded to another. More on this later in
this chapter when we discuss message enrichment.

Routing rules can each have a filter condition that determines whether or not they will be
followed. Additionally, one of the routing rules can be marked as the “default routing rule.” This
rule is activated when all other rules have a filter condition and this condition evaluates to false for
all of them. The default routing rule is the “otherwise” case. It will step in when no other rule does.

We can wire the Mediator component to the LogDoctorsAppointmentRequests file adapter
service and by doing so create a routing rule, as shown earlier in Figure 7-7. To further configure
the routing rule, double-click the Mediator in the Composite Editor. The Mediator Editor opens. It
lists a single operation—ReadAppointmentRequestsFile—under the heading Routing Rules. There
is one routing rule within this operation—it targets the LogDoctorsAppointmentRequest.
WriteAppointmentRequestInLogFile operation. New routing rules can be added by clicking the
green plus icon.

The basics for the routing rule are defined. The link between input message and target service
has been established. At this point, we can specify additional validation to be performed on the
input message, over and above the XSD used to describe the message (which can but does not
need to be explicitly validated), for example, because a target service has specific requirements
that can only be met when the input message adheres to special validation rules. This validation is
based on a Schematron XML validation document that can be associated with a specific part in the
input message. For more information on Schematron, see www.schematron.com.

We do not have any special validation requirements. However, what we do need is a
mapping from the input message—produced by the File Adapter Service according to the XSD
created by the Native Format Builder—to the XML format prescribed by the XSD for the input
message for the Log File Writer (and later on for the appointment service). Click the mapping icon
to specify this mapping, as shown in Figure 7-8. The pop-up that appears allows us to select an
existing Mapper file or create a new one. In this case, we will create a new one.

Make sure to provide a meaningful name for the Mapper file, one that clearly indicates what
is being mapped to what. When the number of artifacts in the composite application starts to
grow and the size of the team working on these artifacts increases, the use of meaningful,
easy-to-interpret names is invaluable and saves a lot of time and frustration. In this case, a
workable name could be doctorAppointmentRequestFromFileRoot_To_AppointmentRequestLog.
xsl. The extension of this file indicates what a Mapper file really is: an XSLT stylesheet for
transforming XML messages. You can both use the visual mapping editor as well as edit the raw
XSLT source. XSLT stands for XML Stylesheet Language for Transformations, one of the core W3C
standards for XML technology. Instead of using the visual mapping editor, you can switch to the
Source view and program the mapping directly in XSLT. Some advanced transformation steps are
not supported by the mapping editor and have to be written directly in the source. More on this
later in the chapter and in Appendix B.

Note that XSLT Mapper files are, by default, placed in the XSL directory whereas generated
XSD files are placed in the XSD directory of the composite. It is a good design practice to also use
these directories for storing your own XSD and XSLT files.

The mapping editor opens (see Figure 7-9). When you create a Mapper file, you basically
specify the XML conversion path from the source or input XSD to the target service’s XSD. The left
side of the mapping editor shows a tree structure representing the input XSD, and the right side
shows a tree for the target XSD. You can create a mapping from elements and attributes in the

Chapter 7: Mediator Service for Straight Talk and No Nonsense 201

FIGURE 7-8. Inspect the routing rule and create the message mapping

FIGURE 7-9. The mapping editor for creating the transformation from the source message format
to the target service’s input message format

202 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 203

source tree to elements and attributes in the target tree by dragging a source element and dropping
it on the associated target element. Alternatively, you may drag XPath functions from the palette on
the far right and drop those in the middle zone. The output of these functions can be connected to
an element in the target tree, because the function result surely feeds into the resulting XML
message we are putting together. The input for a function can consist of a single element from the
source tree or a combination of multiple elements. For example, the concat() function can take an
unlimited number of String-typed input parameters that are combined to produce a single result
that is mapped to an element in the target tree.

You can chain multiple functions by making the output of one function one of the inputs for
the next. You could, for example, connect a source element to a substring-before function, take
the output and connect it to uppercase, and connect that output to a concat. Note that some
functions do not need an input at all, such as current-date, current-time, and generate-guid. We
can also assign constant values (XSL Text elements) to target elements, not requiring a function or
an input element.

Not all elements in the source tree need to be connected to a function or target element,
because not all data in an input message needs to be relevant for a particular target service. At the
same time, not all target elements need to have a mapping that populates them with a value;
when a target element is not mapped to, it will not appear in the transformation result.

Straightforward mappings can be created from DoctorRequestId, Gender, Birthdate, Priority,
AppointmentType, and LabTests to their counterparts in the target tree. The target element
PatientName is the concatenation from FirstName and LastName. The RequestDate is set using
the XPath function current-date.

Extracting the Doctor Identifier from the Filename
An interesting element in the target tree is DoctorId: The doctor ID is not available inside the XML
messages based on records in the file that is processed. However, the name of the file contains
both the doctor identification and the date on which the requests were generated. Filenames are
specified like <doctor_id>_<requestDate>_additionalnaming.txt. So we need to get hold of the
doctor ID from the filename.

All adapter services send headers with metadata associated with the XML messages. This
header data is frequently useful to learn more about the origin of a message. The header passed
along by the File Adapter Service, for example, contains elements such as FileName and
DirectoryName. The Mediator allows us to retrieve information from the header of XML messages
as well as from the content of the messages.

To get access to the filename, we need to make use of a special predefined Oracle XPath
function: mhdr:getProperty(propertyname). It can be found on the Advanced Components Palette
in the section labeled “Mediator Functions.”

This special XPath function is used to extract information from message headers (and can also
be used in BPEL Assign activities). In this case, we need to extract the filename, which is retrieved
under the property name jca.file.FileName. Because the doctor ID can be retrieved from the
filename by taking the substring before the first appearance of an underscore character, the
complete expression value for DoctorId becomes:

substring-before(mhdr:getProperty("in.property.jca.file.FileName"),"_")

Testing the Mapping
The mapping editor offers a testing facility. The context menu for the middle section contains the
Test option, as shown in Figure 7-10.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 203

By selecting that option, we can specify an existing source XML file—one that adheres to the
XSD—or have the tool generate one for us. We can also set the target XML file that should be
created when running the mapping. When we click OK, the mapping is performed on the source
XML file. The result is displayed and enables us to verify whether the mapping runs at all (that is,
is correct) and whether its result is to our liking and what we expected.

NOTE
The mhdr:getProperty() function will not work well in this XSL map
test, so comment it out before running the test.

Complex Mapping: Constructions and XSLT
The mapping editor supports more complex situations, such as source XSD documents with
choice constructs and elements that have multiple occurrences. We can create a for-each node in

FIGURE 7-10. Testing the XSL map

204 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 205

the target tree that can be connected with such a multiple-occurrence element. Thus, we instruct
the mapping engine to create the elements under the for-each node for every occurrence of the
source element. The target tree can also contain “if” and “choose” nodes. The if node instructs
inclusion of contents when a condition is satisfied. The choose node is accompanied by one or
more “when” children and optionally an “otherwise” child. The first “choose” child whose
condition is satisfied will have its contents added to the target document.

Taking the DoctorsAppointmentRequestsProcessor Application for a Test Drive
The first stage of our composite application DoctorsAppointmentRequestsProcessor is now almost
complete and ready for deployment. The ReadFileDoctorsAppointmentRequests File Adapter
Service is wired to the HandleDoctorsAppointmentRequest Mediator, which routes the messages,
after appropriate transformation, to the LogDoctorsAppointmentRequest File Adapter Service.
Later on, we will expand the Mediator to also trigger the AppointmentService by sending a
request to it.

The one thing we may need to do before we can deploy the application is to configure values
for the properties DOCTOR_APPOINTMENTREQUESTS_DIRECTORY and LOG_DOCTOR_
APPOINTMENTREQUESTS_OUTPUT_DIRECTORY, which specify the directories from where
files are read and into which files are written. One approach is the use of configuration plans (see
Chapter 17). We create a plan for each environment that the application will be deployed to, and
we can set the values of such properties as physical directories in these plans to different values
per target run time.

The next steps to try out the composite application are simple.

 1. Make sure the SOA Suite is running.

 2. Compile and deploy the project using the context menu option. Right-click the
composite.xml file and select Deploy.

 3. When deployment is complete, copy one or more files with appointment requests to the
poll directory—the physical directory specified in the composite.xml file for the property
DOCTOR_APPOINTMENTREQUESTS_DIRECTORY. Make sure these files follow the
naming convention <doctorId>_<requestDate>_somefreetextofanyformat.txt and that the
contents are lines with comma-separated fields just like the sample file.

XSLT: The XML Stylesheet Language for Transformations
XSLT (or XML Stylesheet Language for Transformations) is an essential part of the XML
standards defined by the World Wide Web consortium (W3C). XSLT prescribes the
transformation of a source XML document into a target document (often XML, but can also
be HTML, plain text, or another text-based document). XSL is template based instead of
being very procedural. An XSL processor interprets the XSLT document, applies its rules to a
source XML document, and produces a target document. Version 1.0 was released in 1999,
and its successor—XSLT 2.0—was born in 2007.

XSLT documents are XML documents with elements from the special www.w3.org/1999/
XSL/Transform namespace (usually with xsl: as prefix). These elements use XPath expressions
to specify which data elements should be extracted from the source XML document, how
they should be transformed, and where they are to be placed in the target document.

More on XSLT can be found in Appendix B and on the W3C site: www.w3.org/TR/xslt.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 205

 4. The composite application should remove the files from the directory you copied them
to, process them, and archive them in the archive directory. This processing should result
in records being appended to the file AppointmentRequestsLog.txt.

Figure 7-11 shows what we expect to happen as described in steps 3 and 4: file Doctor871321_
20101112_DailyAppointmentRequestFile.txt in directory C:\IncomingDoctorsAppointmentRequests
is picked up, processed, and archived. The result is in the C:\temp\stmatthews\logs directory.

We can inspect the processing of the files through the SOA console (see Figure 7-12). Every
record in every file results in a Mediator instance that writes a single record to the log file.

Sending the Appointment Requests
to the Patient Appointment Service
What we have created up to this point is encouraging: The files uploaded by the general
practitioners are picked up and processed. Every appointment request from those files is turned
into an XML message that can be handled, as demonstrated by the log file created. However, the
true value, of course, lies in feeding these requests to the Patient Appointment Service, because
that is the service that really needs to handle the requests.

We can achieve this with three straightforward modifications to the DoctorsAppointment
RequestsProcessor composite: Add a Web Service reference to the composite for the
PatientAppointmentService that is already deployed on the SOA Suite, add a routing rule to the
Mediator and link it to this reference, and then create the mapping from the message sent by the
File Adapter Service to the request message format required by the PatientAppointmentService.

Go to the Composite Editor. Drag and drop the WebService adapter to the References swimlane.
Configure the PatientAppointmentService WebService reference. Open the WSDL browser, select
Resource Palette in the drop-down, and select the deployed PatientAppointmentService under the
SOA node in the SOA Resource Browser. Note that in “real life,” we would not want such a direct

FIGURE 7-11. The effect of running the composite application on the file system

206 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 207

dependency on a deployed service and WSDL location. We would use a Service Registry or other
service virtualization layer of sorts or apply configuration plans to dynamically set the environment-
specific endpoint for the service.

Next, wire the Mediator component to the PatientAppointmentService WebService reference.
Select the “process” operation as the target for this wire, as shown in Figure 7-13.

FIGURE 7-12. Inspecting the SOA console to trace individual instances of the Doctors
AppointmentRequestsProcessor application

FIGURE 7-13. Wire the HandleDoctorsAppointmentRequest Mediator to reference
PatientAppointmentService

Chapter 7: Mediator Service for Straight Talk and No Nonsense 207

Go to the edit page for the Mediator. A new routing rule for the ReadAppointmentRequests
File operation has been added, with the PatientAppointmentService as the target. We need to
create the mapping for the request message passed in by the File Adapter Service to the message
format required by the PatientAppointmentService. This mapping is fairly straightforward—with
the same approach to extracting the DoctorId from the filename using the getProperty() XPath
function.

The composite application now has the Mediator accepting input from a single service and
routing messages to two references—the (external) PatientAppointmentService and the (local)
logging service.

When we redeploy the composite application, the Mediator will now route each incoming
AppointmentRequest message from the File Adapter Service to the logging service and now to the
PatientAppointmentService as well, which in turn will take care of scheduling the appointment,
informing the patient, and enlightening other internal applications. Figure 7-14 shows the Fusion
Middleware Control with the instances that processed a file with two DoctorAppointmentRequests.
Note how we can track the flow of the messages through both composites, along every component,
service, and reference binding that it passes.

Small-time Enrichment: Adding an Appointment Identifier to Logging
The PatientAppointmentService returns a reply that acts as the confirmation that the appointment
will be scheduled. It includes the appointmentIdentifier. This identifier can later be used to
retrieve additional information or to cancel the appointment. A question presents itself: What
should we do with this reply in the DoctorsAppointmentRequestsProcessor? Obviously the
invoker of the Mediator—the essentially one-way file adapter service that reads the file containing
the appointment request—is not interested in this identifier. We could just forget about it, or
alternatively we could include this appointmentIdentifier in the log file that is being written.

To achieve this last objective—which is a simple form of message enrichment—we will take
the response from the PatientAppointmentService and redirect it to the LogDoctorsAppointment
RequestsService. We add the response from the PatientAppointmentService to the information
from the original message from the File Adapter Service. We need to add the AppointmentIdentifier

FIGURE 7-14. Fusion Middleware Control showing the integrated flow through Handle
DoctorsAppointmentRequest and PatientAppointmentService

208 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 209

to the XML schema definition for the logging service. Edit the LoggedDoctorsAppointmentRequest
File.xsd file and add the following element under the RequestId element:

<xsd:element name="AppointmentIdentifier" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:quotedBy=""" />

The routing rule that routes the message from the ReadFileDoctorsAppointmentRequests to
the PatientAppointmentService has a part for configuring the routing for the synchronous reply.
The reply needs to be forwarded to the WriteAppointmentRequestInLogFile operation on the
LogDoctorsAppointmentRequestsService service. Figure 7-15 shows how to configure the routing
rule.

Next, click the Mapping icon to create the transformation map. In the dialog that pops up,
choose to create a new Mapper file. Then mark the check box labeled Include Request In The
Reply Payload. This crucial setting makes the contents of the message that went into this routing
rule—that is, the message sent by the ReadFileDoctorsAppointmentRequests service—available
during the transformation to the message that is the input for the LogDoctorsAppointmentRequests
Service. The original request is available from an XSLT variable called $initial. Figure 7-16 shows
these steps and the resulting Mapper file.

FIGURE 7-15. Update the routing rule to PatientAppointmentService by forwarding the reply to
LogDoctorsAppointmentRequestsService

Chapter 7: Mediator Service for Straight Talk and No Nonsense 209

The mapping is similar to the one in doctorAppointmentRequestRoot_To_Appointment
Request.xsl. However, this time the $initial variable is the provider of most of the data. The
appointmentIdentifier that gets contributed by the AppointmentService is mapped to the new
AppointmentIdentifier element in the log file.

The original routing rule to LogDoctorsAppointmentRequestsService can now be deleted from
the Mediator’s set of routing rules; otherwise, we would send each AppointmentRequest message
to the log file twice.

Figure 7-17 shows what path messages read from the file will follow through our application.

FIGURE 7-16. Map the combination of the reply from PatientAppointmentService and the
original message to the LogDoctorsAppointmentRequestsService

210 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 211

Adding Flexibility Using Filtering
and Transformation of Messages
To ease the burden on all the family doctors in the wider area, St. Matthews has allowed doctors
to simply include all requests for all types of appointments in the files they upload to the hospital.
This includes appointments for healthcare not provided by St. Matthews itself, such as dental care
and appointments with chiropractors. St. Matthews has arrangements with several regional
centers and organizations for such external appointments: St. Matthews will collect and forward
such requests from a large number of general practitioners. Family doctors pay St. Matthews a
small fee for this additional service.

The Mediator we have introduced in the previous section will be extended to filter the
appointment request messages: Any request for an externally provided type of healthcare should
not go to the Patient Appointment Service. The Mediator should cater for special message routing
for various categories of external healthcare, initially for the regional dentists, association and the
chiropractors, society. Later on we may introduce other external partners as well.

Content-based Routing for External Appointment Requests
Both the dentists, association and the chiropractors, society make a Web Service available, with
similar though slightly distinct operations for submitting an appointment request. These services
are specified in our composite application as references. These references can then be wired as a
target service in a routing rule in a Mediator.

FIGURE 7-17. AppointmentRequests arriving in a file are enriched in the PatientAppointment
Service and then forwarded to the logger

Chapter 7: Mediator Service for Straight Talk and No Nonsense 211

We can choose between two strategies:

 Use a single Mediator that takes the XML messages from the File Adapter Service and ■
create multiple mappings between the XSD based on the file format and each of the
target services.

 Use one Mediator to map the XML message from the File Adapter Service to a more ■
generic message (canonical) format and a second Mediator to route and map that generic
message to each of the target services.

Even though the second approach, shown in Figure 7-18, requires the definition of an
additional Mediator component, it decouples the overall application from the format of the
incoming files. Whenever the incoming file format changes, chances are that we need to change the
XSD that specifies the input to the first Mediator and therefore the mapping (XSLT) for each of the
routing rules in this Mediator. If we have the first Mediator map to a generic, semipermanent
AppointmentRequest message structure, then this message format is the robust input for the second
Mediator that maps the message and sends it on its merry way to the target services. The second
Mediator and all its routing rules and mappings are insulated from changes in the File Adapter
Service. Even additional or alternative entry points into our composite—such as a Database Adapter
Service—providing appointment requests will not have an impact on this second Mediator.

FIGURE 7-18. The double Mediator approach—decoupling from the external medical service
providers

212 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 213

Decoupling, hiding implementation details, and insulating from the impact of change are our
main objectives with SOA in general. It is hopefully obvious that we should adopt—and therefore
will adopt—the second approach based on a canonical model.

The steps, therefore, are as follows:

 Create the AppointmentRequest data structure—the canonical data model—in the form ■
of a new XSD file. The canonical model should be able to hold all data that is required
or optional for the services involved. Figure 7-19 shows a visual representation of the
XSD file.

 We should be very careful with specifying elements as mandatory; note that the
canonical model we devise is not only to be used for the current services, but hopefully
for future services as well. Applying too strict constraints may limit the reuse potential of
the canonical data structure. Too few or too lenient constraints, on the other hand, may
pose security risks or place too much burden on downstream components.

 The naming of elements should not be geared toward specific services but rather be as
enterprise-wide as possible, following naming conventions that apply across the board
(canonical data model). We are, for example, likely to encounter elements for first name
and last name in many canonical data structures. Ideally, we would always reuse the
same generic definition of a Person element, inheriting from the central XSDs describing
the canonical data model.

 The structure of the canonical model should be easy to understand. Spending a lot of
time on creating a sound, logical canonical definition is time well spent!

 Create a new Mediator called AppointmentRequestRouter. The WSDL for this Mediator ■
is generated based on the canonical AppointmentRequest XSD; it has a single portType
with a one-way operation ProcessAppointmentRequest.

 Wire the Mediator HandleDoctorsAppointmentRequest to the new AppointmentRequest ■
Router; this will create a new routing rule in the Mediator HandleDoctorsAppointment
Request with the Mediator AppointmentRequestRouter as the target service. Next,
create a mapping from the message structure specified by the File Adapter Service to the
canonical AppointmentRequest structure that the AppointmentRequestRouter takes as
its input. The DoctorId is derived once again from the header property on the incoming
message from the File Adapter Service.

 Remove the existing routing rules from HandleDoctorsAppointmentRequest to the ■
PatientAppointmentService reference and to the LogDoctorsAppointmentRequests
reference. JDeveloper warns us that we will now have a routing rule without a target.
The routing rule has become obsolete, so let’s remove that routing rule because it is no
longer needed.

 Create WebService references to the DentistServiceCenter and the Chiropractors ■
AppointmentProcessorService.

Routing Rules with Filter Expressions
Shortly we will be creating routing rules from the AppointmentRequestRouter to the internal
PatientAppointmentService as well as each of the external services, starting with the dentists and

Chapter 7: Mediator Service for Straight Talk and No Nonsense 213

FIGURE 7-19. Visual representation of part of the Canonical Appointment Request format

214 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 215

the chiropractors. Each routing rule should forward only selected appointment request messages.
The type of appointment is indicated in the appointment request records and exposed in the XSD
through the AppointmentType element.

In this chapter, we assume a very simplistic, hard-coded approach to recognize the type of
the appointment; this will be refined in later chapters. For now, appointments for dental care are
to be identified from the values Q1, Q2, and Q4 for the AppointmentType. When the
AppointmentType starts with W, the appointment is for an external chiropractor. At this moment,
all other appointment requests are for the internal appointment service at St. Matthews itself.

We discussed earlier that the Mediator can perform content-based routing. What that means
is that messages are sent to a target service if and only if their contents (or header details) satisfy
the filter expression specified for the routing rule.

When editing routing rules, we can click the filter expression field—the field with the funnel
icon. A filter expression is an XPath expression that evaluates to true or false, indicating whether
or not the target service will be invoked. The expression may use all XPath functions available in
the SOA Suite, including potential user-defined XPath extensions. The expression can refer to the
content of the source XML message as well as the values of message header properties.

We first wire AppointmentRequestRouter to the internal PatientAppointmentService, thus
creating a new routing rule for the Mediator. Next, we specify the filter condition for this routing
rule, which specifies that if the Appointment Type is not equal to Q1, Q2, or Q4 and also does
not start with a capital W, then this routing rule takes effect (Figure 7-20):

orcl:index-within-string
(';Q1;Q2:Q4;'
, concat(';',$in.request/inp1:AppointmentRequest...
 .../inp1:appointmentRequestHeader/inp1:appointmentType,';')
) = -1
and not
(starts-with
 ($in.request/inp1:AppointmentRequest/inp1:appointmentRequestHeader...
 .../inp1:appointmentType,'W')
)

Note that although this demonstrates the content-based filtering and routing that the Mediator
can do for us, it is not the best way of implementing this particular requirement. The current rules
for routing the requests are quite likely to change—for example, as new appointment types are
introduced or the hospital starts providing dental services. Each change would require a developer
to change this routing rule and the application to be redeployed. In the next chapter, we will
discuss the Decision Service (aka business rule component), which we can use to implement
dynamic routing rules. Such rules can be changed quite easily at run time by nontechnical staff in
roles such as business analyst, application administrator, and process owner.

Back to the routing rule: We need to create the mapping from the canonical appointment
request to the message structure required by the PatientAppointmentService. Creating this
mapping to the AppointmentService is a lot easier now, because the canonical structure is clear,
without peculiarities such as the message header properties that should be retrieved and
processed by various XPath functions.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 215

Enriching Messages with the Referral Identifier
St. Matthews wants to keep track of all referrals it has forwarded to each of the external partners:
After all, the hospital charges the partners a small fee for each forwarded referral. Every forwarded
referral is recorded by a RegisterReferralToPartner service that stores the referral and returns a
unique registration number that must be included in the message sent to the external healthcare
partner, because that same number will be part of the invoice sent later on to the partner.

Enriching a message can be done by a Mediator: The message is routed to a two-way—
usually synchronous—service that provides the enrichment data, and the reply from that
enrichment provider is routed to the next Mediator or the (external) target service.

NOTE
The Mediator cannot return the enriched message back to the original
requester—it can only be forwarded to a downstream target.

FIGURE 7-20. Specifying the filter condition for appointment requests that are not intended for
external medical services

216 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 217

In this case, we have the AppointmentRequestRouter call the RegisterReferralToPartner service
for all appointment requests intended for external partners. We use a filter expression to select
those messages, the logically reverse from the expression used for the internal appointments.

The same remarks with regard to hard-coded logic that is hard to maintain and the better
practice of using a business rule component apply here. The next chapter revisits this project to
address that point.

The RegisterReferralToPartner service requires a request message that contains a partnerLabel
element that indicates the external partner for which the appointment referral is intended—and
that should be billed for it. The supported values at present are CHIR, DENT, and STMA. We
need to include an XSLT snippet in the Source view of the mapping editor in which the value of
this element is derived from the value of the AppointmentType, using XSLT’s choose construct.

We cannot use filter expressions to determine where to send the reply that we receive from the
RegisterReferralToPartner service invoked by the Mediator. We need a new Mediator for this. So in
this case we have the option to send messages from the appointment request router to two different
Mediators—one each for dentists and chiropractors—and have both these Mediators do the
enrichment via the RegisterReferralToPartner service, or have only one Mediator call that
RegisterReferralToPartner service followed by a Mediator that filters between various target services.

There is no generic best solution for this. Here I have assumed that St. Matthews will support
additional partner services in the future and that for all of them we will need the enrichment by the
RegisterReferralToPartner service, so it makes sense to have the enriched message processed by a
single Mediator that routes messages based on content—AppointmentType—to the appropriate
partner target service. This approach is demonstrated in Figure 7-21.

FIGURE 7-21. The composite application with the AppointmentRequestRouter that calls
RegisterReferralToPartner and forwards the reply to HandleAppointmentRequestFor
ExternalPartner

Chapter 7: Mediator Service for Straight Talk and No Nonsense 217

The path that some of our messages will follow is now distinctly curved: First they travel to
the RegisterReferralToPartner service and the response from that service is used to enrich the
original AppointmentRequest that is then forwarded to the appropriate external target service.

The reply from the RegisterReferralToPartner service is routed to a new Mediator—called Han
dleAppointmentRequestForExternalPartner—that routes the message to either the dentists or the
chiropractors. This Mediator is created based on the WSDL document HandleAppointmentRequest
ForExternalPartner.wsdl, which defines a single operation, processExternalAppointmentRequest,
in the one-way portType processExternalAppointmentRequest_ptt, taking an input message based
on the canonical appointment request.

The routing rule in AppointmentRequestRouter that routes the messages to the RegisterReferral
ToPartner service can be configured to forward the synchronous reply from the RegisterReferralTo
Partner service to some target, as shown in Figure 7-22. We select the processExternalAppointment
Request operation on the HandleAppointmentRequestForExternalPartner service as the target for
this reply.

NOTE
No filter conditions can be specified for content-based routing of
the reply.

FIGURE 7-22. A Mediator’s routing rule to a synchronous target service allows configuration of
how to deal with the synchronous reply: where to send it and how to map it

218 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 219

Next, we click the Mapping icon to create the transformation map for mapping the
synchronous reply to the HandleAppointmentRequestForExternalPartner service. In the dialog that
pops up, we elect to create a new Mapper file. And we mark the check box labeled Include
Request in the Reply Payload (see Figure 7-23). This crucial setting makes the contents of the
message that went into this routing rule—that is, the message sent to the AppointmentRequest
Router service—available during the transformation to the message that is the input for the
HandleAppointmentRequestForExternalPartner.

The original request is available from an XSLT variable called $initial. This variable is shown
in the source tree on the left side of the mapping editor. We can drag nodes from this variable—
representing the canonical appointment request message that was sent to this Mediator—to the
message flowing out of the Mediator in the same way as we wire nodes from the reply from the
RegisterReferralToPartner service.

Note that we can now make good use of the auto-map capabilities in the mapping editor: We
can drag the inp1:AppointmentRequest node under initial.request to the AppointmentRequest
node under target in the target tree. The mapping editor presents us with the Auto Map dialog,
where we can set some preferences as to how the tool can recognize source and target nodes it
can connect. In this case, we can accept all the default settings because we are mapping between
the same canonical appointment request structure, so all nodes with the same name can be
auto-mapped. The result is shown in Figure 7-24.

FIGURE 7-23. Create a mapping of the reply (the referralIdentifier) and the original request
message to HandleAppointmentRequestForExternalPartner

Chapter 7: Mediator Service for Straight Talk and No Nonsense 219

The HandleAppointmentRequestForExternalPartner Mediator should be wired to both the
ChiropractorsAppointmentProcessorService and the DentistServiceCenter. Associated with each
wire is a parallel routing rule with a filter expression based on the appointment type.

The final step now is to add a (parallel) routing rule to the AppointmentRequestRouter that
sends details on each appointment request to the LogDoctorsAppointmentRequest service to have
the request logged in the designated file. This logging does not contain the referral identifier or
the appointment identifier—it is just a record of what the application has processed. Wire
AppointmentRequestRouter to the outbound File Adapter Service LogDoctorsAppointment
Requests. Set the routing rule to parallel and create the mapping from the canonical appointment
request to the logger. No filter expression is required for this routing rule.

Note that in Chapter 15, we will investigate the use of logging policies to achieve the same
result without needing to add SOA components such as Mediators. In case of OWSM, this is done
through configuration and the capabilities of the underlying infrastructure.

After we deploy the composite application to the SOA runtime—and under the assumption
that all references are already available—we can activate the DoctorsAppointmentRequests
Processor by copying one or more files with appointment requests to the directory specified in
the composite.xml file. Such a file is picked up and processed by the File Adapter Service
component, several Mediators, and the logging service. Depending on the appointment type, it
may also activate the enrichment service—RegisterReferralToPartner—as well as one of the three
appointment services—for St. Matthews itself, the dentists, or the chiropractors.

Figure 7-25 shows the flow trace in the Fusion Middleware Control after processing a single
file with four appointment requests, two of which are for external partners.

FIGURE 7-24. Edit the mapping to the HandleAppointmentRequestForExternalPartner in the
XSLT Mapper

220 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 221

FIGURE 7-25. Message flow trace in FMW Control after processing a single file with four
appointment requests

Mediator and Message Exchange Patterns
You may have noticed that so far we have only discussed one-way fire-and-forget-type
patterns for the Mediator: A message is received, forwarded, and forgotten. No reply is
returned from the Mediator, neither synchronously nor asynchronously. This made our
discussion somewhat simpler, but it is important to realize that the Mediator is not limited
to the one-way fire-and-forget message exchange pattern. The Mediator can engage in a
synchronous message exchange with its invoker as well as enter an asynchronous
conversation, and it can invoke both synchronous and asynchronous services. It can even
convert from synchronous to asynchronous, and vice versa.

This last capability means, for example, that if your client does not support asynchronous
service interaction yet and it wants to invoke an asynchronous service, you can interject a
Mediator that calls the asynchronous service yet exposes a synchronous service interface to
its clients. Note that such an adaptation can only be meaningful if the asynchronous service
is relatively quick with its responses; otherwise, the synchronous client may be blocked for a
long time. Also, a timeout (exception) may occur. In the same way, a Mediator can in turn
expose a synchronous service—that may sometimes take fairly long to complete—as an
asynchronous one. For example, most Database Adapter Services involving SQL and PL/SQL
are intrinsically synchronous. However, there may be good reasons for exposing these
services with an asynchronous interface—and the Mediator can be used for that.

So the Mediator does data transformation, protocol transformation, and exchange pattern
transformation as well as supports event publication and consumption (see Chapter 9).

Chapter 7: Mediator Service for Straight Talk and No Nonsense 221

Dynamically Distributing the Appointment Requests over Log Files
The AppointmentRequestRouter routes every appointment request to the LogDoctorsAppointment
Request File Adapter Service to have a log entry written to the file. Until now, all entries were
appended to the same file, whose name was set as a configurable deployment-time (and run-time)
property. As we discussed earlier in this chapter, it is possible to send log entries to specific (and
specifically named) log files within the same file adapter. We do this by specifying the filename
message header property when routing the message to the outgoing File Adapter Service.

To configure this more specialized naming convention for the log files, go to the composite
editor and click the AppointmentRequestRouter. The Mediator differentiates between a message
body transformation and message header transformation, so instead of extending the mapping,
click the Assign Values icon for the routing rule that forwards the message to the File Adapter
Service. Select the appropriate property—jca.file.FileName—and specify the XPath expression
used for deriving the name of the file. In this case, we will create log files for every letter of the
alphabet—each one will contain records for all appointment requests for patients whose last
name starts with that letter. The expression used for the filename property looks like this:

concat('AppointmentRequestsForPatientsStartingWith_'
 , substring($in.request/inp1:AppointmentRequest/inp1:patientDetails...
 .../inp1:lastName,1,1)
 ,'.log')

Moving to Canonical Messages
Using Domain Value Maps
There now turns out to be one additional complication with regard to the forwarded Appointment
Request messages: St. Matthews and the family doctors in the region have agreed on a set of
codes that indicate types of appointments. From the code in the referral, St. Matthews can
determine which specialist a patient should see—such as the Q1, Q2, and Q4 we saw earlier.
However, these codes are neither used by nor known to the external healthcare providers. For
each provider, St. Matthews needs to translate the code received in the original referral from the
family doctor to the description used by that healthcare provider. Some of these translations are
listed in the following table.

The Mediator will use the Domain Value Map facility to perform this conversion instead of
embedded hard-coded values in XSLTs. Domain Value Maps can be changed at run time without
needing to change and redeploy composites.

Code Used by Family Doctors and St. Matthews Code Used by Regional Dentists Association

Q1 SURG10

Q2 CLEAN33

Q4 XRAY9

Until now, when we discussed mappings between source and target messages, we only
focused on mapping the message structure with fairly mechanical, predefined manipulation of the
data values, using XPath functions such as concat and substring. However, we also may need to
map or convert the values themselves when going from source to target in more intricate ways

222 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 223

than through regular XPath functions. Domain Value Maps help the Mediator bridge between
different terminologies, abbreviations, or languages used by partners in a message exchange—in
a way that is easier to configure, reuse, and especially much easier to maintain, even at run time,
than hard-coding such mappings in XPath expressions would be.

For example, Frank uses M and F in some of his database services to indicate gender. However,
the hospital’s canonical data model strives for more explicit values to enhance clarity and mandates
use of MALE and FEMALE in the XSD. When the Mediator now transforms a message received
according to the canonical data model for invoking Frank’s data services, it will have to map the
values MALE and FEMALE to M and F (or sometimes even M and W).

Such value mapping is performed using the Domain Value Map (DVM) facility in the SOA
Suite.

Value Mapping with Domain Value Maps
The Domain Value Maps are created in XML files and can be centrally stored in MDS—Meta
Data Services—or added locally to the composite application. XPath functions can access a DVM
at run time to translate values in the source message into their counterparts. A value mapping in a
Domain Value Map consists of a data value, optionally one or more qualifiers, and one or more
associated lookup values. For example, the domain used to translate country names contains
entries that consist of a country name in English, a language as a qualifier, and the capital and full
name for that country in the specified target language, as shown here:

Country Name Target Language (Qualifier) Short Name (Lookup) Name (Lookup)

USA Fr EU Les Etats-Unis

USA Nl VS Verenigde Staten
van Amerika

United Kingdom Fr RU Royaume-Uni

The Netherlands Nl NL Nederland

When we look up the target value of one or more lookup columns, we use the name of the
Domain Value Map, the name(s) of the lookup columns we want the value from, and the source
value we need to convert as well as each of its qualifiers when applicable. For example, to
retrieve the short name of the USA in French, we use Countries (name of the DVM), USA (the
source value), Fr (the target language qualifier), and ShortName (the name of the lookup for
which we need the value).

If the domain needs to be used for translation from other languages besides English, the
source language should also be in the domain as an additional qualifier. This would allow the
mapping of (Frankrijk,nl,en) to (FR,France) because Frankrijk is the country name for France in
Dutch.

Creating and Using the Appointment Type Domain Value Map
Here are the steps for creating a DVM for appointment types:

 1. Go to the New Gallery and under SOA Tier | Transformations select the Domain Value
Map to create a new DVM. The dialog shown in Figure 7-26 appears.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 223

 2. Specify the name of the DVM filename—Domain Name (CanonicalAppointmentRequest
CodesToExternalPartners.dvm)—as well as the names for one lookup column (the first
Domain Name field—CanonicalAppointmentTypeCode) with the first associated value
(Q1) and a second (target) lookup column (the second Domain Name field—ExternalPart
nerAppointmentTypeCode) and its first associated value (SURG10).

 3. Click OK. The DVM editor opens, where you can define the ExternalPartnerIdentifier
qualifier (which indicates for which ExternalPartner a row provides the domain value
mapping) and more lookup columns as well as more rows.

Here is the XML definition of this qualifier:

<column name="ExternalPartnerIdentifier" qualifier="true" order="1"/>

We can make use of a DVM in mappings using the lookupValue function. In the mapping
from the CanonicalAppointmentRequest in the routing rule to the ChiropractorsAppointment
ProcessorService, we want to replace the canonical AppointmentType code with the code used
by the chiropractors as defined in the DVM.

Edit the Mediator HandleAppointmentRequestForExternalPartners, find the routing rule to the
ChiropractorsAppointmentProcessorService, and open the editor for the mapper file (see Figure 7-27).

FIGURE 7-26. Creating the Domain Value Map

224 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 225

Drag the lookupValue function to the center mapping region. In the Edit Function dialog that
appears, we specify the filename—either with a local reference or one that points to the MDS
Repository (see Chapter 18 for details on MDS)—of the DVM, the name of the lookup column
(CanonicalAppointmentTypeCode), and the XPath expression for its value as well as the name of
the target lookup column from which we want to retrieve the value (ExternalPartnerAppointment
TypeCode) and the name and value of the qualifier column: ExternalPartnerIdentifier and CHIRO.
In other words, for the Domain Value Map entry that has the specified value for column
CanonicalAppointmentTypeCode, return the value of the ExternalPartnerAppointmentTypeCode
column where the qualifier column ExternalPartnerIdentifier has the value ‘CHIRO’.

In this case, we have specified through the fifth parameter to the lookupValue function that if
the source value is not found in the DVM, the function should return the source value itself,
assuming that only some of the values need to be mapped and all values not explicitly converted
in the DVM can be sent onward without modification.

FIGURE 7-27. Looking up the chiropractor’s version of the AppointmentType code using the
Domain Value Map

Chapter 7: Mediator Service for Straight Talk and No Nonsense 225

After redeploying the application, we can see the DVM lookup in action (see Figure 7-28).
The same file with appointment requests is processed as before. This time, the code W34
specified by a general practitioner is converted to the value POI9A, which is understood by the
chiropractor’s AppointmentProcessor.

Of course, we could hard-code simple, static value transformations into the XSLT used for the
transformation. However, as soon as the same data value mapping is used multiple times, the set
of values is not tiny. Also, the mapping values may change over time. Therefore, using the DVM
is preferable because it promotes reuse and simplifies maintenance.

Run-time editing of DVMs Domain Value Maps can be published to the MDS and are then
available for use across composites. Using and periodically maintaining the values in the DVMs is
an important aspect of having various partners communicate successfully within the organization.
The contents of the DVM can be edited at run time using the SOA Composer application—readily
accessible for maintenance to application administrators and content editors via the browser. See
Chapter 17 for details and Figure 7-29 for a visual impression.

Alternative Means for Value Translation
When the value mapping concerns a hundred or more values, requires some form of calculation
or processing of values, and/or is very dynamic in nature, DVM will fall short. In such cases, we
can resort to the XPath extension function lookup table or query database to access a database
view or table (possibly including stored function calls) to perform more advanced value mapping

FIGURE 7-28. The Domain Value Map in action—converting from W34 to POI9A

226 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 227

FIGURE 7-29. Editing the Domain Value Map at run time using the SOA Composer

Canonical Value Dictionaries
Domain Value Maps could be used to complement the canonical data model with
canonical value domains. The canonical data model is used to prevent us from creating
bidirectional mappings between all related data formats in the enterprise by having each
specific format map to the canonical format. The same would work for domain values.

The example of translation between various languages helps to clarify the concept: We
could create dictionaries for translating each pair of languages, requiring n*(n–1) dictionaries
(with n being the number of languages); instead, through the use of a lingua franca—which
could be English, Esperanto, or your language of choice—we only need to translate from
each language to this lingua franca, which means n instead of n*(n–1) dictionaries. The same
analogy holds when using an ESB to replace point-to-point interfaces. For Domain Value
Maps, instead of languages to translate between, we have to cater for SOA partners speaking
in different terminology and code values that we have to bring together. A designated
canonical set of values can act as the lingua franca for that challenge.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 227

or conversion. However, these functions create a fairly tight and not entirely desirable coupling,
as well as pose a possible threat to the performance of the Mediator service, and should not be
introduced without proper consideration.

We can extend the set of XPath functions with our own custom developed functions that can
execute any logic we want them to. These functions can be used in mappings just like other
XPath functions. Appendix D provides some pointers for this.

Alternatively, the transformation may have to be preceded or followed by a call to a service
that performs message enrichment. Examples of such enrichment could include finding
geographical coordinates for addresses, translating free text comments from French into English,
and converting monetary values from Canadian to U.S. dollars.

We have seen how to implement enrichment earlier in this chapter when we called
RegisterReferralToPartner to return a ReferralIdentifier that we used to enrich the Appointment
Request message. A service that takes in the identification of the value type, the source value, its
qualifiers, and the desired target context could do enrichment of messages in a similar way.
Because we control the implementation of such an enrichment service, we have much more
flexibility than the DVM feature gives us. Business rules, introduced in the next chapter, are one
attractive way to implement such lookup services. However, using such services comes at the
price of additional work and extra performance overhead—service calls are likely to be much
more expensive than simple DVM lookup actions.

The online chapter complement introduces a special kind of lookup functionality that is used
to map identities across applications and domains. This cross-reference feature helps to establish
the relation between business objects in, for example, the Financial, HR, and Appointment
Planning systems that represent the same natural person.

Appointment Requests via a Web Application
The batch-wise daily uploading of appointment requests will gradually be replaced: As more
doctors are permanently online, they will start using a module in the St. Matthew’s Online
portal—a web application that provides, among others, functionality for entering appointment
requests. These requests are recorded in a database by the web application.

From this database, they should be picked up and fed to the Patient Appointment Service.
There are plans to have the web application send requests directly into the service rather than
insert them into the database. However, they are still that—just plans for a revision of this
two-year-old application.

We will now be rewarded for the way we have designed the composite application with the
canonical appointment data structure and the AppointmentRequestRouter into which currently
only the inbound File Adapter Service feeds. This design now makes it very easy to hook up new
appointment request message producers such as a Database Adapter Service that polls the records
created by the web application.

Opening Up the Composite to a New Message Producer
To support this new channel for appointment requests, we will extend the composite application
with a combination of a Mediator and a Database Adapter Service that performs a polling
operation. Every new appointment request record is processed by the RetrieveDatabaseDoctors
AppointmentRequests Polling Database Adapter Service and leads to a new request message to

228 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 229

the HandleDoctorsAppointmentRequestFromDB Mediator. The Database Adapter Service will
be a companion to the File Adapter Service ReadFileDoctorsAppointmentRequests: Both invoke
their associated Mediator with an appointment request message retrieved from an external
source (either a file or a database table) and route that message in the canonical format to the
AppointmentRequestRouter.

Configuring the Inbound Database Adapter Service
The Database Adapter Service is configured through the wizard (see the online chapter
complement for detailed instructions). The appointment requests created through the web
application are inserted into a table called MDP_DOC_APT_REQUESTS, which has columns for
more or less the same fields as are in the CSV files with appointment requests.

We have to indicate the source table on which we want polling performed, specify the
primary key columns, and determine how to recognize new records and what to do with records
when they have been processed. For this we use the column PROCESS_YN in the table. A value
for Y in this column indicates records that have been processed, whereas the initial (default) value
of N signals new records. The database adapter will update the column value to X for the records
it is currently processing.

NOTE
The process_yn column has been added to accommodate our
database adapter. However, frequently we will not be able to change
the data model to that extent. The database adapter supports the use
of a sequence table (or file) in which it keeps track of the highest ID
value or the most recent created/modified date processed so far—and
a poll on new records to process will only return records that come
after the one indicated in the sequence table.

An alternative solution for a database operation to trigger an SOA composite application is by
using a combination of a database trigger and advanced queuing. This is preferable when a
higher degree of loose coupling is required and/or more than one components are interested in
new records (publish/subscribe pattern using multiconsumer queues).

Creating the Mediator HandleDoctorsAppointmentRequestFromDB
When the RetrieveDatabaseDoctorsAppointmentRequests are configured, we create a new
HandleDoctorsAppointmentRequestFromDB Mediator and wire the Database Adapter Service to
this Mediator. This automatically specifies the WSDL for the Mediator, including an operation
called receive. Create a wire from the new Mediator to the AppointmentRequestRouter. The
mapping for the routing rule created for this wire turns the message based on the XSD created by
the database adapter into the canonical format.

When we now create records in the MDP_DOC_APT_REQUESTS table, they will be polled
by the inbound Database Adapter Service and sent to the
HandleDoctorsAppointmentRequestFromDB as XML messages, to be processed in much the same
way as appointment requests that arrive in the CSV files uploaded to St. Matthew’s FTP server.
Figure 7-30 illustrates this.

Chapter 7: Mediator Service for Straight Talk and No Nonsense 229

FIGURE 7-30. Processing appointment requests that the web application created in the database

Decoupling the Database Adapter Service
In the previous section, we saw how the Mediator has decoupled the PatientAppointmentService
from the File Adapter Service. AppointmentRequests that are received by the File Adapter Service
are still passed to the PatientAppointmentService. However, changes in the filenaming convention
or the record structure do not have any impact on the PatientAppointmentService and the BPEL
process that implements it. It does not even matter to the service if we introduce alternative
channels for receiving appointment requests, such as a database to have them created from a web
application, an FTP server, or a JMS queue: The Mediator insulates the PatientAppointmentService
from such new developments. Of course, this may lead to changes in the Mediator—the routing
rules or mappings—but such changes are fairly easy to apply.

We would like to achieve the same level of decoupling for the outgoing calls to the Database
Adapter Services from the PatientDataService BPEL process.

Decoupling the PatientAppointmentService BPEL Process
In Chapter 5, we created a BPEL process with calls to the Database Adapter Services
RetrievePatientIdentifier and RetrievePatientRecord. These Database Adapter Services were
contained inside the composite application. They are not exposed externally, outside of the
composite, so we currently have no reuse of the services. The XSD and WSDL created for the
Database Adapter Services are tied directly into the BPEL process, which means tight coupling
rather than the decoupling we seek. Just like Margaret in the past needed to know far too many
details about ordering flowers, the BPEL process needs to know too much about these (technical)
services.

By using a Mediator to do for the BPEL process what Martin is doing for Margaret, we will
remedy these shortcomings and achieve better decoupling.

230 Oracle SOA Suite 11g Handbook Chapter 7: Mediator Service for Straight Talk and No Nonsense 231

Decoupling Is the Name of the Game
Margaret is a busy woman. Chairing meetings, writing reports, conducting negotiations with
vendors, and kicking butt around the hospital. Irving, her significant other, sometimes gets
fed up with her. Every other day, around 6 p.m., he gets that same phone call that something
urgent has come up and she will be just a little late—which can mean really anything
between 8 p.m. and 10 p.m. He has sort of learned to live with it, because she is otherwise a
wonderful person.

Their anniversary is around the corner, and that is a big thing for Irving. He kind of feels
neglected from time to time, and Margaret should definitely not miss this occasion for
showing her devotion. Her electronic agenda has warned her in time of this upcoming
deadline, which gives her ample opportunity to ask her secretary to order a flower bouquet
and have it delivered to Irving.

In the past, she tried to deal with florists herself. However, she found it hard to
remember which were the good shops, she did not speak the language of flowers and could
only order in colors and number, and she had a tendency to call them after their business
hours. When she did reach them, she more often than not was kept on the line for long
periods of time and sometimes the line was dropped during some internal connect-through.
On several occasions the shops she called were out of stock of those yellow flowers her
husband likes so much, or they turned out to have moved, changed telephone numbers, or
went of business altogether.

In later years, some shops switched to ordering via a website or e-mail—which seemed
convenient at first, but became a nuisance as only the next business day they informed her
whether they could/would process the order. It was a yearly nightmare for her that took up
way too much of her time.

Martin, her secretary, now takes care of all the gritty details. And that works very well.
She asks him to have those same flowers Irving liked so much last year delivered on the day
of their anniversary. Martin will go away, do his magic, and report back to her after a while
that everything has been taken care of. She neither knows nor cares whence he got those
flowers and what communications he had to go through to get them. She was, however,
very grateful to him as Irving beamed at her from behind his huge yellow bouquet.

Margaret has become decoupled from the flower-ordering process, thanks to Martin
(“The Mediator”). Changes in suppliers, their contact details, the communication channel,
whether or not they react immediately or call back at some later time, and the procedure
for ordering flowers do not affect her at all. Only when Martin leaves will she have a
problem.

A strict point of view would be: BPEL processes should never call to adapter services directly.
There should always be a Mediator in between, like a Martin of sorts.

In our everyday world, there are plenty of situations where for pragmatic reasons this
statement may need to be overruled. However, you probably should adopt it as a starting point.

The Mediator has several functions that all help promote decoupling and agility. The Mediator
maps from the canonical data structure to the potentially very specific schema for the adapter
service, possibly including any value conversions that may be required. When the Database

Chapter 7: Mediator Service for Straight Talk and No Nonsense 231

Adapter Service is replaced by a different service implementation—with new WSDL and XSD
definitions—the BPEL process is unaffected because the Mediator shields it from these changes.

When the data is for some reason distributed over multiple databases, and based on some
patient property we have to determine which of those databases to access, the Mediator will take
care of this content-based routing.

The Mediator can handle problems with availability of the database service, retrying calls or
taking alternative steps. And the Mediator may present what is a synchronous service through an
asynchronous interface, which allows a client such as a BPEL process to continue with other,
parallel activities or to be dehydrated altogether to free up resources after the call is made, instead
of blocking the thread waiting for the reply—which could take fairly long.

The online chapter describes in detail how we can decouple the PatientDataService BPEL
process from the Database Adapter Services it currently references using Mediator components.

Summary
Oracle Mediator technology is extensive and complex. It differs from BPEL in the sense that it’s
faster and more lightweight, does not carry state, and is very message oriented. It implements a
number of message exchange patterns, validates and transforms messages, and has (limited)
capabilities to enrich the message payload. Mediators are not suitable for orchestration or to
implement composite services.

SOA composite applications will usually contain a combination of components, implemented
using different technologies such as BPEL, Java, Human Task, and Business Rule. Mediators will
almost always be used to decouple from and to the outside world, and to mediate between
components and adapter services within the composite through transformation and content-based
routing.

One chapter cannot do the Mediator full justice, and although we have discussed the most
important aspects of the Mediator, there is much more to learn. Other chapters will show more of
the Mediator—dynamic routing rules in the next chapter; the event-handling functionality in
Chapter 9; Java callouts in Chapter 12; logging, tracing, and exception handling in Chapter 16;
and custom XPath functions in Appendix D.

The last section of the online chapter complement briefly touches on a number of Mediator
topics that you may want or need to look at, such as resequencing messages. For additional
details, visit this book’s wiki, the Fusion Middleware documentation, the Online Help, or one of
the many other online resources.

This page intentionally left blank

Chapter
8

Rules Rule—on
Decision Services

233

234 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 235

 OA composite applications contain various forms of logic. These have some
overlap, but they also have their own specific actors, implementation technologies,
and maintenance cycles. There is, of course, implementation logic written by
programmers in programming languages such as BPEL, XPath and XSLT, Java, and
even PL/SQL. There is also process logic, designed perhaps using the Business
Process Analysis Suite, modeled in BPMN or BPEL by business analysts.

Another type of logic is business logic—describing and implementing derivations, validations,
calculations, and other business rules. Frequently this last type of logic is described by the
analysts—in free format text—and then implemented by developers as part of the programs they
write. It is fairly common to find the implementation of business logic done in several places in
the application using hard-coded values and references. The business logic cannot easily be told
apart from the implementation logic of the computer program, cannot be modified without the
help of the programmers, and cannot be deployed without redeploying the entire application.

This chapter introduces the Decision Service component in SOA Suite 11g, also known as the
Business Rule service component. We will use the name Business Rule from now on. This type of
component implements business logic and exposes it as an SCA component that can easily be
integrated into other components such as BPEL processes, Human Workflows, and Mediators.
This business logic can also be invoked through a Java API. Implementing business logic in a
central, encapsulated, reusable component makes it much easier to manage and maintain and
actually reuse such logic.

Oracle Business Rules is very good at evaluating the business logic expressed in the special
RL (Rule Language) language—with high performance and good scalability, especially compared
to alternative implementations of the same logic in, for example, XPath. Business rules created
within SOA composite applications usually work with the RL language, which allows definition
of rules in a very declarative way that is even accessible to nonprogramming business analysts.
The run-time infrastructure allows editing the business logic after the application has been
deployed, contributing tremendously to business agility, because the frequency with which this
type of logic changes is typically different from—and usually higher than—the frequency in
which the other types of logic change. It is a huge boon to be able to modify business rules at run
time without redeploying your process.

We will meet the Business Rule component in this chapter and see how business rules can be
implemented and integrated in composite applications. We will also see how business logic can
be changed at run time using the SOA Composer (which we first saw in the previous chapter for
the Domain Value Maps), thus allowing for a more agile application.

For St. Matthews, we will first tackle the routing of appointment requests intended for external
partners such as chiropractors and dentists, which we handled in the previous chapter using
hard-coded filter conditions in Mediator components. Next, we will look at the implementation
of system-wide parameters and formulas. Finally, we will see the decision table in action, a
straightforward way to implement fairly complex, multidimensional business rules for establishing
the priority of an appointment.

The online chapter complement has a more detailed overview of the steps you have to go
through in the implementation and integration of business rules. It uses the traditional game of
Rock-Paper-Scissors to introduce the decision table in a very simple and tangible manner.

S

Chapter 8: Rules Rule—on Decision Services 235

Deriving the Type of the Appointment
In the previous chapter on the Mediator component, you saw how we had to route the
appointment request to either the internal patient appointment service or one of the external
providers, such as dentists and chiropractors, based on the content of the appointment request.
We implemented filters with long, ugly, hard-to-interpret, and hard-coded XPath expressions:

orcl:index-within-string
(';Q1;Q2:Q4;'
, concat(';',$in.request/inp1:AppointmentRequest...
 .../inp1:appointmentRequestHeader/inp1:appointmentType,';')
) > -1

We concluded this was not a great solution. Such expressions are tricky to write, hard to read,
and a pain to maintain. Changes in the derivation of the appointment type would require
development effort as well as a redeployment of the entire application. Furthermore, this same
expression was used in several locations in the application because the appointment type was
needed in multiple routing rules (and the Mediator does not allow us to create temporary
variables that can be reused).

It would be convenient to have a component that returns the type of appointment—dentist,
chiropractor, or “in the hospital”—based on the (canonical) AppointmentRequest. The logic of
deriving the type of appointment from the appointment request would be in that component only.
When this logic needs to be changed, we can do that from the outside, at run time, without
changing other parts of the composite application and without redeployment. No involvement
from developers or administrators is required.

Furthermore, defining the logic to derive the type of appointment ideally would be written in
a more intuitive way than through the XPath expressions we used in Chapter 7—in a way that is
easier to understand and more productive to develop.

SOA Suite 11g has the Business Rules service engine, which exposes business logic through
Business Rule (service) components that live up to that job description.

Creating a Business Rule Service Component
We will now create a Business Rule component to decide on the type of appointment. To keep
our example simple, we will create the component inside the DoctorsAppointmentRequests
Processor composite application. Alternatively, we could implement the business rule in a
separate composite application that would be available for reuse from other composites and
would allow for low-impact redeployment when the run-time rule-editing facilities fall short of
the need at hand.

We will feed the AppointmentTypeCode in the CanonicalAppointmentRequest message into
the Business Rule component, and we will make it return a reply according to a new message
type based on the new TypeOfAppointmentType XSD element that makes explicit what type of
appointment (external or internal; if external, which party) it concerns. Subsequently, we will
add a Mediator to the composite—before the AppointmentRequestRouter—to enrich the
CanonicalAppointmentRequest with the appointment type data derived by this business rule.
Then we will update the filter expressions in the downstream Mediators to benefit from this new
structured information in the appointment request. All business logic currently implemented in
the XPath of several filter conditions is pushed to the single business rule.

236 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 237

Implementing the DeriveAppointmentType Decision Service Component
Here are the steps for the creation of the DeriveAppointmentType business rule and Decision
Service component:

 1. Open the file CanonicalAppointmentRequest.xsd. Add a new complexType
TypeOfAppointment and a new complexType AppointmentCode:

<xsd:complexType name="AppointmentCode">
 <xsd:sequence>
 <xsd:element name="appointmentTypeCode" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="TypeOfAppointment">
 <xsd:sequence>
 <xsd:element name="appointmentTypeCode" type="xsd:string"/>
 <xsd:element name="appointmentTypePartnerLabel" type="xsd:string"/>
 <xsd:element name="internalAppointment" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:complexType>

 2. Add an element called TypeOfAppointment, based on TypeOfAppointmentType, to the
complexType appointmentRequestHeader.

 3. Add a Business Rule component from the Service Components palette to the
composite; call it DeriveAppointmentType (see Figure 8-1). The input schema type is
AppointmentTypeCode. The output type is the new TypeOfAppointmentType.

FIGURE 8-1. Adding the Decision Service component DeriveAppointmentType to the composite
application DoctorsAppointmentRequestsProcessor

Chapter 8: Rules Rule—on Decision Services 237

We have now specified that the Business Rule component will tell us the type of appointment
requested, based on the contents of appointmentTypeCode. It will tell us the label of the partner
that should handle the appointment and, through a Boolean flag, whether the appointment is
external or internal.

We can invoke the decision service wrapped around this business rule from a BPEL process or
Mediator components—and even expose it as a composite service that external partners can call.

First, of course, we need to implement the business logic for the rule. To do so, follow these steps:

 1. Double-click the Business Rule component to open the editor.

 2. Change the name of the rule set to AppointmentTypeDerivation. Click the current name
to edit the title. You could enter a description of the rule set, and indicate whether it is
active or not—or exactly when the rule set applies (by specifying effective dates or times
of day).

 3. Add a business rule of type “IF/THEN rule” by clicking the button (see Figure 8-2). Call
the new business rule Match Chiropractor Appointment Requests.

A rule set either contains a decision table—which is a special constellation of IF/THEN
rules—or plain IF/THEN rules. More on the decision table in the second half of this chapter.

An IF/THEN rule consists of two parts: the test and the action. The test tries to match the
asserted facts in the rule engine’s working memory—in our case, derived from the Appointment
TypeCode input to the decision service. One or more Boolean expressions combined using AND
and OR operators evaluate either to true or false. When the result is true, a match has been made

FIGURE 8-2. Add the first IF/THEN rule to the rule set

238 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 239

and the action part of the business rule is activated. When the result is false, nothing will happen
for this rule.

The test for our first business rule tries to match the AppointmentTypeCode input fact through
the following expression:

AppointmentCodeType.appointmentTypeCode startsWith ("W")

This means that whenever the input contains an appointmentTypeCode that has W as its first
letter, a match has been made. When the test results in a match for a business rule, its action is
triggered or executed.

A business rule action can contain a number of statements in the RL language. The action
takes care of creating the output from the decision service by asserting a new fact of the output
type—TypeOfAppointmentType in this case. Other possible operations in a business rule action
include manipulation of input values or temporary facts, printing of debug statements, and
invocation of business rule functions. The action for the chiropractors’ business rule asserts a new
(output) TypeOfAppointmentType fact that has CHIRO for its appointmentTypePartnerLabel
property and false for the flag indicating the internal nature of the appointment:

assert new TypeOfAppointmentType(appointmentTypeCode:
AppointmentCodeType.appointmentTypeCode.toUpperCase(),
appointmentTypePartnerLabel:"CHIRO", internalAppointment : false)

When the decision service is invoked with an appointment request that has an appointment
type code of “W7162,” this business rule is matched and the output of the service is an XML
element based on TypeOfAppointmentType with child elements of appointmentTypeCode,
appointmentTypePartnerLabel, and internalAppointment:

<TypeOfAppointment >
 <appointmentTypeCode>W7162</appointmentTypeCode>
 <appointmentTypePartnerLabel>CHIRO</appointmentTypePartnerLabel>
 <internalAppointment>false</internalAppointment>
</TypeOfAppointment>

We need business rules for dental appointments and, of course, the vast majority of internal
appointments that St. Matthews handles itself. Figure 8-3 shows the rule set after these rules have
been created. The dental appointments are easily identified: AppointmentCodeType.
appointmentTypeCode in “Q1”, “Q2”, “Q4”.

The internal appointments are really found as the leftovers, the “else” or “otherwise” case—
any appointment request not matched by one of the earlier business rules should be matched by
this third one. To find these otherwise appointment requests, we use a little trick: The action
branch of the dentist and chiropractor rules does a modification of the input variable, prefixing
the appointment type code with the string “XXX”:

modify AppointmentTypeCode(appointmentTypeCode: "XXX"
 + AppointmentTypeCode .appointmentTypeCode)

The rule for the internal appointments matches all appointment type code values, except the
ones starting with XXX. It is an easy way of deriving internal appointments as the complement of
the external appointments identified by the specific business rules.

Chapter 8: Rules Rule—on Decision Services 239

Test the Business Rules
There is an easy way, available from within the JDeveloper IDE, to test the business rule set we
have been editing. We do not have to deploy the composite application and somehow create
test messages. We can simply create a new function in the Business Rule dictionary, have this
function call the decision function that exposes the business rule set AppointmentTypeDerivation,
and print the results to the console.

To make use of this facility, go to the Functions tab and create a new function called
Test_DeriveAppointmentType_DecisionFunction. It has Boolean for its return type and no
input arguments. The body of the function will instruct debug information to be published,
initialize a new instance of AppointmentTypeCode, set it to Q1, and call the decision function
DeriveAppointmentType_DecisionService_1. This function returns a list of results—and we
happen to know that the first result in that list is of type TypeOfAppointmentType. A new
variable is instantiated based on a cast of the first result, and the partner label is printed to the
console. Finally, the Boolean flag internalAppointment is returned. Now the test will seem to
fail for external appointments because the function returns false (see Figure 8-4).

FIGURE 8-3. Creating the business rules for dental appointments and internal appointments

240 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 241

Integrating the DeriveAppointmentType Business Rule in the Composite
Now that the business rule is created and tested, we can wire it up in the composite. To do so,
follow these steps:

 1. Open the Composite Editor and add a new Mediator, called EnrichAppointmentType,
with a one-way interface and an input based on the CanonicalAppoinmentRequest (see
Figure 8-5).

 2. Wire this Mediator to the business rule. Link the Mediator’s execute operation to the
callFunctionStateless operation on the business rule’s decision service.

 3. Double-click the Mediator to edit it. We need to forward the synchronous reply from the
business rule to the AppointmentRequestRouter (see Figure 8-6). Click the Browse For
Services icon for the reply, and select the ProcessAppointmentRequest operation on the
AppointmentRequestRouter as the target destination.

 4. Create the mapping from the CanonicalAppointmentRequest that is the input for the
EnrichAppointmentType mediator to the AppointmentTypeCode parameter required by
the decision service (see Figure 8-7).

 Next comes the mapping for forwarding the reply from the DeriveAppointmentType
decision service to the AppointmentRequestRouter. The mapping needs to include the
request in the reply payload. Note that we can make excellent use of the auto-mapping
facilities in the mapping editor.

FIGURE 8-4. Testing business rule DeriveAppointmentType for a dental appointment

Chapter 8: Rules Rule—on Decision Services 241

FIGURE 8-5. Create the Mediator EnrichAppointmentType

FIGURE 8-6. Forwarding the synchronous reply from DeriveAppointmentType to the
AppointmentRequestRouter

242 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 243

 5. Drag the appointmentRequest in the initial.request source to the AppointmentRequest
node in the target. Have auto-map do its job. Because both source and target are the
same CanonicalAppointmentRequest type, all elements are mapped. Then map the
TypeOfAppointment node in the callFunctionStatelessDecision source to its counterpart
in the target document (see Figure 8-8).

 Now is the time to reroute the Mediators HandleDoctorsAppointmentRequest and
HandleDoctorsAppointmentRequestFromDB that handle appointment requests from files
and database, respectively, and have them route their CanonicalAppointmentRequest
message to the EnrichAppointmentType Mediator rather than the AppointmentRequest
Router. We’ll choose the easiest way to do this.

 6. Open the editor, browse for a (new) target service, and select the execute operation on
the EnrichAppointmentType Mediator. Then select the same XSL mapping file that the
routing rule used before—as both AppointmentRequestRouter (the former target) and
EnrichAppointmentType (the new target) have the CanonicalAppointmentRequest for
their input.

FIGURE 8-7. Mapping the CanonicalAppointmentRequest to the AppointmentTypeCode
parameter required by the decision service

Chapter 8: Rules Rule—on Decision Services 243

FIGURE 8-8. Mapping the decision service’s reply combined with canonical appointment
request to the AppointmentRequestRouter input

FIGURE 8-9. The audit trail shows how the business rule DeriveAppointmentType derives STMA
as the appointment type partner label

244 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 245

Deploy and Run the Composite Application with Business Rule
At this point, we can deploy the application and see whether the decision service is correctly invoked
and the business rule derives the TypeOfAppointment element as we expect (see Figure 8-9). Note
that we have not yet modified the filter expressions in the AppointmentRequestRouter and Handle
AppointmentRequestForExternalPartner Mediators, so we do not actually use the result from
the business rule right now. Figure 8-10 shows the flow for an appointment request for a dental
appointment. The business rule provides the value that is used in Mediators AppointmentRequestRouter
and HandleAppointmentRequestForExternalPartner to determine the route for the message.

Leveraging the Business Rule’s Business Logic for Content-based Routing
Let’s change the filter expressions on the routing rules in the AppointmentRequestRouter—in
order to streamline those expressions and untangle the hard-coded business logic dependencies.
Open the editor for the AppointmentRequestRouter Mediator. Change the filter expression for the

FIGURE 8-10. The DoctorsAppointmentRequestsProcessor with the decision service in action

Chapter 8: Rules Rule—on Decision Services 245

routing rule for internal appointment requests to the PatientAppointmentService to the following
(see Figure 8-11):

$in.request/inp1:AppointmentRequest/inp1:appointmentRequestHeader...
 .../inp1:TypeOfAppointment/inp1:internalAppointment = true()

This expression uses the internalAppointment flag that was set by the decision service. The
logic behind the derivation of whether or not a request refers to an external appointment has been
removed from the filter expression—no more references to W or Q1, Q2, and Q4.

The filter expression for the routing rule to RegisterReferralToPartner is the reverse from the
one for PatientAppointmentService.

Next, we need to edit the routing rules for the HandleAppointmentRequestForExternalPartner
Mediator. Again, we can remove business logic—all references to W and Q1, Q2, and Q4—and
make use of the appointmentTypePartnerLabel value set by the business rule.

The filter expression for the routing rule to ChiropractorsAppointmentProcessorService
becomes the following (see Figure 8-12):

$in.request/inp1:AppointmentRequest/inp1:appointmentRequestHeader...
 .../inp1:TypeOfAppointment/inp1:appointmentTypePartnerLabel = 'CHIRO'

The filter expression for the rule for DentistServiceCenter is similar—replace CHIRO with DENT.

FIGURE 8-11. Edit the filter expressions for the Mediator AppointmentRequestRouter

246 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 247

With the logic for deciding between internal and external appointments and picking the right
external partner externalized in the business rule (and removed from the filter expressions in the
two Mediators), this is a good moment to redeploy the application and have it process some
appointment requests, arriving in the database table or in a file, to verify its proper functioning.

Handling New AppointmentType Codes
What we had some reason to fear in Chapter 7, and prepared for earlier in this chapter, has come
to pass: The dentists have adopted two new codes for their appointments. In addition to Q1, Q2,
and Q4 (which we already catered for in our application), they now will use Q9 and Q11 as well.

In the not-too-distant past—before this chapter—we would have had to modify the composite
application in several places, a job only a programmer can perform. Then we would have had to
retest and redeploy the application. Not a pretty task for such a small, nontechnical change.
However, with the business rule in place, we can cheerfully take on such challenges. All we need
to do is go into the SOA Composer—a browser-based run-time application that allows us to edit
business rules. In fact, using this application is so simple, it hardly requires a programmer—a
trained business analyst or application administrator could just as easily make the required change.

Open the SOA Composer at http://host:port/soa/composer, where host is the server that runs
your SOA Suite. Log in to the composer, typically as weblogic. Open the Business Rule dictionary
for DeriveAppointmentType (see Figure 8-13).

The rule set is shown. You may note that the rules are displayed in an even (analyst) friendlier
terminology than in JDeveloper, with the string “isn’t” instead of the operator “!=” and “begins
with” instead of “startsWith.” Enter edit mode through the Edit button in the top menu bar. Edit
the right-side operand of the rule Match Dentist Appointment Requests. Add the values Q9 and
Q10 and then commit the changes (see Figure 8-14). This will immediately activate the changed
business logic, meaning that any call—including from composite instances that have already
started—to the business rule will from now on execute according to this new logic.

FIGURE 8-12. Editing the filter expressions for the Mediator HandleAppointmentRequest
ForExternalPartner

Chapter 8: Rules Rule—on Decision Services 247

FIGURE 8-13. Opening the Business Rule dictionary DeriveAppointmentType.rules in the SOA
Composer

FIGURE 8-14. Editing the business rule for matching dental appointment requests—adding the
two new codes Q9 and Q11 that must be supported

248 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 249

Run Time Ahead of Design Time
At this point, the rule definitions in our design-time environment (JDeveloper) are out of sync with
the definitions on the run-time environment (SOA Suite). We should copy the Business Rule
dictionary to the design time before resuming work on it in JDeveloper. An easy way to access
the changed rules dictionary is through an MDS connection in JDeveloper. We can inspect the
rule definitions and copy and paste changes to the rule definition in the composite application in
JDeveloper. We will not do this here right now; you will learn more about MDS and connecting
to it in Chapter 18.

Decoupling Business Logic for Derive Type of Appointment
We accomplished what we set out to do. We implemented the business logic—the derivation of
the type of appointment—in a separate component and in an intuitive way using an almost
declarative rule language that can be executed in an optimized way in the business rule engine
that is specially equipped for the task of executing such business logic.

The business rule set that performs the logic is exposed as a decision service that we have
integrated with the composite application. Instead of five duplicates of the same logic in hard-
to-read and tough-to-write XPath, we have a single invocation of the decision service and
straightforward filter expressions that are decoupled from the logic. The real proof of the pudding
came when the logic had to be changed. Instead of having to change the application in multiple
places and redeploying it, we—or even a business analyst!—could simply make the change in the
SOA Composer application.

Separating Out Business Logic
Using Business Rules
When your tool is a hammer, every challenge can be considered a nail. It is quite possible to
implement most business logic in BPEL, XPath and XSLT, or in Java. You will not frequently get
an unequivocal message that tells you that you have really crossed the line and should engage a
decision service. However, there are some tell-tale signs that should make you wonder whether
perhaps you are overdoing the amount of business logic in the programs you create. Among them
are abundant usage of if/then branches, frequent occurrences of hard-coded values, business-
oriented calculations and conversions, logic that you need to consult with business analysts on,
and duplication of code snippets between components.

Note that the reverse—inappropriate use of business rules—can also occur. Creating and
using business rules for logic that doesn’t change that frequently can introduce complexity and
overhead that serves no good purpose. A good rule of thumb is the frequency with which you
anticipate business logic changes versus changes in process logic. If these frequencies differ—and
especially when the rate of change in business logic is much higher—then business rules should
probably be used.

The Rationale Behind Business Rules
Implementing business logic external to the BPEL process and Mediator component using
business rules has several advantages:

 Separation of concerns. ■ By separating the business rules from the process flow, both the
process flow and the business rules become easier to understand, to change, and to test.

Chapter 8: Rules Rule—on Decision Services 249

 Reuse. ■ The same rules implementing a specific piece of business logic can be used
in many different processes and SOA composite applications as well as in Java (web)
applications. Note that separating out business logic into reusable components does
not mandate the use of business rules—a simple BPEL process or even Mediators with
the echo pattern could be used to accomplish something similar in a less flexible, more
hard-coded way.

 Flexibility. ■ Rules can be changed separately from the flow, even when the process
is already deployed. This makes it easier to achieve agility and deal with changing
circumstances, business requirements, laws, and regulations.

 Optimal use of project resources. ■ Having the business logic implemented in a business
rule, the programmer can focus on the implementation logic while business analysts
can focus on developing the business rules; business rules are constructed in a way that
is not very technical and fairly accessible to nonprogramming staff (although, in reality,
creating business rules usually is still quite challenging to analysts).

 Optimal use of system resources. ■ The Business Rule engine is created with the execution
of—potentially very complex—business rules in mind. Leveraging this engine for running
the business logic frees the other service engines from a task they are less well suited for.

Business logic comes in several disguises. It can be logic that specifies validation rules that go
beyond the validations defined in the XSD and possibly the Schematron document. Formulas for
calculating values according to specific logic and rules or converting values between domains are
another category of business logic we can implement using business rules.

Rules can be used to categorize values—applying labels to identify values based on the range
they are in. Business rules typically tell us whether a patient is too heavy; a temperature is high or
low; an order gets auto-approval or requires manual stamping; an appointment is in the morning,
the afternoon, or the evening. A specific type of categorization is validating values against
business thresholds. Action may be required when values go over such thresholds. Business rules
help settle decisions—using various if/then steps to determine which discount applies or what
diagnosis can be concluded. Business logic can steer dynamic routing—where depending on
certain conditions and values, a message should be routed to one or another service provider.

Business Rule Architecture
An overview of all artifacts related to Business Rules is shown in Figure 8-15. Business rule
definitions are managed in rule dictionaries that, in turn, are stored in the Metadata Services
(MDS) repository (see Chapter 18). A dictionary contains rule sets—collections of business rules
that are executed as a single unit. A business rule consists of two parts—the test (IF) and the
action (THEN). The test is a Boolean expression that typically tries to match the input data against
predefined conditions. When the test evaluates to true—for example, a match has been found—
the action part is triggered. Actions usually create result data—the output of the business rule.
However, the actions can do much more, including printing debug information, calling functions,
and creating new, intermediary facts.

The data that gets inspected, aggregated, created, or manipulated in business rules is handled
as facts, the business rule equivalent of variables. A fact is an instance of a Fact type, an object
definition based on an XML type in an XSD document, a Java type in class definitions, or an RL
fact that is similar to Java Beans or even Map objects. The facts (or Fact types) defined in the
dictionary can be processed in various ways in the business rules and in custom functions.

250 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 251

The output of a business rule is prepared through an “assert fact” action—which creates and adds
the fact of the specified type to the business rule engine’s working memory.

The execution of a business rule set is an iterative process: In the first iteration, the input from
the rule invoker is matched against the tests of the business rules. In subsequent iterations, the
facts created or modified by the actions of the business rules in the previous iteration are matched
against those same tests. The iterations halt when no new or modified facts are matched—the end
result is determined at that moment.

The business rules we have created earlier in this chapter to determine the type of
appointment are quite simple: The input—the original appointment type—is matched against
rules for Chiropractor, Dentist, and “everything else.” The actions taken by these rules do not
create or change the fact used in the IF-match conditions of these rules, so after the first
iteration, processing will cease.

The iterative approach to processing the initial input and the intermediary results produced
by the rules themselves are based on the Rete algorithm, which was developed in the late 1970s
by artificial intelligence researchers. Oracle Business Rules uses this algorithm to optimize the
pattern-matching process for rules and facts. Partially matched results are stored in a single
network of nodes in working memory. The Rete algorithm avoids unnecessary rechecking when
facts are deleted, added, or modified.

FIGURE 8-15. The architecture of business rules

Business rule dictionary
DeriveAppointmentType

Appointment
TypeDerivation
Match dentists
Match chiropractors

CanonicalAppointment
Request.xsd

SomeClass.java

DeriveAppointmentType.decs

DeriveAppointmentType
_DecisionService_1.wsdl

DeriveAppointmentType.componentType

DeriveAppoint
mentType

Java Application

Rulesets

Facts Functionsfx

@

?
D

ec
is

io
n

fu
nc

tio
ns

(x) Globals

Chapter 8: Rules Rule—on Decision Services 251

Functions
Rule dictionaries can also contain user-defined functions—next to many standard, built-in
functions. User-defined functions are written in the same Java-like RL language used for the
business rules. The functions can take one or more input arguments and typically return a result.
They can be called from each other and from within both the test and the action part of a
business rule. Through functions, business rules can be much simpler, more readable, and better
maintainable. Functions are also frequently used to test the business rules defined in a dictionary.

Both functions and business rules can make direct use of globals, which are variables that are
centrally defined in the dictionary and can be accessed from all over the place—like Java static
class members or PL/SQL global package variables (which have the same value across all
database sessions). Globals, like business rules but unlike functions, can be maintained at run
time through the SOA Composer application.

A specific type of function is the decision function. Decision functions define the way rule
sets are exposed to external consumers. Neither business rules nor rule sets are accessible from
the outside all by themselves—the only gateway into the business logic held in business rules is
through decision functions. A decision function determines input facts (the data against which the
initial rule matches are performed) as well as the output facts (the data that is to be returned,
created by the actions in the triggered rules, and associated with one or more rule sets that will be
used for matching the input data). A rule dictionary can have several decision functions that each
operate with a different rule set.

System Parameters and Global Formulas
Hard-coded values in programming code as well as hard-coded business logic should be
approached with a lot of suspicion. It is hardly ever a good idea to have hard-coded numerical
or string values embedded in the code. Examples of hard-coded values include the name of the
hospital, the exchange rate between the U.S. dollar and Euro, the age from which a person can
have surgery without parental consent, the conversion rate between pounds and kilograms, the
time required for a particular medical procedure such as an X-ray scan of a broken arm, and the
start time of the night shift.

Such values may be needed more than once—and to ensure that every time the exact same
value is used, a logical reference to a single, globally defined value is to be preferred over hard
coding. Apart from nature’s constants, most values are susceptible to change at some point.
Business logic may change, the hospital may be renamed, currencies may be replaced, regulations
may be altered—values that may be regarded as constants frequently turn out over time to not be
constant after all. Changing all hard-coded instances of the value is expensive and risky; much
easier, of course, would be to change the single, central occurrence of the value.

What is said here about simple values also applies to formulas and calculations. Formatting
an address or converting a Fahrenheit temperature to its Celsius counterpart, deriving current age
from birth date, determining the Body Mass Index (BMI), calculating a medicine dosage given the
age and mass of a patient, or creating a properly laid-out string for a given date and time—these
are all candidates for inclusion in global libraries at St. Matthews, allowing for central
maintenance and widespread reuse.

We will discuss how we can use the Business Rule service components to help us to get rid of
hard-coded values and formulas.

252 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 253

Setting Up the Central Library of System Parameters
The objective here is to create a decision service that we can leverage in multiple composite
applications. This service returns the value of the system parameter whose name is passed in. The
steps we have to go through are similar to those in the previous section.

Because we want this decision service to be accessible from all composite applications, it
should be not deployed as part of a specific application but rather as a stand-alone composite. So
we’ll create a new SOA composite application, called CentralLibrary.

Initial Creation of the CentralLibrary Application
The first step in this new application is the creation of an XSD document called CentralLibrary
Management.xsd, with types ParameterRequestType and ParameterResponseType:

<xsd:complexType name="ParameterRequestType">
 <xsd:sequence>
 <xsd:element name="parameterName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
<xsd:complexType name="ParameterResponseType">
 <xsd:sequence>
 <xsd:element name="parameterName" type="xsd:string"/>
 <xsd:choice>
 <xsd:element name="parameterStringValue" type="xsd:string"/>
 <xsd:element name="parameterNumberValue" type="xsd:double"/>
 <xsd:element name="parameterDateTimeValue" type="xsd:dateTime"/>
 </xsd:choice>
 <xsd:element name="parameterExpirationDateTime"
 type="xsd:dateTime"/>
 </xsd:sequence>
</xsd:complexType>

Next, we create a new business rule—from the New Gallery. The Business Rule dictionary
is called CentralLibrary, the package is com.stmatthews.rules.centrallibrary, and the decision
service is CentralLibrary_SystemParametersDecisionService (see Figure 8-16). The input
parameter is ParameterRequest (based on the ParameterRequestType) and the output parameter
is ParameterResponse (based on ParameterResponseType).

We will use globals to configure the hard-coded values used in the business rule to derive the
values of system parameters. These globals can easily be maintained, even by business analysts at
run time. Here we create two globals—HospitalName and MaximumNormalBodyWeight—to
provide values to be exposed as system parameters (see Figure 8-17).

Next, we need to create a new rule set called System Parameters (see Figure 8-18). In this rule
set will be one business rule for every system parameter we need to support. The rules will all
have the same structure: a test on the name of the requested parameter and an assertion of the
parameter response with the value set as a global and an indication of the expiry date of the
value. The business rule for the HospitalName is specified as follows:

IF ParameterRequestType.parameterName=="hospitalName"
THEN
Assert new ParameterResponseType (parameterExpirationTime : XMLDateAfterNow(7),
parameterName: ParameterRequestType.parameterName , parameterStringValue:
HospitalName)

Chapter 8: Rules Rule—on Decision Services 253

FIGURE 8-16. Creating a new business rule and decision service called CentralLibrary_
SystemParametersDecisionService

FIGURE 8-17. Defining globals with the values for the system parameters

254 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 255

Note that XMLDateAfterNow(numberOfDays) is a custom function that returns an XMLDate
that is offset by the indicated number of days from today’s date.

We can create a test function to try out our rule set for system parameters, just like we did in
the previous section. The test function calls the decision function, passing in the required
ParameterRequestType—for example, for the hospitalName parameter—and inspecting the
returned ParameterResponseType (see Figure 8-19).

Deploying and Testing the CentralLibrary Application
We can deploy the composite application and test the decision service from the FMW control. It
is important to pass the value of the decision function’s service attribute—CentralLibrary_
SystemParametersDecisionService—as the value for the name attribute in the callFunctionStateful
element:

<soap:Body xmlns:ns1="http://xmlns.oracle.com/CentralLibrary...

 .../CentralLibrary_SystemParametersDecisionService">

 <ns1:callFunctionStateful name="CentralLibrary_SystemParametersDecisionService">

….

The System Parameter service can be integrated into many different composite applications,
providing centrally defined and maintained values that are reused across the board. And when
the hospital decides to change its name—for example, because of an acquisition or some sort of

FIGURE 8-18. The System Parameters rule set with support for two system parameters

Chapter 8: Rules Rule—on Decision Services 255

strategic realignment—all we need to do in order to propagate that name change is open the SOA
Composer, change the global’s value, and commit the change, as demonstrated in Figure 5-20.

Adding Formulas to the Central Library
It is a small step to extend the central library with formulas for conversion, derivation, and
calculation. SOA composite applications can leverage such formulas to have generic, reusable
snippets of business logic applied. The online chapter complement on the book’s wiki has the
source code as well as the screenshots for these steps, demonstrating the Fahrenheit/Celsius
temperature conversion formula.

FIGURE 8-19. Testing the decision function exposing the system parameters

FIGURE 8-20. Changing the global HospitalName in the SOA Composer

256 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 257

Using a Decision Table to Establish
the Appointment’s Priority
Business logic can be quite complex. Up until now in this chapter, we have seen fairly simple,
straightforward IF/THEN rule sets with a limited number of variations. However, it is not hard to
imagine more convoluted rules, for situations where multiple dimensions influence the outcome
and several options may apply along each dimension. The decision table–style rule set in Oracle
Business Rules helps to manage such situations.

The online chapter complement contains a more elaborate introduction of the decision table
using an implementation of the game Rock-Scissors-Paper.

Introducing the Decision Table at Starbucks
Take, for example, the decision-making process Margaret has to go through at the Starbuck’s
counter. Several factors influence the process and help determine the outcome. In the morning,
coffee is the obvious choice. Afternoons usually are for tea, and coffee again at night. However,
in the winter she may opt for hot chocolate drinks in the afternoon and in the spring she typically
picks soy milk in the evening. When she has plenty of time and is not stressed at all, she may take
the largest drink on offer, except when it is raining. When she has very little time, she may take a
cold drink—although never in the fall. And on and on and on.

We see at least four dimensions in the decision-making process—time of day, weather
conditions, stress level, and season—and along each dimension, one of several cases may be
true. This decision-making process can be turned into a long list of IF/THEN rules, with the likes
of if season = “SUMMER” and stresslevel = “relaxed” and time_of_day = “MORNING” and
weather=“HOT” THEN assert new Order (drink: “grande latte”). Such a list would be a pain to
create and even more so to maintain. A decision table does more or less the same, but is much
easier to read and maintain. For this Margaret@Starbuck’s example, it works like this (with only a
subset of the 3*3*2*4 = 72 columns):

Conditions Rule R1 Rule R2 Rule R3 Rule R4 Rule R5 Rule R6 Rule R7 Rule R8

Time of day Morning Afternoon Evening Morning Afternoon Morning Evening Afternoon

Weather Cold Cold Cold Hot Cold Cold Normal Hot

Stress level Relaxed Relaxed Relaxed Harried Harried Harried Harried Relaxed

Season Winter Winter Winter Winter Fall Fall Spring Summer

Actions

Large
Cappuccino

Large Hot
Chocolate

Double
Espresso

Small Iced
Coffee

Small Hot
Chocolate

Small Black
Coffee

Small
Soy Milk

Large Hot
Tea (Earl
Grey)

Oatmeal
Cookie

Chocolate
Chip
Cookie

Bar of
Dark
Chocolate

— — Blueberry
Muffin

- Biscuit

Every column can be read like a single IF/THEN rule. For example, the first column: if time of
day=“morning” and weather =“cold” and stress level = “relaxed” and season=“winter” then assert
new Order (drink: large cappuccino; snack: oatmeal cookie).

Chapter 8: Rules Rule—on Decision Services 257

Every row contains a condition—all possible states that may apply to a certain property. A
column (rule) is matched for the input record when each row in that column matches the data.
Note that the input does not necessarily contain the exact values used in this matrix. In this coffee
counter example, it might very well be that the input record contains the current date and time, a
temperature, and an indication of Margaret’s stress level. The first three values do not directly
match the options in the matrix. We need to convert time, date, and temperature to the
terminology used in the decision table:

(10AM, 4th July, 86F, relaxed) => (morning, Summer, Hot, relaxed)

We make use of bucket sets for this. Every property is associated with a bucket set—a set of
allowable values or allowable ranges. Well-known bucket sets include Boolean, Gender, and Color
of Traffic Light. Instead of a single allowable value, each entry in a bucket set can be an allowable
range. When the value for the property falls within the allowable range entry in the bucket set, the
associated label or alias can be assigned. For example, the Season bucket set has four entries, each
an allowable date range that will convert the date to the season. In a similar way, three time ranges
in the Time of Day bucket set help choose between morning, afternoon, and evening.

Logic for Determining the Appointment’s Priority
A very raw example of a decision table is field hospital triage, where medical staff decide in a
matter of seconds which victim is to be treated at all and, if so, when, how, and by whom. Staff
members at St. Matthews have somewhat less dramatic decisions to make—although to
individual patients sometimes the consequences can be serious enough. An important decision-
making process is establishing the priority of an appointment.

The hospital has limited resources, both in terms of qualified staff and up-to-date equipment.
Unfortunately, there is a waiting time for many treatments. The time patients have to wait until
they can first visit a doctor depends on the priority assigned to the appointment request. The
appointment-scheduling process will jump patients up the waiting queue when the assigned
priority is high. When the priority is low, the appointment will be scheduled much later.

Determining the priority is a tricky business. It can take a long time when done by humans.
But it may be far too complex and subtle to trust to computers. Still, Margaret and her team are
going to take a shot at it. The Business Rule engine and especially the decision table show some
promise of being able to take on the priority challenge.

The first attempt Margaret’s staff will make takes a small number of factors into consideration:
the age of the patient, the state of residence (the hospital is partially state funded and has to assign
higher priority to residents), the patient’s BMI, and the priority indicated by the family doctor in
her referral. We will see how the decision table is created that derives the priority for an
appointment request based on the scores for these four conditions.

The business rule is then to be invoked from the BPEL process PatientAppointmentService,
just prior to the call to the SchedulerService. It is important that the correct value for the
appointment’s priority be passed along in that call to the SchedulerService.

Creating the Business Rule AppointmentPriorityRuling
The steps for the initial creation of the business rule are as follows:

 1. Open the application PatientAppointmentService.

 2. Prepare the XSD elements we will be using for the business rules that establish the priority.
For this, create a new XSD document—AppointmentPriorityType.xsd. Create two

258 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 259

complexTypes (priorityRulingRequestType and priorityRulingResponseType) with
elements priorityRulingRequest and priorityRulingResponse based on these types. We
will use these elements shortly to also base two BPEL variables on.

<xsd:element name="priorityRulingRequest"
 type="rules:priorityRulingRequestType"></xsd:element>
<xsd:element name="priorityRulingResponse"
 type="rules:priorityRulingResponseType"></xsd:element>
<xsd:complexType name="priorityRulingRequestType">
 <xsd:sequence>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="bmi" type="xsd:float"/>
 <xsd:element name="birthdate" type="xsd:date"/>
 <xsd:element name="originalPriority" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="priorityRulingResponseType">
 <xsd:sequence>
 <xsd:element name="originalPriority" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="derivedAppointmentPriority" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="comment" type="xsd:string" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

 3. Create a new Business Rule service component in the Composite Editor from the
Component Palette. Call the dictionary AppointmentPriorityRuling and set the package to
com.stmatthews.rules.appointments. Then specify the input and output for the decision
service based on the priorityRulingRequest and priorityRulingResponse elements that we
have just created in the AppointmentPriorityType.xsd. Figure 8-21 illustrates these steps.

Preparing the Bucket Sets
The rule dictionary is opened, ready for creating the business logic we need it to perform in order
to determine the appointment’s priority.

We need to create no fewer than four bucket sets in addition to the one that was predefined
based on the derivedAppointmentPriorityType, one for each of the four input values that will be
assessed in the decision table.

First, create a bucket set for age. Select the Bucketsets tab, then click the green plus icon, and
select List of Ranges from the drop-down list. Create three ranges, with end points of 78, 3, and
minus infinity (the last one is a default, predefined endpoint). The aliases for these ranges are
Elderly, Medium, and Young, respectively (see Figure 8-22). We will use the birth date of our
patients to derive their age and subsequently match the age to this bucket set to determine the
category that will then contribute in the derivation of the priority type.

Next is a bucket set for the Body Mass Index, also using a list of ranges (see Figure 8-23). The
following labeling of BMI values is one that closely follows the definition on Wikipedia: http://
en.wikipedia.org/wiki/Body_mass_index. It suggests five labels, ranging from underweight to

Chapter 8: Rules Rule—on Decision Services 259

FIGURE 8-21. Creating the business rule AppointmentPriorityRuling in the composite

FIGURE 8-22. Creating the Age bucket set with three value ranges

260 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 261

morbidly and dangerously obese. Next, iterations of the business rules may include a higher
number of categories, perhaps with some stronger focus on the underweight category.

 Underweight ■ Less than 18.5

 Normal/Healthy ■ 18.5–24.9

 Overweight ■ 25.0–29.9

 Obese ■ 30.0–34.9

 Very Obese ■ 34.9–40.0

 ■ Morbid Obese Over 40.0

The third bucket set is for appointment priority, as assigned by the referring doctor and based
on a list of values. The values range from 0 to 4, and indicate the level of priority, going from
“low” via “lower” and “normal,” to “higher” and “very high,” for the value of 4.

The last bucket set we need to create is called HomeState. It contains one real value—CA;
California is the home state for St. Matthews—and the “otherwise” option that applies to all other
state values, including unknown or the absence of a value for state.

We will need a function to calculate the age in years from the birth date of a patient. The
result of this function will be matched against the Age bucket set. This function is created as
getAgeFromBirthdate with an XMLGregorianCalendar for its input and an integer for its output:

assign new Integer ageInYears =
 Duration.years between(birthDate,Calendar.getInstance())
return ageInYears

FIGURE 8-23. Editing the bucket set BMI for Body Mass Index

Chapter 8: Rules Rule—on Decision Services 261

Creating the Decision Table
With the groundwork in place, we can now edit the rule set. Let’s rename it EstablishAppointment
Priority, as shown in Figure 8-24. Click the button Create Decision Table.

The table has three areas: the conditions and the actions (rows) and the rules (columns). A
condition is a value that is the result of an expression, usually based on one or more input values
(or the current date or time), such as in our example PriorityRulingRequestType.state, Priority
RulingRequestType.bmi, and slightly more interesting getAgeFromBirthdate(PriorityRulingRequest
Type.birthDate). The decision table for establishing the priority will have one condition for each
of the four factors contributing to that priority. Each condition is associated with a bucket set.

The actions in the bottom half of the decision table are activated when a rule matches and
the action is enabled for that rule. Click the Action cell to bring up the Action Editor shown in
Figure 8-25. The action is usually defined using one or more parameters—whose values depend
on the specific rule (or column) that matches the conditions. Our decision table for deriving the
priority type has a generic action:

assert new PriorityRulingResponseType (derivedAppointmentPriority:Integer)

The actual value assigned to the derivedAppointmentPriority is parameterized and will be defined
in each rule (or column).

FIGURE 8-24. Creating a decision table in the renamed EstablishAppointmentPriority rule set

262 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 263

The check box “Always Enabled?” indicates whether the action is triggered by a match for all
rules or whether it is associated with only a subset of the rules. We can enable actions on a
per-rule basis.

The columns in the decision table contain the rules—with every column or rule a combination
of matching patterns for each of the conditions. A column will result in a match when each of the
conditions corresponds with the matching pattern in the same row of the column. A matching
pattern consists of one or several values in the bucket set that are associated with the condition.
When a rule has no value in a specific row (for a condition), it means the rule will match for every
value the condition may have (in other words, the rule does not care about that particular
condition). This may be the case when the referring doctor has indicated a very high priority and
we do not need to check the other conditions before simply assigning the High priority outcome.

The Obesity Rule The hospital—as are state authorities—is anxious to handle problems associated
with obesity, and patients with morbid or high obesity, whatever their other circumstances, are
always to be treated with high priority. Our first rule will implement that logic.

We need to set the first condition to PriorityRulingRequestType.bmi, associated with the
bucket set BMI. The condition cell in the rule column is set to the values Very Obese and Morbid
Obese. The derivedAppointmentPriority action parameter should be set to High for this rule (see
Figure 8-26).

FIGURE 8-25. Editing the parameterized action “assert new PriorityRulingResponseType”

Chapter 8: Rules Rule—on Decision Services 263

Factoring in the Original Referral Priority The second rule will only look for the highest
priority value that the referring doctor can specify. When that value has been set, regardless of
any of the other conditions, we will have a High priority result returned from the decision table.
We need to add a condition for the original priority associated with the ReferralPriority bucket
set. Then we add the new rule, which matches on the highest value for the original priority (see
Figure 8-27).

The Low Priority Case At the other end of the scale will be a rule that describes the situation of
an out-of-stater of medium age, no apparent body weight issues, and without a highest priority
referral. The derived priority for this rule will be Low. To create this rule, click the green plus icon
and select the option Add Rule. Also add the two missing conditions, on State (linked to bucket
set HomeState) and on Age (which is derived using the function getAgeFromBirthdate, linked to
the bucket set).

In each “condition cell” in the column, select the values from the bucket set associated with
the condition for which the rule should match.

This rule will match the values Healthy (weight-wise), Overweight, and Obese for the
condition on the bmi condition. On the second condition on originalPriority, all values will
match—except the value “Very High (urgent!)”. The third condition, on state, matches on
“otherwise” (because we are looking for out-of-state patients). Finally, the rule matches on
Medium for age. The derivedAppointmentPriority is set to “Low” for this rule.

FIGURE 8-26. Creating a “High” priority rule for BMI values that indicate severe obesity

264 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 265

Analyzing the Decision Table Note that the order of the rules is not important. The decision
table editor will sometimes move the rule columns around to combine cells where it can do so in
order to present a more compact, easier-to-interpret picture.

The decision table editor in JDeveloper has several interesting features. One is the Gap
Analysis. This helps us inspect the rules we have specified to see whether we have forgotten rules,
given the combinations of condition values that may occur (see Figure 8-28).

FIGURE 8-27. Creating the rule for the highest priority assigned by the referring doctor

FIGURE 8-28. Performing a Gap Analysis on the decision table

Chapter 8: Rules Rule—on Decision Services 265

The Gap Analysis is presented in the form of suggested rules that could be added to the table to
cover all situations described by the bucket sets, complementing the rules already in the table. We
can select the rules to be added by marking the check boxes in the column headers. Figure 8-28
shows that by adding four rules, covering a large number of different value combinations, we
have a complete set of rules that can derive the priority for all possible requests. Note that we can
decide to allow gaps, for example, when we know for certain that certain combinations of bucket
values from different bucket sets will never occur—such as morbidly obese children under
3—and therefore need not have rules to cater for them. If that situation should occur after all, no
rules will match and no value is assigned as an outcome of the business rule.

Another valuable feature is conflict resolution. The decision table editor can find rules that
may trigger for the same set of conditions—and that may try to assign different, conflicting result
values. It may be intentional or by mistake. In the latter case, this check allows us to correct the
oversight. When the rule conflict is intentional, we have to indicate how the conflict should be
resolved. Various methods of conflict resolution are available to us, for each conflict detected by
the tool. Through Override and OverriddenBy, we can indicate that one rule overrules the other
one (the overridden rule is ignored altogether). With RunBefore and RunAfter, both rules may be
activated—in the order specified—and both actions may be executed. Finally, using NoConflict
we can instruct the business rule engine to ignore what it thinks is a conflict.

We have a potential conflict in our decision table: We want to implement a fallback option as
a final resort that should trigger when no other rules have triggered. This fallback rule will assign
the priority value Normal. The fallback rule accepts all values for all conditions—and therefore
has a conflict with every other rule.

When we double-click the cell that shows the conflicts, the Conflict Resolution window pops
up, as shown in Figure 8-29. We can select the resolution for every conflict for this rule. In this

FIGURE 8-29. Rule R5—the fallback rule that matches always with all conditions—causes
conflicts that need to be resolved

266 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 267

way, all other rules will override this fallback rule—when any other rule has fired, this rule is
overridden, which means ignored. Only when no other rule was activated will this rule come in
action to assign a Normal priority.

Operations on the Decision Table Other advanced operations on the decision table include
split cell and split table, merge cells, and compact table.

Compacting the table can reduce the number of rules we have created by eliminating the
rules that are redundant while preserving the no gap, no conflict properties for the decision table.
The split operations create additional rules, one for each of the values in the cell that is split.
Splitting a cell that currently matches on [Young, Elderly] produces two cells, and therefore
columns, one for each of the two values. If a cell has the “do not care” value, splitting the cell
produces a cell for every value in the bucket set. This is demonstrated in the next figure.

The merge operations do the opposite from what split does: They combine various condition
values into a single cell.

With the decision table complete, we can now test the rule set using a test function. Function
test_EstablishAppointmentPriority creates a new variable request based on PriorityRulingRequest
Type, invokes the Decision Function that leverages the decision table to produce a result, and
prints the result to the output. Using this test function, we can quickly check what the effects are
of changes we make in the decision table (see Figure 8-30).

Integrating the Business Rule Service Component in the BPEL Process
From this test, we conclude that the decision table produces apparently meaningful results.
This seems like a good moment to integrate the decision service in the BPEL component
PatientAppointmentService. Open the BPEL editor for this component.

FIGURE 8-30. Testing the decision table through a custom function

Chapter 8: Rules Rule—on Decision Services 267

Mediator with Dynamic Routing Rules
One special application of business rules is in Mediators with dynamic routing rules. Most
Mediators have static routing rules, which means that the target for the routing rule is
determined at design time. However, routing rules can also be dynamic, determining the
target service dynamically at run time. All candidate target services for such a dynamic
routing rule need to have the same (abstract) WSDL.

When we create a dynamic routing rule in a Mediator, an associated Business Rule
service component is created along with the wiring from the Mediator (see Figure 8-31).
The Business Rule dictionary is populated with XML facts based on the type definitions in
the XSD used for the input of the Mediator. It also has a decision table set up for us, with
predefined actions. All we need to do is add conditions and rules, and then specify for each
rule which service binding data it will return. In the conditions in the decision table, we
can make use of all data that was sent into the Mediator.

Very appealing is the fact that business analysts can use the SOA Composer to maintain
this decision table for dynamic routing and thereby determine through easily editable
business logic what target services a Mediator should address.

For example, medical supplies that are very urgently needed might be bought from the
local, more expensive vendor, whereas the normal orders up to a certain order total should
be sent to the order service of the supplier upstate, and the really large orders with normal
or low delivery requirements should be sent to the web service of a vendor in Milwaukee.
A Mediator with dynamic routing rules would have an associated decision table where
analysts can edit the rules for when an order is urgent and when the order total is large, and
then change the web service locations of these vendors or even add new ones.

Drag a business rule from the Component Palette and drop it right after the InitializeVariables
assign step. Call the activity EstablishAppointmentPriority. Select the AppointmentPriorityRuling
Business Rule dictionary. Figure 8-32 illustrates these steps.

Specify the fact mapping for the Input fact, by copying values from BPEL variables to the four
fields in the priorityRulingRequest, and the Output fact, by copying the derivedAppointmentPriority
to the priorityCode element in the inputVariable. Some special attention for the XPath used to copy
the BMI (Body Mass Index) value for the patient to the Input Business rule fact is required—as we
are somewhat optimistically assuming here that the response from the PatientDataService stored in
the Patient variable will always have a physicalCharacteristic element for the BMI:

bpws:getVariableData('Patient','payload','/ns1:PatientDataServiceProcessResponse...

.../ns1:physicalCharacteristic[whatWasMeasured="BMI"]/measuredValue')

The configuration of the mapping business rule facts is all it takes to enlist the services of a
business rules component in a BPEL process. JDeveloper adds the required Invoke activity to the
decision component, along with the associated variable manipulations.

268 Oracle SOA Suite 11g Handbook Chapter 8: Rules Rule—on Decision Services 269

FIGURE 8-31. Creating a dynamic routing rule in a Mediator automatically brings in a new
Decision Service component

Deploying and Testing the PatientAppointmentService Composite
We can redeploy the PatientAppointmentService to the SOA Suite and test-run the service.
Figure 8-33 shows how the new decision service is engaged to determine the priority awarded to
the appointment request.

Editing the Decision Table at Run Time Through the SOA Composer
When the business logic for deriving the appointment priority needs to follow changes in the
hospital’s policies or state regulations, that can be done at run time through the SOA Composer
web application we used earlier in this chapter for extending a business rule. The decision table
is available in the SOA Composer and can be edited in the same way as in JDeveloper.

Chapter 8: Rules Rule—on Decision Services 269

FIGURE 8-32. Integrating the EstablishAppointmentPriority into the PatientAppointmentService
BPEL process

FIGURE 8-33. Flow trace of the PatientAppointmentService in action, with an embedded
decision service for deriving the appointment priority

270 Oracle SOA Suite 11g Handbook

Summary
Business rules are reusable service components that encapsulate business logic. Based on a
request message, they work their magic and return the decision or calculated result in a response
message. Business rules are part of and deployed inside composite applications. Among their
special treats is their ability to be edited at run time. Through the SOA Composer, developers or
business analysts can refine the definition of a business rule. Such modifications take immediate
effect and do not require a redeployment of the application.

Composite applications can leverage business rules to provide adjustable system parameters
(as an alternative to hard-coded values); perform potentially complex, reusable calculations; do
validations of data; and make decisions given a certain input based on advanced business logic.
Business rules help to decouple the logic and their implementation from the Mediator and BPEL
components, and allow those to focus on process, routing, and transformation logic. Business
rules can also be invoked from external applications as a Web Service and from Java applications
through a Java-based API.

Chapter
9

Event-Driven Architecture
for Super Decoupling

271

272 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 273

OA is about decoupling and reuse, leading to business agility. In the previous
chapters we have seen many examples of decoupling, both within and between
our SOA composite applications, as well as between these composites and
external services and systems.

The use of XML and Web Service standards is good for decoupled interoperability across
heterogeneous technology stacks—for example, file systems, databases, Java applications,
packaged applications, and SOA Suite. The integration between service components based on the
WSDL contracts and the SCA infrastructure allows us to use the best tool for the job—Business
Rules for business logic, Mediator for routing and transformation, BPEL for stateful processes, and
technology adapters to leverage functionality in other platforms.

The asynchronous capabilities that queues such JMS and AQ, as well as the events introduced
in this chapter, provide us with also allow for temporal decoupling where consumer and provider
can communicate without having to be available at the same time.

In terms of decoupling, we have at least one other challenge left: How do we make sure that
services are called at the right time? Some services provide clear value to their invoker, such as
the patient data or the result of a calculation. Such two-way services will be called whenever
their functionality is desired by an application. The application is functionally decoupled from the
service—the canonical model and reusable Web Service contract in combination, possibly with
service endpoint virtualization through the Oracle Service Bus (see Chapter 13) or a service
registry, take care of that. However, the application still needs to explicitly invoke the service,
needs to know some endpoint location, and work according to the service contract.

The story is even more interesting for one-way services, which may need to get into gear for
processing the newly received appointment request, for absorbing the change of address for a
patient, for dealing with the sudden unavailability of an operating room as a result of equipment
failure, or for handling the patients now 30 days late in paying their bills. Who is responsible for
calling these services? No one will call them to get something out of them—because they do not
return a response. Other services and applications may have or even generate the information
that the one-way services need to get. But whose responsibility is it to get it to them? How should
these information owners know which one-way services are interested in their data? And should
the onus be on them to explicitly call these services? Surely we do not want to modify and
redeploy applications whenever a new consumer of their information comes along—or an
existing one loses interest. That would not be decoupling at all!

This chapter introduces the Event Delivery Network (EDN) in SOA Suite—a facility that
provides advanced decoupling by mediating events between producers and consumers that are
unaware of each other. Composite applications can subscribe to one or more of the centrally
defined business event types and are notified by the EDN whenever an instance is published of one
of those types. More specifically, both Mediator and BPEL components can produce and consume
events. Events can also be correlated into running composite instances through BPEL components.

The online chapter complement contains some of the XML snippets and other sources for this
chapter, as well as screenshots and detailed step-by-step instructions to follow through the
examples described in the chapter.

Event-Driven Architecture for Super Decoupling
Event-Driven Architecture (with the obvious acronym of EDA) made a lot of heads turn. Seen as
the successor to SOA by some and as a welcome complement to SOA by others, EDA is clearly
on to something. Extremely Decoupled Architecture would be a perfect secondary meaning of the

S

Chapter 9: Event-Driven Architecture for Super Decoupling 273

acronym—because extreme decoupling is one of the things that EDA adds to “traditional” SOA.
In the world of EDA, events are the messages, replacing direct service calls. Events are not
targeted to a specific service provider. Events are published with some logical name on some
central, generic infrastructure that the event producers use in a fire-and-forget mode. After
publishing their event, these producers have no more responsibility for it. They have done their
job by handing the event to the central event-coordinating facility and no longer have strings
attached to the event. In fact, they may later on even consume their own event just like any other
consumer—because their origin is unknown to event consumers. Events typically have a header
and a payload. The header contains metadata such as the event type and a timestamp. The body
or payload contains the details that describe the facts of the event instance that business logic in
the consumer will process.

Anyone interested in occurrences of a specific type of event can subscribe to it, registering
their interest in that event type with a central facility that coordinates events. This coordinating
facility receives all events that get published, relieving the event publisher of the responsibility for
the event. After receiving an event, it will traverse all subscriptions for the particular event type,
taking into account any filters that may have been defined on such subscriptions to see whether
the specific event occurrence should actually be forwarded to the subscription’s consumer, and
propagate the event to all qualifying consumers. The event coordinator may support mechanisms
to retry delivery of an event upon initial failure or deferred delivery for currently unavailable
consumers. Figure 9-1 shows an example of an EDA environment with two types of events: The
light and dark cubes are published to the event coordinator and propagated to consumers that
have subscribed (dashed lines) to the event type(s) of their choice.

FIGURE 9-1. The fundamentals of Event-Driven Architecture

Event
coordinator

Application A

Application B

Application C

Application E

Application D

274 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 275

NOTE
None of the producers of events are aware of these registrations. They
should continue to publish their events even if no subscriptions exist
at all. They should neither know nor care.

The terms SOA 2.0 and Event-Driven SOA have made some inroads into the SOA community.
They both indicate a service-oriented architecture where event mechanisms are used to further
decouple applications and services from each other. Instead of coupling applications and services that
are sources of business events to the (often one-way) services that have a need for the information,
events are used to convey the data through a generic facilitating medium: an event coordinator. In the
SOA Suite, the role of event coordinator is implemented by the Event Delivery Network.

Introducing the Event Delivery Network
Oracle SOA Suite 11g comes with the Event Delivery Network (EDN), an infrastructure that
provides a declarative way of defining, publishing, and registering for consumption of business
events. The EDN enables implementation of the EDA patterns in the SOA Suite.

The Event Delivery Network is a man-in-the-middle, a central coordinator that interacts with
three types of entities: publishers of events, consumers of events, and the events themselves. The
publishers—composite SOA applications or external parties such as Java applications or PL/SQL code
running in the database—create an event and publish it by telling the man-in-the-middle about it.

However, before events can be published, their meta-definition needs to be in place, consisting
of a (fully qualified) name and an XSD definition of their payload. The payload of an event is the data
associated with it, provided by the publisher and available to the consumer. The meta-definitions of
the business events are defined in EDL—the Event Definition Language. EDLs are deployed inside
composites or stored in MDS. These event-definition files typically import one or more XSD
documents that provide the element definitions on which the event payload is based.

EDL is just another XML language—based itself on an XSD (edl.xsd in the JAR file bpm-ide-
common.jar) that is registered with JDeveloper. Note that there are no explicit references to EDL
files, not from composite.xml or from any of the components’ definitions files. All EDL files in a
project help provide events that the components can subscribe to or publish, and all EDL files
deployed to an SOA Suite instance are available to all composites in that SOA Suite. One EDL file
can contain multiple definitions of event types.

The Event Delivery Network works across and beyond the SOA Suite, coordinating events
from and to all composites running in the SCA container. The event definitions should therefore
ideally be generic, based on canonical data model definitions.

Once event definitions have been registered with the EDN, subscriptions can be created on
those events. Composite applications register their interest in events of a specific type with the
EDN through Mediator or BPEL components that consume such events. BPMN components—
which will be introduced in Chapter 11—can also subscribe to EDN events that are consumed
as BPMN signal events.

Upon deployment of an application with event-consuming components, the subscriptions are
automatically detected by the EDN and used to distribute the published instances of those events.
Publishers of events do not have to be registered beforehand; anyone can publish an event of a
type that is defined through EDL.

As you probably already understand, events of a specific type can be published by many
different publishers, both inside the SCA container and outside of it. Primary publishers of events
to the Event Delivery Network are Mediator, BPMN, and BPEL service components. The SOA

Chapter 9: Event-Driven Architecture for Super Decoupling 275

Suite also exposes APIs in Java and PL/SQL for publishing events. ADF Business Components can
be configured to publish events to the EDN when data manipulations on entity objects occur (see
Chapter 20). The FMW Control has a facility for publishing events for test purposes—we will be
using that feature later in this chapter.

Many different composite applications can subscribe to an event. Each of these applications
will receive notification of the events from the Event Delivery Network. Figure 9-2 shows the Event

From E-mail to Twitter—Decoupling Through Publishing
Jenny is not necessarily a nosy person. She just happens to know a lot about what is going
on in her corner of St. Matthews. New nurses and doctors, staff calling in sick, rare new
cases, VIP patients, extra-special operations, and dates between staff members—Jenny
knows it all. And her colleagues know that she does.

One day, Victor, one of the interns, asked Jenny to let him know whenever an
emergency operation would be scheduled. And Jenny was happy to oblige; whenever the
schedule was overhauled because an emergency operation had to be performed, Jenny
would page the intern.

Word got around, and after a few weeks, other interns came to her with the same
request. And Jenny was a good sport and added their names to her list of people to inform
upon interjected operations. Then things started to get a little trickier when she was asked
by one or two desperate single nurses to keep them informed of newly admitted, apparently
single male patients—via e-mail this time, because paging would be somewhat ridiculous.

Victor came back to her and—eager to participate in more operations than he was lined
up for—talked her into letting him know whenever one of his colleagues called in sick and
was scheduled to scrub in. And if she could, please page him as well as leave a voicemail
on his telephone—because he might be at home or en route.

Jenny could not cope anymore. Keeping track of all the people, the information they
wanted, and the channel through which they requested to get it just became too much. She
had her own job to do as well!

Then she found a perfect solution: Instead of maintaining lists of people’s interests and
calling, paging, or e-mailing them whenever a nugget of information fitting with their
particular request had become available, she started to use the corporate Twitter. Every
tidbit of information that came across her desk she turned into a tweet. And she told
everyone who wanted information from her to just “read the feed!”

Life became so much easier. She tweeted her news flashes, not knowing nor caring by
this time whether anyone would read them. New readers could join in, and old ones could
vanish from the crowd—temporarily or permanently. It no longer affected her.

At some point there was a request to somehow filter her tweets—in order to distinguish
between operation warnings, sickness notifications, and hunk alerts. She started to add hash
tags (#opr, #sck, #hnk) to her tweets and thus made everybody happy.

Her counterparts in other departments joined in and started to tweet their news as well,
in a similar vein. Victor at some point happily scrubbed in on an operation in a remote part
of the hospital, thanks to the alert some other “Jenny” had twittered.

Unknowingly, Jenny migrated from a distinctly coupled communication pattern to a
much more efficient, decoupled approach based on publishing news and messages in
general (to the ether) rather than sending them to individual recipients. With a much lighter
responsibility and workload, she can make even more people happy than she realizes.

276
O

racle SO
A

 Suite 11g H
andbook

C
hapter 9:

Event-D
riven A

rchitecture for Super D
ecoupling

277

FIGURE 9-2. The Event Delivery Network

–

–

–

–

–

Java API

Event delivery network

Event definitions
PatientChangeEvent

Subscribed: Operations:

Subscribed:
Operations:

OperationCancelled
DataRequestEvent

RegisterNewP...
Operations:
createNewPatie...

ProcessNe...

Published:
PatientDetailsCh...

–
CreateNewPati...

Operations:

insert

RetrievePatien...
Operations:

RetrievePatient...

PatientData...

ListenToPati...
LogPatientDet...

AppendToLogFilePatientDetailsCh...ConsumePat...

PatientDetailsCh...

PatientInvoice...
PatientInvoice...

Subscribed:
PatientDataResp...

process
processRespon...

update

UpdatePatient...

Event subscriptions

ListenToPati...

Subscribed: »
PatientDataRequ...

RetrievePatien...
Operations:

RetrievePatient....

Client
Operations:
process

–

–

–

––

–

–
–

Operations:

Chapter 9: Event-Driven Architecture for Super Decoupling 277

Delivery Network working with three business event types and four composite applications that
each have one event subscription (red dashed lines). Two of those subscriptions have an explicit
filter that sifts the relevant instances of the red and yellow events. Two publishers broadcast the red
event (PatientChangeEvent) and three broadcast the yellow (OperationCancelled) event. The thin
blue lines show red and yellow events being passed to consumers based on their subscriptions.

First Round with EDN: Consuming Events
St. Matthews is moving toward the Event-Driven Architecture utopia. Everyone involved with the
SOA initiatives agrees that events are a perfect means of propagating information through the
entire organization, making it available to everyone yet forcing it on no one.

A successful adoption of the Event-Driven Architecture can be achieved in steps. The hospital
can start with defining one or a few business events and ensure that all communication around
those events is implemented in an event-driven way. This requires the right mindset and
discipline. All owners of processes and applications where these events are generated must be
identified and convinced to explicitly publish those events on the Event Delivery Network. All
services and processes that need to be triggered by those events must be adopted to consume
them through a subscription with the EDN—rather than waiting to be invoked by someone with
the information. Mindset and discipline—the latter to take on the responsibilities that come with
EDA. There is a responsibility to push events by the instigators or first points of contact in the
organization (for example, the applications that register cancellations, registrations, orders, and
modifications). And applications, processes, or services that run on information available through
events have a responsibility to pull the information from the EDN via subscriptions on the events.

We will dive into the implementation of EDA using the SOA Suite Event Delivery Network
and the case of the patient’s address changing as our first example.

Synchronizing Patient Data Using
the Event Delivery Network
One of the major complaints from patients about St. Matthews is the poor handling of changes in
their personal data. The number of times bills and other mail has been sent to the old address of
a patient—leading to late payments or even actions by collection agencies that turned out to be
rather unjustified—is way too high. Or simply the failure to change the surname after a divorce or
marriage or the title after sex-reassignment surgery—even when performed at St. Matthews itself.
Patients frequently are overheard sighing. “I did inform the hospital! I notified them weeks in
advance! Why can’t they understand a simple thing like a family moving!”

Patients have no clue—and should not need to know—that behind the façade with the big
sign “St. Matthews Hospital” is a plethora of departments, computer systems, processes,
administrations, and procedures that do not necessarily form a unified entity where all speak with
one voice and listen with a single ear. “Informing ‘the hospital’ of some fact and expecting that
everyone in the hospital thereby becomes aware of it is plain naïve!” seems the general opinion
of the hospital staff, although it is not something one would say out loud to a patient, of course.

Consuming Patient Change Events
Because of the annoyance felt by the patients, and the staff to some extent, as well as for
efficiency reasons—the time spent on correcting the errors just described is substantial—it has
been decided that changes in the patients’ contact details are among the first to be tackled

278 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 279

through events. We will see how Frank implements a simple composite application that
subscribes to the Patient Details Change event and uses the payload to synchronize his patients
database. He uses a Mediator to consume the events and forward them to a database adapter that
updates the patients table based on the event payload. Later on he will expand the composite so
that the customer change is propagated to all systems within St. Matthews that store and use
patient information.

Enforcing a regime where any change in patient details is turned into an event on the EDN,
wherever that change first enters the hospital, is beyond the scope of this chapter, as are a
discussion on how the correctness of the information is verified, when exactly the new data first
becomes valid, and any other security issues that need to be dealt with when using events.
However, note that events are not subject to authorization mechanisms: Any composite can
register for any event type on the EDN and every instance of events is delivered to every
consumer—when allowed by the optional filter expression on the subscription. No authorization
can be specified or enforced.

We will also avoid a discussion on whether a missing element should be interpreted as a
value that was not changed or one that was nullified. We will focus only on the implementation
in the SOA Suite of the simplest interpretation of the event.

The steps are fairly simple then:

 1. Create a new SOA composite application called SynchronizePatientsInformation, with
a project carrying that same name. The application will initially consist of an empty
composite.

 2. To keep things simple in this example, just create a new XSD document called
PatientDetailsChangeEvent.xsd with its target namespace set to http://stmatthews.
hospital.com/events. Create a PatientDetailsChangeEvent and a complexType called
PatientDetailsChangeEventType that defines the payload for the event—a timestamp
and a patientDetails element based on the patientDetailsType in the imported schema
document CanonicalPatient.xsd that contains a simple representation of a patient with
her contact details (the same that was used in previous chapters; see Figure 9-3).

 The PatientDetailsChangeEvent is defined in an EDL file—as a hospital-wide event type
with a canonical payload—not specific to any application or service and based on
elements defined in the canonical data model. Note that the EDL file has to be created
and deployed as part of an SOA composite application, even though it does not really
belong to any one application—it is applicable throughout the SOA Suite container and
is more or less “community property.” In Chapter 18, we will see how MDS can be used
to centrally store, share, and manage EDL definitions.

 3. Open the composite.xml file in the editor. We will now create the EDL file, as shown in
Figure 9-4. Bring up the Create Event Definition File window by clicking the event icon
in the upper-left corner. Enter PatientEvents as name for the EDL file. Accept the default
derived namespace. Click the green plus icon to add the first event definition. Select the
element PatientDetailsChangeEvent from the XSD with that name in the Type Chooser
pop-up window. Enter PatientDetailsChangeEvent as the name for the event.

 4. Create a Mediator called ConsumePatientDetailsChangeEvents that subscribes to
the PatientDetailsChangeEvent (see Figure 9-5). Drag the Mediator component from the
palette to the composite. Specify the name and select the template Subscribe To Events.
In the Event Chooser, select the PatientDetailsChangeEvent from the event definition file
created in the previous step. We have now specified that when the event is published

Chapter 9: Event-Driven Architecture for Super Decoupling 279

on the EDN, the Mediator consumes it and can process it just like any incoming request
message—except, of course, it cannot send a response. The column “Consistency” indicates
whether the delivery of the event is part of the Mediator’s transaction is response to the
event (one and only one) or whether the delivery is in separate transaction (guaranteed).
The former (and default) setting means that the event delivery is rolled back when errors
occur in the Mediator (and the event can be delivered again), whereas the latter causes the
event to be lost for this subscription when the Mediator transaction is rolled back. The third
value—immediate—specifies that events are delivered to the subscriber in the same global
transaction and same thread as the publisher, effectively (and usually very undesirably)
coupling the publisher to the consumer. Stay away from that option, unless you have a very
good reason for using it.

 The column “Run as publisher” is set to yes to have the Mediator executed with the same
security context (identity) as the composite that published the event. According to the
documentation, alternatively an Enterprise Role can be set to execute the Mediator with.
However, the IDE does not appropriately support this.

FIGURE 9-3. The PatientDetailsChangeEvent definition in PatientDetailsChangeEvent.xsd

280 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 281

FIGURE 9-4. Opening the Create Event Definition File window and creating the
PatientDetailsChangeEvent

FIGURE 9-5. Creating the Mediator that consumes occurrences of PatientDetailsChangeEvent

Chapter 9: Event-Driven Architecture for Super Decoupling 281

 5. Create the database adapter service that will update the patients table. A normal best
practice would be to go through a database package instead of directly coupling to the
table, as was discussed and demonstrated in Chapter 5. However, to see the database
adapter do straight updates for once, we will adopt that approach in this situation. The
database adapter service locates records based on the patient identifier and can update
various details, including surname, address, and contact data.

 6. Drag a database adapter service from the Component Palette to the External References
lane. Call the service UpdatePatientsTableWithChanges. Select the database connection
to Frank’s patients database. Choose the Update Only operation to perform and import
Table Patients. Accept all attributes for inclusion. Click Finish.

 7. Wire the Mediator to the database adapter service in the Composite Editor, as shown in
Figure 9-6.

 8. Double-click the Mediator to edit the routing rule from event to adapter service. Create
the mapping from the event payload structure to the input format dictated by the
database adapter service (see Figure 9-7).

The composite is ready for deployment. Deploy it to the SOA Suite. The EDL file with the
event definition is deployed along with the composite. It is added to the dictionary of business
events supported by the container. When you go to the FMW Control, you can inspect the list of
all events that the Event Delivery Network knows about, as well as the subscriptions to events.
First select the soa-infra node in the tree navigator. Then from the context menu, select the option
Business Events (see Figure 9-8). The Business Events page opens. It shows a list of all registered
business events—parsed from all deployed EDL files. The Subscriptions tab lists all subscriptions
from composites on events, and indicates per subscription the precise consuming component in
the composite as well as the delivery method and the filter, if there is one.

We can publish instances of the events from this page, primarily to test the subscriptions.
With the PatientDetailsChangeEvent selected, click the Test button to publish a “test patient
details change” event and see if the SynchronizePatientsInformation composite picks it up and
processes it as expected. Note that there is no other way to test this composite because it does not
expose a Web Service interface.

FIGURE 9-6. Wiring the Mediator to the database adapter service

282 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 283

FIGURE 9-8. Publication of a test instance of the PatientDetailsChangeEvent from the FMW control

The test instance of the PatientDetailsChangeEvent indicates that the patient with identifier 1
has moved to a new address with a new ZIP code and a new landline. He has not changed his
name, undergone gender-influencing surgery, or altered other relevant details.

The publication of this event should have triggered an instance of the SynchronizePatients
Information composite that has updated the patients table in the database through the database
adapter service.

FIGURE 9-7. Mapping the event payload to the input for the database update service

Chapter 9: Event-Driven Architecture for Super Decoupling 283

When we check the dashboard for the SynchronizePatientsInformation composite, we will
find a new instance. Its message flow trace makes clear that it was triggered by the PatientDetails
ChangeEvent—the only way it can be instantiated—and called the database adapter service. The
message flowing into this service contains the payload from the event in a structure suited to the
update service. We do not see the actual update SQL statement in the message flow. However,
when we inspect the patients table contents and find the new address, we may conclude that the
synchronization of the database has taken place, just as Frank envisioned (see Figure 9-9).

Frank’s application does not know the origin of the event. The event appears on the EDN; the
application is notified and processes the event’s payload. Because the entity at St. Matthews who
was first aware of the changed patient data took responsibility to publish the event, Frank’s
database has been synchronized—in near real time it would seem.

Other Consumers Listening In
One of the essential features of the Event Delivery Network is that the producer of the event
is unaware of the consumers of the event. And, of course, that one consumer is completely
independent of any other consumer. To perhaps state the obvious: Any event on the EDN can be
consumed by one, multiple, or even no consumers at all. In the latter case, even if publishing the
event turns out pointless in hindsight, that never relieves the producer from the responsibility to
publish it anyway. When we know an event will (or even may) become important, we should
publish it.

FIGURE 9-9. The instance of the SynchronizePatientsInformation composite that has updated
the patients table in response to the event

284 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 285

We could create a new composite application called FeedPatientChangesToDWH that
consumes the PatientDetailsChangeEvent on behalf of a data warehouse that the hospital has set
up, for example, to investigate demographic trends among the patient population, including
moving to richer or poorer neighborhoods, marrying and divorcing, and undergoing other changes.
This composite would have a Mediator that also consumes the event and propagates it to the
data warehouse—through an adapter service that could talk database, JMS, AQ, or file-speak.

When we create the Mediator and indicate the Subscribe To Event template, we have to
browse for the PatientDetailsChangeEvent. The most “pure” way of doing so is through the
SOA-MDS connection in the Resource Palette. Through this connection, you can browse the
resources in any of the composites currently deployed on the SOA Suite. Figure 9-10 shows how
to subscribe the Mediator ListenToPatientDetailChangeEventOnBehalfOfDWH to the event by
browsing for it in the EDL file that is deployed in the SynchronizePatientsInformation composite.

Creating Picky Subscriptions Using Filter Expressions
Even though a composite registers its interest in a certain event through an EDN subscription, this
does not necessarily mean it will have to process every occurrence of the event. It is possible to
define a filter expression as part of the subscription (just like we do for content-based routing in
Mediators). This filter consists of a Boolean XPath expression that evaluates the event’s payload,
resulting in “true” for events that should be delivered to and processed by the composite and
“false” for events that the composite chooses to decline.

To see the filter mechanism in action, we will help Frank decline a specific subset of occurrences
of the patient details change event. It may sound unlikely, but Frank is not interested in a particular
category of patients—they are simply outside the scope of his database. All patients with an identifier

FIGURE 9-10. Browsing for an event to consume in the SOA Suite’s deployed composites using
the SOA-MDS connection

Chapter 9: Event-Driven Architecture for Super Decoupling 285

between 100,000 and 200,000 are not his cup of tea (they are managed in the patient administration
in the former Ophthalmology Clinic that was merged into St. Matthews several years ago). Rather
than have the SynchronizePatientsInformation composite attempt updates that will have zero effect
(or even result in errors) because the target record is not available, it is better to stop the event’s
consumption altogether. We will specify the filter that will only allow patient details change events in
the meaningful range.

To begin, open the composite and then open the context menu for the event subscription
icon on the Mediator. This brings up the list of event subscriptions for the Mediator, which
contains only one subscription. Select the subscription and click the filter icon. This brings up
the Expression Builder that helps with the creation of the XPath expression for the filter. It
shows the payload structure for the event, making it easy to include the elements we need in
our filter expression (see Figure 9-11).

FIGURE 9-11. Specifying a filter expression for the PatientDetailsChangeEvent subscription

286 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 287

Create the following filter expression:

/be:business-event/be:content/event:PatientDetailsChangeEvent...
 .../event:patientDetails/patient:patientId < 100000
or
/be:business-event/be:content/event:PatientDetailsChangeEvent...
 .../event:patientDetails/patient:patientId > 200000

Basic Queuing vs. Business Queuing, or JMS and AQ vs. EDN
Publishing messages that are forwarded by a framework to registered consumers in order to
achieve a highly decoupled exchange: That, in short, is what EDN adds to the SOA Suite.
But that could also serve as a brief definition of both JMS (Java Message Service) and AQ
(Oracle Advanced Queuing). And because we already had those two at our disposal
without the SOA Suite, as well as technology adapters for both JMS and AQ to make them
available from within the SOA Suite, one might wonder what exactly is the added value of
the Event Delivery Network.

The fundamental concepts of EDN on the one hand and JMS and AQ on the other are
pretty much the same. Most of the things we do with the Event Delivery Network and the
supporting facilities in the SOA Suite can also be done with plain JMS or AQ—although it
would require a lot more work.

JMS and AQ are not specially geared toward XML payloads or integration into the
world of SOA, SCA, and Web Services. In order to work with vanilla JMS or AQ, we would
have to implement technology adapter services that are listening to queues, one for every
consumer of an event arriving on that queue. These adapter services would work with
Mediators that play a similar role as they would when dealing with EDN events.

Before we can get started with our JMS or AQ operations, the underlying JMS queues or
topics or the AQ queues would have to be created and configured in either WebLogic
Server or the database.

The SOA Suite provides additional value with the EDN style of events. Event definitions
are consolidated across the SOA container, defined in EDL files and available from MDS.
The FMW Control presents the Business Events in a separate page that shows the events and
their definitions, all subscriptions and faulted deliveries, and allows us to publish test events
onto the Event Delivery Network. Events have become first-class citizens in the SOA Suite
thanks to the EDN.

Many of the things we could do using JMS or AQ and would have to configure
ourselves have been prebaked into the SOA Suite EDN infrastructure, making life a lot
easier. The EDN allows us to focus on the contents of the events and the logic of event
handling, abstracting away the finer technical details of JMS or AQ. However, the Event
Delivery Network internally has been implemented on top of these standard messaging
technologies. EDN has two different implementations—namely, EDN-DB and EDN-JMS.
EDN-DB uses an Oracle Database as a back-end store and depends on Oracle-specific
features. EDN-JMS uses a vanilla JMS queue as a back-end store. By default, when the
dehydration store runs on an Oracle database, you get the AQ-based EDN-DB, and
otherwise the JMS one.

Chapter 9: Event-Driven Architecture for Super Decoupling 287

Close the Expression Builder and the Subscribed Events window. Now the composite can
be redeployed and we can publish test events to see whether the filter blocks out the events
regarding patients in the 100,000–200,000 range.

If we were to deploy the composite as a new revision, we would see something that might
seem odd at first. PatientDetailsChangeEvents for identifiers between 100,000 and 200,000 are
still consumed and processed, despite the filter expression that should block them out. Events
with identifiers outside that range are processed twice by the SynchronizePatientsInformation
composite—or rather by the two revisions of the composite.

Events are picked up by all revisions of a composite application—not just the last or the one
marked as default! (See Chapter 17 on versions of composite applications.) To receive the event
with the latest revision of the composite only, it is recommended that you retire all previous
revisions of the composite.

Publishing Patient Details Change Events
Mediators can easily be configured to consume events, as we have seen in the previous section.
But they are just as capable of publishing events. A routing rule can be created that forwards a
message in the form of an event’s payload to the Event Delivery Network, instead of to a target
service. Alternatively, you can open the context menu on a Mediator in the Composite Editor and
open the Event Chooser by clicking the option Add Published Events (see Figure 9-12). The
routing rules are created automatically.

A component such as a Mediator does not need a registration or configuration with the EDN
before being able to publish events to the EDN. The Mediator can just send one to the EDN. You
will not find a list of event publishers in the FMW Control.

Frank not only consumes patient details change events, he also publishes them to the EDN
in situations where updates to patient records first appear in his database. Of course, we need to
make sure that no events are published from an update to the database when that update is
indirectly the result of another patient change event on the EDN—or that Frank consumes his
own events, thus ending up in an infinite loop.

FIGURE 9-12. Adding published events to a Mediator

288 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 289

Publishing Database Events via Advanced Queuing
Ultimately, all changes to Frank’s patient database end up in the database itself. All data changes
can therefore be captured at the core level using a database trigger against the patients table. We
would then have to somehow upgrade that database-level DML (data manipulation) event to
an event that the EDN can handle. A good, decoupled approach would be to use Advanced
Queuing (AQ) to publish the DML event from a database trigger—as shown in Figure 9-13. The
database application has the responsibility for publishing the event, but it does not get coupled to
the specific ways of the SOA Suite and its proprietary EDN requirements. The trigger uses a
concept from its own realm—the Advanced Queue—and what happens next with the published
event is out of its hands and mind. However, anyone listening in on the Advanced Queue can
process the event in any appropriate way.

From the SOA Suite end, we would use the AQ Technology Adapter to listen to these events
that get published on the queue (or multiconsumer topic). This adapter service would forward the
event’s payload to a Mediator that will then publish the event as described in the EDL on the
Event Delivery Network.

Alternatively, the database trigger could also make use of the EDN’s PL/SQL API to publish
a real EDN event straightaway. That is probably easier than doing the AQ thing. However, it
couples the database application to the SOA Suite in a way that could be seen as too restrictive:
The availability of the SOA Suite would become a requirement to run and even compile the PL/
SQL code.

Java applications can adopt a similar setup with JMS as the pub/sub queuing mechanism
instead of Advanced Queuing. In this case, the JMS technology adapter consumes messages from
the JMS queue and propagates them to a Mediator that publishes to the EDN. Java applications
could alternatively use the EDN’s SendEvent Java API.

Another approach is one where database applications and Java applications both could call a
very generic, one-way Web Service exposed by a Mediator that turns various request messages
into different types of EDN events.

The wiki contains a complete example of a database trigger that feeds DML events into an
Advanced Queue and an AQ adapter service listening to these events and forwarding them to a
Mediator that publishes events on the EDN. Another example demonstrates the same approach
from a Java application using JMS and the JMS technology adapter.

FIGURE 9-13. Publishing events from the database to the EDN via Advanced Queuing

Advanced queue

Patients

dml trg

AQ pck

EDN

–
– FromAQ2EDN

Published:
PatientDataRequ...

ListenToAQEv...
Operations:

DequeueEvents

–

Chapter 9: Event-Driven Architecture for Super Decoupling 289

Advanced Queuing and JMS are, of course, perfect ways to share events that appear on the
Event Delivery Network with consumers outside the SOA fabric—either Java (JMS) consumers or
PL/SQL (AQ) consumers. In these cases, a Mediator consumes the EDN event and forwards it to a
technology adapter for either JMS or AQ that puts it on the respective queue or topic.

Chapter 20 demonstrates ADF Business Components that can publish EDN events, either in
the same or a different container from the one running the SOA Suite.

Publishing EDN Events from BPEL Components
The PatientDataService composite developed in Chapter 5 only supported operations to retrieve a
patient record. That application has been extended and now exposes a service for creating a new
patient record. This service can be invoked, for example, from the PatientAppointmentService
composite that sometimes receives appointment requests for unknown patients, for whom a new
record should be created (see Figure 9-14). The operation to create a new record expects a
request message that contains all data for the new patient. It will respond with a message that
contains the newly assigned patient identifier. Internally it uses a new database adapter service
that inserts a record into the patients table and the existing service that retrieves the patient’s ID
based on the combination of first name and last name.

After the BPEL component ProcessNewPatient has called the database adapter services, first
to create the new patient record and then to retrieve the patient identifier that was assigned during
the insert from a database sequence, it would be a good moment to publish a PatientDetails
ChangeEvent to inform potential consumers of this new patient record. Publishing an event from
a BPEL process is a bit special, because BPEL is an open standard and the EDN is not. Oracle has
extended BPEL—which is supported by the standard—to support additional activities such as

FIGURE 9-14. PatientDataService composite with support for the “create new patient” operation

290 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 291

special versions of Receive and onMessage for consuming events as well as special versions of
Invoke to publish an event. Also see the next section for some details on these extensions and the
evolution of the SCA standard with regard to events. In general, it seems best to use a mediator to
either receive or publish events, unless those events are required for correlation purposes: When
an event must be consumed by a specific running instance of a composite application, the event
consumer should be the BPEL process component.

If we want the BPEL process to publish an event, we have to add an Invoke activity, dropping
it after the scope RetrieveNewlyAssignedIdentifier (see Figure 9-15). Call the activity Publish_
PatientDetailsChangeEvent. Select the appropriate interaction type of event. The editor changes
and now allows us to browse for the event that we want to publish—using the Event Chooser
dialog we have used before. In this case, select the PatientDetailsChangeEvent from the
PatientEvents.edl found in the SOA-MDS connection in the deployed composite SynchronizePatients
Information. After selecting the event, click the green plus icon to have a local variable created
that we will set up with the event’s payload.

We need to have the XSD document available in our project that contains the definition of
{http://stmatthews.hospital.com/events}PatientDetailsChangeEvent. Otherwise, JDeveloper’s editors
will not know the structure of the variable. We can copy that file (or refer to it), either from MDS or
from the SynchronizePatientsInformation application on the file system, to the xsd directory. After
creating the BPEL process using the design-time editors, we could remove that file again.

We will now add an activity that will initialize the variable PatientDetailChangeEvent_
payloadVariable. We could use an Assign activity with a dozen Copy steps, but it’s preferable to
use the Transform activity to map the contents from the inputVariable to the variable for the event
payload. We then need an additional Assign activity with a single Copy operation to set the
patientIdentifier.

With the transform, assign, and invoke (or publish) added to the process, we are ready to
deploy the revamped PatientDataService—and find out whether it will publish events to the Event
Delivery Network.

Testing the publication of events to the EDN is really only possible when there are consumers
of the event. There is no way to track publication of individual events, either through the FMW
Control or in any other way, except for the audit trail on the end of the consumers of the event.
On the publishing side, there is only an audit trail for events that have faulted delivery.

In this case, we have a consumer of the event—or even two—so we can test whether the
BPEL process publishes events as it is supposed to (see Figure 9-16). When we invoke the
PatientDataService to have it create a new patient, after making the database adapter perform
the insert of the new record, the BPEL process publishes the PatientDetailsChangeEvent
that subsequently gets consumed by two composites: FeedPatientChangesToDWH and
SynchronizePatientsInformation. The former writes an entry in the log file, and the latter
performs an update of the database record that was just created—with the values it already
has. Pointless but harmless. In this case, we should add an indication to the event about its
origin as well as a filter to the event subscription in the SynchronizePatientsInformation
composite to not consume instances that were published by Frank’s own Patient Data Service.

Note how the FMW Control message flow trace includes both the composite instance that
published the event as well as the two instances for the consuming composites—even though
there is no direct relationship between these three composites.

C
hapter 9:

Event-D
riven A

rchitecture for Super D
ecoupling

291

FIGURE 9-15. Adding the Invoke activity to the BPEL process that will publish the event

292 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 293

FIGURE 9-16. Testing the creation of a new patient record and subsequent publication of Patient
DetailsChangeEvent by the BPEL process

Complex Event Processing
The SOA Suite license encompasses a product called Complex Event Processing (CEP);
however, this is not integrated into the SOA Suite run time (it runs in its own stand-alone,
lightweight, specialized container). CEP is not a service engine, and we cannot embed CEP
service components in our composite applications. CEP clearly deals with events—so how
does it relate to the Event Delivery Network?

Complex Event Processing—discussed in more detail in Chapter 19—deals with high
volumes of often very small events (in terms of payload), which are possibly by themselves
meaningless. Events processed by CEP can be as frequent and small as RFID sensor
detections, stock ticker changes, hits on a page on a website, temperature or humidity
readings from a physical sensor, DML events in the database, luggage passing detectors on
the airport’s conveyor belts, or products being scanned on the cash register. CEP tries to
find patterns, derive aggregates, and detect deviations in the streams of events that it
processes. The conclusions it may arrive at are usually forwarded as a real business event
to a specific consumer or to a queue that consumers may register to. To be sure, the
“Complex” in CEP refers to the nature of the processing (algorithms and logic), not to the
events themselves, because those are usually extremely simple!

Chapter 9: Event-Driven Architecture for Super Decoupling 293

Event Delivery Network in SCA and BPEL
The definition of events and the publication of and subscription to these events are recorded in a
number of files that are read, parsed, and interpreted by the SOA Suite and more specifically by
the Event Delivery Network.

The events are defined in one or more EDL (Event Definition Language) files, which are
deployed inside composites or stored in MDS.

The subscription to an event, visualized in the Composite Editor through the little lightning
icon, is recorded in the composite.xml file. In this file, components can have the child element
“business-events.” This element, in turn, can contain one or more occurrences of the “publishes
event” element as well as one or more instances of the subscribe element.

Analyzing the SCA Configuration Around EDN and Events
The entry in the composite.xml file for the BPEL component ProcessNewPatient is as follows:

<component name="ProcessNewPatient">
 <implementation.bpel src="ProcessNewPatient.bpel"/>
 <business-events>
 <publishes xmlns:pub1="http://schemas.oracle.com/events/edl/PatientEvents"
 name="pub1:PatientDetailsChangeEvent"/>
 </business-events>
</component>

It is clear to see how this component is configured to publish instances of the PatientDetails
ChangeEvent. In a similar way, we find from the entry of the Mediator ConsumePatientDetails
ChangeEvents in the composite.xml file for the SynchronizePatientsInformation application that it
subscribes to the PatientDetailsChangeEvent, but it filters on a specific condition.

The composite.xml contains the high-level associations between the composite and the
events that get consumed or published. The details that specify exactly when and with which
payload an event is published are not defined at that level, but rather at either the Mediator or
the BPEL process level.

The SOA Suite run time knows how to interpret the event definition in the EDL document. It
also parses the event subscriptions from the deployed composite applications, both Mediator and
BPEL components, so it knows where to send events of specific types when they occur. The next
paragraphs describe the extensions to BPEL and Mediator configurations with regard to events.

Consider a volleyball match as an example of the difference between the simple events
CEP processes and the derived or promoted business events. In this match, every point scored
amounts to a simple event (or even every individual ball contact, when gathering match
statistics), and only the conclusion of a set or even of the entire match warrants a business event.

The events travelling on the Event Delivery Network usually are business events—with
more meaning and larger payloads than the typical event processed by CEP. Events on EDN
occur with typically much lower frequencies, orders of magnitude below those of the CEP
event streams. However, the results produced from Complex Event Processing may very
well be promoted to or published as events on the EDN, propagated via a JMS queue or the
EDN’s Java API to the SOA Suite.

294 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 295

BPEL Extensions for Consuming and Publishing Events
Oracle has extended BPEL—in a way that is prescribed in the BPEL standard specification—to
implement a special type of Invoke activity that does not call out to a partner link, but instead
publishes an event to the EDN.

The code in the BPEL process ProcessNewPatient that publishes the event is extremely
simple—an Invoke element with a special attribute called eventName in the http://schemas.
oracle.com/bpel/extension namespace that is interpreted by the JDeveloper design-time tools as
well as the SOA Suite run-time engine for BPEL to refer to an event defined in one of the EDL
files, rather than a partnerLink defined in a WSDL:

<invoke name="Publish_PatientDetailsChangeEvent"

bpelx:eventName="ns6:PatientDetailsChangeEvent"

 inputVariable="PatientDetailChangeEvent_payloadVariable"/>

A similar extension is used in the Receive and onMessage activities when they are to consume
an event instead of an incoming request message.

Consuming and Publishing Events in Mediator mplan Configuration
The Mediator configuration file (mplan) has a proprietary format—there is no industry standard
underpinning the mediator’s operations (or the Mediator concept itself in relation to SCA). The mplan
file has an eventHandler element for Mediators that subscribe to an event (instead of a request message):

<Mediator name="ListenToPatientDataRequestEvent"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/sca/1.0/mediator">

 <eventHandler xmlns:sub1="http://schemas.oracle.com/events/edl/PatientDataEvents"

 event="sub1:PatientDataRequestEvent"

 deliveryPolicy="AllOrNothing" priority="4">

It uses a raise element in routing rules that publish an event to the EDN instead of forwarding
a message to a target service:

<raise xmlns:pub1="http://schemas.oracle.com/events/edl/PatientDataEvents"

 event="pub1:PatientDataResponseEvent"/>

Events and Publish/Subscribe in the SCA Specifications
The events and the publish/subscription model we have just seen in action in the Oracle SOA
Suite are not part of the original SCA specifications. Only fairly recently did discussions take
place in the OASIS SCA committee regarding events, partly instigated by Oracle’s representatives.
This has led to a specification—published in April 2009—that the OSOA community considers
final. For more information on this specification, see the link on the book’s wiki to the SCA
Assembly Model Specification Extensions for Event Processing and Pub/Sub.

This extension to the SCA specifications details the description of consumers and producers
of events in the composite.xml file, very much like the business-events element Oracle currently
uses in the composite.xml document for specifying which events are consumed and published
by a component.

The definition of events in SCA is similar to the EDL format used in the Oracle SOA Suite.
Events have a qualified name and a reference to an XSD element that describes the shape of the
event data. The specification also speaks about optional additional metadata associated with
event types, such as creation time. The SOA Suite documentation mentions custom headers—
which seem similar beasts to these optional metadata elements. However, the custom headers
do not seem to currently have a working implementation. The SCA definition also defines filters

Chapter 9: Event-Driven Architecture for Super Decoupling 295

as a way for consumers to fine-tune their interest in events. A filter inspects the event type, event
metadata, and event business data (the payload) and uses expressions—which could be XPath,
although other languages are allowed in the specification—that evaluate to true when an event
should be accepted by the consumer.

The main distinction between the SOA Suite Event Delivery Network and this SCA extension
specification is the concept of a channel in the SCA specification. A channel is an intermediary
between producers and consumers of events. Channels can be used inside composite applications
or at the domain level. Channels can be used for a subset of the full set of event types flowing
through the SCA container. Note that filters can be applied to channels as well as to consumers.
Channels are primarily a means of organizing and administering the event infrastructure of the SCA
container, without adding business functionality. The EDN itself is similar to the default channel,
and currently the SOA Suite does not support alternative channels.

It seems likely that the Oracle Event Delivery Network will morph into an implementation of
this SCA extension for events. That will mean only a slight change in the metadata files (composite.
xml and the EDL files) because the logic of events, publication, and subscription remains the same.

Alternative Ways for Publishing Events to the EDN
The most obvious way to publish an event to the EDN is from a Mediator or BPEL service
component. For testing purposes, the FMW Control also provides a “publish test event”
facility. You can also publish an event from an Ant target, like this:

<target name="publishPatientDataRequest">
 <java classname="oracle.integration.platform.blocks.event.SendEvent"
 fork="true" failonerror="true">
 <classpath>
 <pathelement path="${soaEDN.classpath}"/>
 </classpath>
 <arg line="-dbconn localhost:1521:orcl
 -dbuser FMW_SOAINFRA
 -dbpass oracle
 -event patientDataRequestEvent.xml"/>
 </java>
</target>

Details for this call, including the setting for the soaEDN.classpath property and the
contents of the patientDataRequestEvent.xml file, can be found on this book’s wiki.

The SendEvent class used from Ant can also be leveraged programmatically from a Java
application to publish an event to the Event Delivery Network. An example is shown on the wiki.

Chapter 20 on ADF explains how ADF Business Components can be configured in a
declarative way to publish events associated with data manipulations on Entity objects.
Finally, there is a PL/SQL procedure—in the FMW SOA Infrastructure schema—called
edn_publish_event with four input parameters: local_name (of the event; for example,
PatientDataRequestEvent), namespace (in which the event is defined, such as http://schemas.
oracle.com/events/edl/PatientDataEvents), payload (the XML fragment that should go inside
the <content> element), and priority (an integer that does not yet seem to have any effect).

Of course, there are many indirect ways to publish events: A Mediator can publish EDN
events—and it can be triggered by database, file system, FTP, AQ, and JMS adapters alike
or be invoked through the SOA Suite Java API, SOAP, or REST binding.

296 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 297

Decoupling Two-way Services Using the
Discussion Forum Approach
In the previous pages, we have used the Event Delivery Network to decouple producers of business
events from all interested consumers. The only responsibility we assign to applications that know
about or even create new information is to have them publish business events to the central Event
Delivery Network of the SOA Suite. These events should have a payload with enough information
to make them meaningful to potential consumers. However, the publisher does not concern itself
with who might be interested in the event and what those interested parties will do with it. The
publisher never has to look back after publishing the event—and certainly not wait for a response!
What’s more, we can add or remove publishers and consumers without any impact on them.

That, by and large, resolves the decoupling challenge for the one-way services. Then there is
still the situation where composite applications call two-way Web Services, because they need a
response from those services. This situation introduces some coupling: The calling application
depends on the service contract—the message types, portType, and operation names—and needs
to know where to find the service. In this case, because the calling application has its own
reasons for making the call, this moderate level of coupling is usually acceptable. However, the
Event Delivery Network makes it possible to eliminate these direct dependencies in many
situations by using the Discussion Forum pattern.

Introducing the Discussion Forum Pattern
To completely decouple service providers from service consumers, we have to rethink the concept
of soliciting a response from the service provider. Instead of making a direct call to a specific service
to have a specific question answered, we can publish an event that contains the service request to
the EDN like a generally broadcasted cry for help. The event publisher does not know who will be
able to handle the request and formulate the response. It does not know where the service is located
that is capable of handling the request, what its contract is, and whether it is synchronous or
asynchronous, if it is available (and if not, whether there is a fallback alternative). It assumes—and
that is probably the big challenge with this approach—that some entity consumes the event,
processes the request that is contained in it, and publishes the response in the form of a new event.

The original request event contains a special question identifier that is used in the response
event and allows the requesting application to pick up the response to its original question.

This approach seems a bit similar to one of the many discussion forums on the Internet—for
example, the OTN Discussion Forums. Such forums can produce a response to any question you
may ask, sometimes extremely rapidly. And most forums have a mechanism that will send an
e-mail to the original requester when a response has been provided. However, sometimes a
question is answered only after a fairly long period—or never at all. A forum moderator could
monitor questions that do not get answered and take appropriate action. Our composite
applications will probably not suffer a lack of response very well, so we may need to ensure that
all question events are followed up with response events, if necessary, through an SOA Suite
counterpart to the forum moderator.

A First Stab at the Decoupling from a Two-way Service
Using the Discussion Forum Approach
Let’s see what we need to do to implement the discussion forum approach for getting hold of
patient data. At this moment, applications that want to have details on a specific patient can invoke
the synchronous PatientDataService that Frank developed in Chapter 5 using BPEL and a database

Chapter 9: Event-Driven Architecture for Super Decoupling 297

adapter service. We see the coupling aspects that we described earlier: Anyone interested in patient
data needs to know about the existence of the PatientDataService, the details of its contract, and the
physical location of its endpoint. We are now going to extend the PatientDataService application to
make it participate in the more decoupled, discussion forum style of serving up patient details.

The Discussion Forums Pattern in Action
Let’s assume a BPEL process that has a need for some patient data. It already knows the patient
identifier, but it does not know of any specific service that can provide the patient data. However,
it has heard that when one publishes a PatientDataRequestEvent to the EDN, there will be helpful
souls out there that may respond to the call for help and publish an event of their own: Patient
DataResponseEvent. This response event can be correlated on the eventGUID that was injected
into the request message and—presto—there’s the data being looked for. This pattern is illustrated
by Figure 9-17.

We will work with the PatientInvoiceProcessing composite application. It is intended for
creating billing statements for individual patients. This application publishes instances of
PatientDataRequestEvent. The PatientDataService composite is extended with a Mediator that
subscribes to this type of event and that will publish the PatientDataResponseEvent with the
required information.

FIGURE 9-17. The Discussion Forum pattern: soliciting a response from an unknown provider by
publishing an event

Event Delivery
Network

–

–

–

–

–

PatientInvoice...
PatientInvoice...

ListenToPati...

RetrievePatien...
Operations:

RetrievePatientl...

RetrievePatien...

PatientData...

Operations:

RetrievePatient...

Subscribed: »
PatientDataResp...

Subscribed: »
PatientDataRequ...

Operations:

process
processRespon...

298 Oracle SOA Suite 11g Handbook Chapter 9: Event-Driven Architecture for Super Decoupling 299

The online chapter complement contains the detailed, step-by-step implementation of this.
To then see the discussion forum in action, go to the FMW Control, locate the PatientInvoice

Processing composite, and test it, providing some patientIdentifier value. The BPEL process is
invoked and will publish a PatientDataRequestEvent to solicit more details on the patient.

The event is consumed by the PatientDataService composite, which processes it and
publishes a PatientDataResponseEvent that contains the requested patient data as well as the
eventGUID that was sent in the original request. The BPEL component is waiting to receive this
response event, and will correlate it on the eventGUID to ensure that the event is consumed by
the same instance that sent out the original request event. Note that other consumers could
consume the same event—although it probably would not make sense to them.

Extending the Event-based Patient Data Service
We could make things even more interesting by extending the functionality we have implemented
so far. We can, for example, introduce a second composite application willing to process request
events—only for patient identifiers over 50,000. This composite would have a filter in the event
subscription to only accept the over-50,000 identifiers. It would be interesting to see what happens
when both consumers handle the request and produce a response event. The first response event
would probably correlate with the requesting BPEL process, and the second one simply fades out
on the EDN.

We can also add a moderator of sorts—a Mediator that consumes request events and stores
them in a database table, along with the date and time. Another Mediator would then consume
response events and use them to update the request event records in the database. Request
records that have not yet been updated are the unanswered ones that may need moderation.

Responses to “cries for help” can be fairly large. In general, we would like to keep the size of
the event payload as small as possible, as to not overburden the service fabric. Instead of sending
the full response in the response event, as we have done here, we can use the claim-check
pattern for the response: Do not actually send the patient data in the response message; rather,
send a unique identifier (claim-tag) that can be used to retrieve the XML document with patient
data at some generic, central service that hands out XML documents based on unique identifiers
(a bit like the YouSendIt Internet service for handling large attachments by sending a URL from
which the attachment can be downloaded rather than sending the attachment itself); the
PatientDataService would have to register their XML document with this central document service
before publishing the response event.

Judging the Discussion Forum Pattern
This discussion forum, like the event-based reply-response pattern, is clearly not suitable for every
situation. First of all, it is an asynchronous pattern that requires the requestor to consume events
from the EDN.

Second, the event carrying the response needs to be correlated with the application instance
that asked the original question. In the SOA Suite today, only BPEL components can consume
events and correlate them to running instances.

The decoupling achieved through this event-based mechanism comes at the price of
performance and implementation overhead. A direct, synchronous call to a known service will
yield a response much faster than this asynchronous approach that requires the Event Delivery
Network as the intermediary for both the request and the response.

Chapter 9: Event-Driven Architecture for Super Decoupling 299

These should be serious considerations before adopting this pattern. The primary reason for
discussing this pattern—which is really a corner case—is to demonstrate what level of decoupling
is attainable through events.

Having Non-Events Published on the EDN
An event indicates that something happens—or so you would think. However, it is quite
possible to have a meaningful event when something does not happen. When the expected
does not occur, that can be quite an event indeed. If the sun or the tide forgot to rise, we
would have major events indeed.

On a slightly smaller scale, we, too, have the situation where the fact that something we
expected did not actually happen in itself is a meaningful event. The invoice was sent but
the payment never materialized; the suitcase went into the baggage-handling system but
never came out; the complaint was filed but a response was never sent. Such an event is
often called a non-event. The absence of an event is an event in its own right.

Non-events are frequently associated with real events: The (real) event takes place and
normally has a partner event. The suitcase entering the system is the real event, and the
same piece of luggage ending up in an airplane could be its partner event. The absence of
this partner event (after a set period) triggers the non-event. A person entering a secure zone
is the real event that should partner with the event of that same person leaving the secure
zone at some point. The non-event originates when the person does not reappear from the
secure zone after some predefined period. Complex Event Processing (CEP) deals with
analyzing enormous volumes of events, and one of the goals of CEP is the detection of
non-events. Sensors not sending the signal they were supposed to send, the container not
appearing at the next RFID sensor station, the car not exiting the tunnel. (More on CEP
appears in Chapter 19.) Note that BAM (Business Activity Monitoring), also discussed in
Chapter 19, can identify non-events, too.

St. Matthews tries to find the balance between providing emergency care to everyone
and safe-guarding the financial budget. Everyone who needs immediate medical attention
can be checked into the hospital. There is a special budget—co-funded by state
authorities—that will cover costs for up to ten days of hospital care. However, when
patients who have no medical insurance are not discharged after this ten-day period, the
hospital starts to run possibly substantial financial risks. Therefore, the non-event of patients
not being discharged after ten days is an important business event that the financial
department of the hospital wants to be informed about.

There is an interesting challenge for the Event Delivery Network. It handles events,
delivering them to subscribers. But how can it deliver a non-existing event? Where does the
non-event come from? Who is responsible for raising the event?

Unlike CEP, the EDN does not detect non-events. We have to implement some logic to
find the non-events and turn them into real EDN business events. Here is one way of
approaching this challenge: When the patient is admitted to the hospital, an event is
published to the Event Delivery Network (say, the PatientAdmittanceEvent) with the patient
identifier or a unique key for the admittance record as payload. A composite application is
subscribed to this event and a new instance is initiated upon consumption. This composite
contains a BPEL component that consumes the PatientAdmittanceEvent. It enters a Pick
activity with two branches: One is a Wait activity that will wait for ten days. The other

(Continued)

300 Oracle SOA Suite 11g Handbook

Summary
Service-Oriented Architecture has been declared dead a couple of times in recent years, partly
because it would not bring the level of decoupling organizations are striving for. Some of the
criticism of SOA was probably justified. The conclusions, however, were quite over the top.
Event-Driven Architecture (EDA), heralded as the successor to SOA, is actually a perfect
complement to SOA.

For example, events are a much better way in many cases to “invoke” one-way services.
Applications are not burdened with the responsibility to invoke specific services that need to be
notified, creating clearly undesirable dependencies, but only need to take on the responsibility to
broadcast the occurrence of events to a generic entity.

Thinking about business events and about the business processes, and from there the
applications and services that produce them, is a very useful exercise that provides a lot of insight
into the workings of the organization. Analyzing those events and specifying canonical definitions
for their payloads are the next steps toward implementation of a more decoupled interaction
pattern. Once the event definitions have been agreed upon, consumers can start registering—the
easy part—and all points of origin of the business events need to be made to publish those events
when they occur—the very hard part! Fortunately, we can start small, with a small number of
business events and a moderate initial number of event producers. We can add producers as we
go—as well as consumers, by the way. An evolutionary introduction of the event-driven way of
interacting is quite possible.

The Event Delivery Network in the SOA Suite is the central facilitator that coordinates event
definitions and subscriptions on events and also processes the events when they occur—
absorbing them and propagating them to all registered subscribers. Mediator, BPMN, and BPEL
components can subscribe to events defined in the EDN. Through the EDN, many aspects of
Event-Driven Architecture can be implemented in SOA composite applications.

branch is an onMessage that will wait for a PatientDischargedEvent. The onMessage will
correlate this discharge event on the patient or admittance record identifier. When a patient
is discharged, the PatientDischargedEvent should be published. When it is, the BPEL
component will consume it, conclude the Pick activity, and terminate the instance
altogether. However, if after ten days this event is still not received, the wait branch of the
Pick activity is activated and it will publish the non-event PatientNotDischargedWithin
TenDaysEvent. The BPEL component turns the absence of the business event—after the
specified period—into another business event.

The book’s wiki has this example described in more detail, including source code.

Chapter
10

The Missing Link:
The Human

Service Provider

301

302 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 303

hat we still may be lacking in our composite applications—to have them really
face the business challenges we know will be thrown at us— is something we
could call the “ghost in the machine.” After all is said and done by the service
components discussed so far—and that is quite a lot, let’s make no mistake about
that—there is still a category of activities that we do not have the solution for yet.

Some things simply cannot be done by Mediators, BPEL processes, adapters, or even Business
Rule components. We need something more when it comes to one of the following areas:

 Business logic that involves strategic insight, negotiation skills, creativity, intuition, an ■
understanding of abstract paintings, or capacity to improvise—for example, the final
selection from the candidates for a job opening, the slogan for the marketing campaign,
or the final bid on an auctioned item

 Recovering from unexpected fault situations ■

 Processing (and deciding upon) unstructured information such as pictures, PDF ■
attachments, or cryptic content or weighing subtleties lost on (non-AI) computer systems

 Gathering additional information via human channels and from unstructured sources and ■
providing data to the system

 Informing other humans—verbally, in specific terminology or in terminology other than ■
one of the supported languages; in person or via telephone, chat, or sign language; with
proper regard for cultural habits and personal sensitivities

 Performing manual operations—wrapping a package, physical verification (signature), ■
measurement

 Conferring with one or more humans to reach consensus and broad support for a decision ■

 Decisions and choices that we consider too important or far reaching to (already) trust to ■
an automated facility

For these specific areas and situations, we need humans participating in the processing of
composite application instances. And just like all other service engines, humans in a composite
should come with a WSDL interface and communication specified in XSD too. And that is what
the SOA Suite’s Human Task Service provides: the interface between the services world of the
composite application and the people performing activities in the context of the application (see
Figure 10-1).

Human tasks typically implement stand-alone tasks around a single set of data—even though
potentially with complex escalation, voting, and routing logic. These tasks typically implement
activities in a workflow or business process that may contain other tasks as well as service calls.
The next chapter discusses how both BPEL and BPM are used to define and implement those
workflows. The human task we discuss in this chapter will reappear in those workflows.

The examples discussed in this chapter are demonstrated and explained in much more detail
in the online chapter complement to this chapter on the book’s wiki.

Introducing the Human Task Service
The Human Task Service accepts service request messages, just like other service engines do.
Service calls to the task service are based on a generic WSDL that defines a number of standard

W

Chapter 10: The Missing Link: The Human Service Provider 303

operations to be performed on a task, such as initiate, update, and cancel a task. When the task is
completed, the task outcome is forwarded to the initial task service invoker through a callback
from the task service. The interaction with the Human Task Service is inherently asynchronous
because humans react distinctly asynchronously. The overall result of executing the task is only
reported back to the task invoker at some later moment—and given the involvement of people
and potentially complex task-routing flows, this callback may be hours, days, or even longer after
the task initiation.

Architecture of the Human Task Service
When a BPEL or (much less common) a Mediator component requires a task to be performed by a
human agent, it calls the generic Task Service and specifies which preconfigured task should be
performed. All the various human tasks that the Task Service can make people execute are
defined in task definition files. The definition of a task describes many details, including the
possible outcomes of the task, the users or roles involved in handling the task, the deadline
associated with the task, the data passed into the task, and the parameters that can be updated
and returned as part of the task result. More advanced settings in the task definition determine the
notification, allocation, collaboration, delegation, and escalation of tasks. The Task Service is the
central coordinator that takes responsibility for the execution of the specific task instance. The
task instance is created as a result of the initiate task request from a composite application
instance and based on the task definition. It decouples the machine from the man or woman.

The Task Service works with other services provided by the SOA Suite infrastructure to
perform allocation and routing, handle notifications to task participants, and deal with the
authorization and storage of digitally signed tasks. Note that the Task Service and other Workflow
Services are not only available as service component in SOA composite applications, but can be
interacted with through a SOAP/WS and Java API by other applications that are unrelated to the
SOA Suite (see Figure 10-2). A frequent use case is the retrieval of task instances for a particular
user from a custom-developed user interface.

The task definition files specify parameters—based on elements defined in XSD files. These
parameters carry the data specific to the task instance and make it available to the user performing
the task. Parameters can be editable. If so, the user can change the data in these parameters, and

FIGURE 10-1. The Human Task Service (Engine) integrates people into composite applications

Mediator

BPELProcess

HumanTask

304 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 305

these changes are returned to the component that invoked the Task Service together with the
outcome of the task instance.

The Task Service needs a way to make people aware of the tasks they should execute, and it
must offer those people a way to read the task details, update the task’s payload, delegate or
escalate a task when necessary, and determine the final task outcome. People, of course, need a
user interface to interact with a computer system—you cannot simply send SOAP messages to
them. The Task Service can use the User Messaging Service (UMS) to send notifications via
various channels, such as e-mail, IM (chat), voice, and SMS. The SOA Suite ships with the BPM
Worklist application, a prebuilt web application that provides a user interface for all task
participants. It presents the tasks on the current user’s to-do list, shows the details for a selected
task, and allows the user to perform the actions on the task that may be required.

As a special feature, simple tasks with a limited number of predefined outcomes and no
output parameters (or editable payload, which is the better way of putting it for human tasks) can
entirely be dealt with from an e-mail. Such an “actionable e-mail” contains hyperlinks for each of
the potential task outcomes, and the user can complete the task by simply clicking the desired
outcome. A reply e-mail will be sent in which the user can even provide some comments or add
attachments. The UMS receives the incoming message and hands it to the Workflow Services that
are configured to listen on a specific mailbox for such messages. The e-mail contains an identifier
that is used to map the received e-mail to the task. The outcome specified in the e-mail is applied
to the task.

FIGURE 10-2. Architecture of Human Task Services in the SOA Suite

XSD
XSD

Tasks
User

metadata

Digitally
signed

evidence

Task
service

- Query
- Metadata
- Allocate
- Route

Notification
service

Identity
service

Evidence
service

User
messaging
service

Identity
management

WLS platform services

Workflow services

BPM
Worklist

application

Web center
todo service

Custom
application

LDAP,
OID,
JAZN,
…

E-mail,
IM,
SMS,
Voice

WSDL
XSD

WS & Java API

.task
.task

.task

XSD

BPELProcess HumanTask

HumanTaskMediator

Chapter 10: The Missing Link: The Human Service Provider 305

Oracle WebCenter ships with ready-built services that ADF web applications can integrate.
One of these services—the Worklist Service—revolves around the SOA Suite Task Service. It
presents the tasks assigned to the user, along with links to navigate to the task form to perform the
task. This WebCenter Worklist Service uses the Java API exposed by the Workflow Services in the
SOA Suite, just like the BPM Worklist application. That same API can be used to develop custom
applications that query tasks, fetch task details, and manipulate tasks in various ways.

Exploring the Task Service in Detail
We will take an in-depth look at how Human Task service components enable us to engage human
agents in our composite applications. In three steps, we will discover some of the intricacies of the
Task Service, including integration into BPEL components, notification, payload manipulation,
callbacks, and task routing. We will also discuss the integration with identity stores regarding to
whom—roles or individuals—a task is assigned or escalated.

First, we will design a simple task that asks a human decision maker to pick one of two
possible outcomes (yes or no). Input parameters are passed into the task to provide the user with
context for the decision. The only output from this task is the chosen outcome. This task is
initially designed to be assigned to a specific user, but it will turn out to be much better to assign
the task to a group of users—or more specifically to a role—because individual users may come
and go while the task requirements stay the same. Later in this chapter, we will take on this more
robust approach of allocating tasks to roles. Also, more on this in Chapter 15 when we discuss
security.

The task is to be integrated into a BPEL process that invokes it when a decision is needed
from the human agents and will then wait for its asynchronous response. We will see how the
default (out-of-the-box) Worklist application presents the task to the user and allows the user to
act on it.

We will then add notification functionality and have the task assignees receive an e-mail that
informs them of this new task and invites them to inspect and handle the task using the Worklist
application. Because this task only supports two predefined outcomes and has no other output
parameters, it could be handled entirely from an actionable e-mail—and that is what we will do
next. This introduces an alternative to the Worklist application as an interface for dealing with
tasks.

Handling the second type of task requires more from the human participant than just
choosing a predefined outcome. This task requires the actor to provide some information that
cannot be predefined. This data is entered by the user in the generated task form that will be
embedded in the default Worklist application. That same form presents the user with the input
parameters for the task. In Chapter 20, we will take a look at how to customize the task form or
create an entirely custom task form in JDeveloper using ADF.

In the third task discussed in this chapter, we look at the advanced task-routing capabilities
offered by the Human Workflow Services. We will see how we can define a task that requires
multiple participants to make a contribution. We will specify deadlines for the task, create an
escalation scheme, and even look at handling leaves of absence for designated task participants.
Note that even though multiple actors are involved, they still collaborate on the same task. Real
business processes, where multiple tasks are lined up in logical flows, mixed together with service
calls, are discussed in the next chapter. We will see how such task-and-service-spanning flows
can be created using BPEL processes or BPMN service components.

306 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 307

Defining the First Human Task—Approve
Highest Priority
The decision service for determining the appointment priority that we created in Chapter 8 has
led to some controversy. It is felt that too many patients jump the queue with High priority
because of the stress on obesity. Also, High priority may be too easily assigned by the general
practitioners that referred those patients to St. Matthews. Although the consensus is that the
business rule component adds a lot of value and speeds up the triage process, the jury is still out
on whether the service can entirely be left to its own devices when it comes to establishing the
priority. Upper management has decided, following Margaret’s suggestion, to add a service
component with better understanding of fuzzy logic and political subtleties (though undoubtedly
with a knack for illogical and inconsistent decisions as well): human decision makers.

The automated decision service will still do most of the work. However, a Human Task
Service will be introduced to make the final decision about appointments that have been assigned
the highest priority. To prevent “false positives”—appointments that are undeservedly given
highest priority—a final call is to be made by human staff members. The logic of the task is quite
simple: The human actor either approves the priority assignment or rejects it. In the latter case,
the appointment’s priority is set to Normal. The obvious downside, of course, is that due to the
introduction of the human factor, this process is both slowed down and made more expensive.
Given the consequences of assigning the highest priority, this is deemed justifiable.

Steps for Implementing the Human
Task ArbitrateHighPriority
To begin, open the PatientAppointmentService composite application in JDeveloper and then
drag a Human Task component from the palette and drop it on the Composite Editor. Call the task
ArbitrateHighPriority and set the namespace to http://stmatthews.hospital.com/patient/Appointment
Process. The Human Task component shows up in the composite application—not yet wired
from any other component and as yet without a task definition (see Figure 10-3).

Double-click the human task to start editing it. The human task editor opens the newly
created task definition file ArbitrateHighPriority.task.

We need to specify several aspects for a human task, including the input, output, assignee,
workflow, and title. We will start with the input parameter for this task. This parameter contains the
appointment request details that are needed for the user to interpret and make a decision. We can
leverage some of the groundwork we did in previous chapters by reusing the AppointmentService
ProcessRequest element in the PatientAppointmentService as the basis for the task input parameter
(see Figure 10-4).

Setting Up Notifications
All notifications in the examples for this chapter can be handled through a locally running e-mail
server, such as Java Mail Server or Apache James. However, any POP3/IMAP-compliant mail
server can be configured with SOA Suite—including Google Mail or your own organization’s
existing e-mail server. Configuration details can be found in Appendix C of this book and
through various references on the book’s wiki. The wiki also shows the configuration and usage
of instant messaging as a notification channel—for example, using Google Talk as a chat platform.

Chapter 10: The Missing Link: The Human Service Provider 307

FIGURE 10-3. Adding the human task ArbitrateHighPriority to the composite application

FIGURE 10-4. Defining the task parameter AppointmentServiceProcessRequest

308 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 309

With this input parameter defined, we can specify the title for the task. Normally, the title will
be fairly short. However, for this moment, to save us the trouble of creating a task form, we will
pass a lot of information in the title. Create an XPath expression that passes various details such as
the birth date, gender, state, and BMI of the patient (see Figure 10-5).

Next, we need to specify the possible outcomes of the human task definition. Based on the
outcome of the task, the composite can resume its flow. We can work with the predefined
outcomes available out of the box (for example, Approve and Reject) that have been associated
with this task by default. It is easy to define other outcomes by clicking the magnifying glass icon
right behind the Outcomes field.

If we do not want to simply assign the task to the user “weblogic”—the only user that is
configured out of the box—we need to add users to the identity store that comes preinstalled with
WebLogic Server. We can manage the default security realm “myrealm” from the console—a
management application that can be accessed at http://<host>:7001/console—where the host is
likely to be localhost. The Human Workflow Services work out of the box with the users defined
in this default identity store. However, you can, of course, plug in a production-quality LDAP
server. See Chapter 15 for more information on this.

FIGURE 10-5. Specifying an XPath expression to pass information in the task title

Chapter 10: The Missing Link: The Human Service Provider 309

For now, let’s create user Maggie as the person to take on all high-priority appointment
assessments for the time being. Open the WebLogic console, click Security Realms in the Domain
Structure tree, and then click myrealm in the Summary window. The list of current users—which
should at least contain the weblogic user—is presented. Click the New button in order to add a
new user. Enter details for Maggie—at least her username and password (see Figure 10-6). Note
that we can set additional details, including her e-mail address, later on.

Having created user Maggie, we can assign the task. Return to the Task Editor in JDeveloper.
Select the Assignment tab, click the Stage 1 participant, and accept the default participant type of
Single (alternatives include Group Vote, Management Chain, and Sequential List Of Approvers).
Enter a better-looking label for this participant. Then click the green plus icon and select the
option Add User—we are going to add the user by name. In the Identity Lookup window, make
sure you have a valid connection to the WebLogic Server soa_domain. Then search for the user
you want to assign the task to (see Figure 10-7). Note that you can also use expressions to
determine the assign-to user.

FIGURE 10-6. Using the WebLogic Server console to create user Maggie in myrealm

310 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 311

This task is simple and straightforward with just a single user; no routing, escalation, or
delegation; no notifications; and no task update or fancy task form. The definition of the task is
therefore complete. We can focus on integrating the task in the composite—in this case, in the
BPEL process.

Integrate the Human Task ArbitrateHighPriority into a BPEL Process
We will integrate the human task ArbitrateHighPriority into the process defined by the BPEL
component PatientAppointmentService. Note that to the BPEL process this human task is similar
to a business rule, Mediator service, or any other referenced service—there is no special
relationship between BPEL and human tasks.

To begin, open the BPEL process editor. The human task should only be instantiated when the
EstablishAppointmentPriority Business Rule component returns a High priority value. Therefore,
we first need to add a switch with two branches: one branch for priority equals High, which will
contain the Human Task activity, and an otherwise branch that can be empty. Drag a Human
Task service component from the Component Palette and drop it in the High priority branch (see
Figure 10-8).

When you inspect the Human Task activity that was added to the BPEL process, it turns out to
be a scope with a special marker that helps JDeveloper identify it as a special Human Task scope.
As shown in Figure 10-9, it contains a combination of an Assign, an Invoke, and a Receive

FIGURE 10-7. Assigning the task to single user Maggie

Chapter 10: The Missing Link: The Human Service Provider 311

activity (it’s essentially nothing more than an asynchronous Invoke from the BPEL component to a
partner link). These three activities prepare the data to be passed to the task, invoke the Task
Service to create an instance of the ArbitrateHighPriority task, and receive its asynchronous result.
In addition to this scope, a Switch activity was added—with branches for each of the outcomes
configured for the selected task definition as well as a branch for the otherwise case (terminated
tasks, expired tasks, and so on). Note that the outcomes are not updated when you change the
possible outcomes of the human task definition. For this task, the outcomes are REJECT and
APPROVE, and therefore the switch has three branches.

The generated CopyPayloadFromTask activities in the Task Switch branches—copy the task
payload (back) to the BPEL variable. Because this human task does not allow the user to update
the payload, these activities are redundant and can be removed. The only thing we need is an
Assign activity in the REJECT branch that changes the appointment request’s priority from High to
Normal (see Figure 10-10).

WS-Human Task and BPEL4People Standard Initiatives
The OASIS organization—which maintains standards such as SDO, SCA, and BPEL through its
many member organizations, including Adobe, IBM, Oracle, and SAP—has commenced work
on an initiative to come up with a standard for specifying human tasks, including aspects such
as notifications and the operations that can be performed on a task. This standard-in-progress is
called WS-Human Task.

Closely associated with the WS-Human Task initiative is an extension to the BPEL
specification called the WS-BPEL extension for People (BPEL4People). This is also an OASIS
standard. This extension to BPEL describes how Human Task activities can be made part of
BPEL. It describes how the BPEL process provides input to the task instance that is started—
including role or user-assignment details, input parameters, and attachments—and how the
interaction can take place after the task is started (return the final outcome and also callbacks
that may return intermediate results or report task status changes). The implementation of
such people activities would be a task definition created according to the WS-Human Task
standard.

These two complementary industry specifications mentioned here are not yet finalized.
Work is still in progress. Therefore, no current SOA offering—including Oracle SOA Suite
11g—has an implementation for human tasks and their integration with BPEL based on
these standards. SOA Suite uses a proprietary format for the task definition files, as it
precedes this initiative on the standards. The integration between BPEL and human tasks is
achieved through a number of out-of-the-box activities generated when a human task is
added to a BPEL process.

The overall approach in SOA Suite is quite similar to the one described by WS-Human
Task and BPEL4People; however, the detailed syntax is quite different. When these OASIS
specifications are formally published, it is to be expected that the SOA Suite will move to
them at some point. When that happens, expect automated conversion from existing task
definitions and BPEL/task integrations as well as minimal impact for developers of tasks.

The wiki contains references to resources on WS-Human Task and the WS-BPEL
extension for People.

312 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 313

We have achieved our objective: The BPEL process invokes the human task for any appointment
request with a priority of High. A human agent is engaged to determine whether the High priority is
really justified. The composite application is now ready for deployment. This deployment can be
done in the same way as before—at this point the presence of the Human Task component does not
impact the deployment procedure.

The Human Task ArbitrateHighPriority in Action
With the PatientAppointmentService deployed, along with the Human Task service component,
we can test the composite with an appointment request that has the highest priority set by the

FIGURE 10-8. Integrating the human task ArbitrateHighPriority into BPEL process
PatientAppointmentService

Chapter 10: The Missing Link: The Human Service Provider 313

FIGURE 10-9. The BPEL activities created when human task ArbitrateHighPriority was added to the
BPEL process

314 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 315

referring general practitioner. We expect this to instantiate a task for Maggie—who has to judge
the High priority assigned by the Business Rule component.

To begin, open the FMW Control. Locate and select the PatientAppointmentService
composite. Test the Web Service published by the composite, making sure to enter a value of 4
for the priority—the highest value the referring doctor can assign and the surest way to get a High
priority assigned by the Business Rule component (see Figure 10-11).

The test of the Web Service should result in a response fairly quickly—a synchronous reply
containing the assigned appointment identifier. The schedule of the appointment is not yet
available for this appointment request. When we look at the message flow trace for this test run of
the composite application, we can clearly see the steps already completed—call to the
PatientDataService, report the appointment identifier, and call to the AppointmentPriorityRuling
Business Rule component. After this last call, the switch in the BPEL process entered the High
priority branch and invoked the Task Service with a request to instantiate the ArbitrateHighPriority
task. And that is the situation right now: We are waiting for Maggie to come into action (see
Figure 10-12).

Maggie can go into the BPM Worklist application via her browser, using the default URL
http://<host>:8001/integration/worklistapp. She must log in with the credentials created for her in
the WLS Console when we created her as a user in the myrealm security realm. Maggie’s Inbox
contains the task instance that was created and assigned to her by the PatientAppointmentService
(see Figure 10-13). In our simplistic approach—a first step without a task form—we stuffed all the

FIGURE 10-10. Maggie uses the actionable notifications mechanism to execute an instance of task
ArbitrateHighPriority by clicking the Approve link in an email

Chapter 10: The Missing Link: The Human Service Provider 315

task information in the task title. Maggie should use the Actions menu to select the two
predefined outcomes with which the task can be concluded. Let’s have her select the most
interesting one of the two: Reject.

Reject as a task outcome signals to the PatientDataService BPEL process that the appointment
request priority should be lowered from High to Normal. An Assign activity in the Reject branch
of the task switch takes care of this. The process will then continue. Figure 10-14 shows the
run-time message flow trace for the PatientAppointmentService with this Human Task inside.

Extend the Task ArbitrateHighPriority
with Notification and Group Assignment
The implementation of the composite application PatientAppointmentService suffers from at least
two serious flaws. How on earth is Maggie to know that a task is waiting for her? Should she log
in to the Worklist application several times per day—or even more frequently depending on what
her service level agreement is for this task? Should she have it open permanently and refresh
regularly? We will extend the example by adding notification to the task definition—making the
SOA Suite prompt Maggie whenever a new task has been assigned to her.

FIGURE 10-11. Testing the PatientAppointmentService with a High priority request

316 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 317

FIGURE 10-12. The message flow trace for the High priority appointment request—waiting for Maggie
to act

FIGURE 10-13. The Worklist application with the task created for Maggie

Chapter 10: The Missing Link: The Human Service Provider 317

The other flaw we will fix is the fact that given the workaholic that she is, even Maggie will
have her time away from work—for sickness, vacation, or the odd conference. It is not a good
idea to assign tasks to a single individual—unless we are prepared to accept an occasional
cessation of task processing. Even better than assigning tasks to specific users by name is
assigning tasks to a group or role. That way, the composite application is not coupled to the
current staff members, and personnel changes are handled in the identity management system
and thus not impacting the SOA composite application, forcing, for example, a change in code
and redeployment.

Sending Task Notifications
Before we can use notifications in task definitions, we need to have a notification configured for
the SOA Suite User Messaging Service as a whole. Appendix C describes this configuration.

Next, we need to go to the identity store to specify the e-mail addresses for the users who
need to receive notifications. Using the default myrealm security realm, we can go to the Web
Logic Server console (http://<host>:7001/console). Like before, navigate to Security Realms, select
myreal, and go to the Users And Groups tab. Click the user Maggie and navigate to the Attributes
tab. Locate the attribute “mail” and set it to the e-mail address you have configured to receive
notifications (for Maggie or the user in your environment). Activate the changes in the console
using the button in the upper-left corner.

FIGURE 10-14. The message flow trace for PatientAppointmentService after the task has been
completed

318 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 319

When Maggie checks her Preferences page in the Worklist application, she’ll find that a
business e-mail address has been added on the Notification tab. This entry is derived from the
identity store—and it cannot be maintained in the Worklist application.

We next need to configure the task definition, instructing it on the content of the e-mail it
should send as “send notification” to the task assignee. Go to the Notifications tab in the task
editor. You will see three notifications predefined: The default notification settings for tasks
include notification upon assignment to the assignee and upon completion to the initiator (when
set). You may wonder why, despite this default configuration, Maggie did not receive an e-mail to
alert her of the task she had assigned to her earlier on. The answer is quite simple: As long as the
identity store does not have an e-mail address set for a user, notifications cannot be sent.

Notifications can be configured for many different actions that take place on the task,
including expiration, request for info, update, suspend, resume, and withdraw (see Figure 10-16).
Various roles involved with the task can be specified as recipient of a notification: assignee,

FIGURE 10-15. Set mail attribute for user Maggie in the WLS Console

FIGURE 10-16. Configuring a notification for task assignees

Chapter 10: The Missing Link: The Human Service Provider 319

initiator, approver, owner, and reviewer. The content of the notification can be defined, either as
static text (typically not very useful) or through an XPath expression that combines static content
with data from the task parameters.

Note that even though it may seem it is suggested that the notification will be sent in the form
of an e-mail, that is not necessarily the case. The Task Service works with UMS to dispatch the
notifications. UMS also supports channels other than e-mail: IM (chat), voice, and SMS. Addresses
for messaging channels are fetched from the configured identity store. Users can specify through
the preferences in the Worklist application what their desired channels of notification are.
Whenever the Task Service emits a notification, these preferences determine through which
channels the notifications are sent. Additionally, users can specify message filters—routing rules
specifying that task notifications should be sent to a specific channel when the task attributes
satisfy the conditions defined for the filter. We can specify custom headers for notifications in the
task definition whose values are derived from the task parameters; these headers can subsequently
be used in message filters to select the appropriate message channels.

Assigning Tasks to a Group
It is clear that assigning the task to Maggie and no one else is not a smart thing to do. When she is
away for whatever reason, a task can be left unattended for several days or even weeks—which is
clearly not desirable or acceptable. Notifications do not really solve this issue—even with a PDA
or other mobile gadget, Maggie might not be able to respond to all tasks in a timely fashion.

In general, tasks are better assigned to a group or role for which the user membership is
managed in the identity management system, entirely decoupled from the task definition. Tasks
assigned to a group are a shared responsibility. All members of the group will find the task
waiting for them in their to-do list. As soon as a user acquires the task, it disappears from the
other users’ list or workload. It is possible to assign tasks using XPath expressions that invoke
advanced delegation rules that assign tasks to members of a group following patterns such as
round-robin, most productive, and least busy. We can also create a custom Java class that
implements (more advanced) task-assignment logic.

We keep things fairly simple in this example. We create a new group called AppointmentPriority
Arbiter in the Security Realm section of the Web Logic Console. We add Maggie to this group.
Next, we create a new user, Jenny, associate her with the new group too, and configure her e-mail
address. Then we return to the task editor in JDeveloper and assign the task to the group. We
remove the current assignment to user Maggie. See the online chapter complement for details.

Handling Tasks Through Actionable E-mails
When a task produces a simple outcome, one from a list of predefined possible outcomes (such
as in simple Approve/Reject decision tasks), it is not necessary for the user to go into the Worklist
application in order to perform the task. In such cases where the user only needs to select one
outcome from a predefined list of values, the SOA Suite can send a special type of e-mail to the
user that contains a number of hyperlinks—one for each possible outcome. When the user clicks
one of these hyperlinks, a new e-mail message is created with the selected outcome for the task
and is sent to the workflow engine, possibly even with attachments. It is processed as if that
outcome were selected in the Worklist application. This type of e-mail is called “actionable.”

Configuring the task for actionable e-mails is easy. Go to the Advanced tab on the Notification
page in the task editor. Mark the check box Make Notifications Actionable, as shown in Figure 10-17.

320 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 321

It is as simple as that. However, the UMS needs to be configured, too. We need to specify which
e-mail account should be listened to for incoming e-mails that are sent by users acting on actionable
e-mails they received from the Human Workflow Service. In the FMW Control, select SOA
Administration on the context menu for soa-infra and click the item Workflow Notification Properties
in the ensuing menu. Set the actionable e-mail address on the page that opens. This should be an
account on the incoming e-mail server that is configured through the FMW Control on the Email
driver in the User Messaging Service.

Human Task with Group Assignment and Actionable Notifications
It is time to see the task in action again, with the refinements we have applied. Deploy the
application to the SOA Suite and invoke the Web Service with an appointment request with High
priority assigned in the request. The ArbitrateHighPriority task should be instantiated and assigned
to the new group AppointmentPriorityArbiter. Both members of the group—Maggie and Jenny—
should receive an e-mail, notifying them of the task that is assigned to them. They can execute the
task by clicking one of the hyperlinks in the e-mail. When they do that, a reply e-mail is sent to the
e-mail account that the UMS polls for such messages that convey task outcomes. The UMS triggers
the Human Workflow Services and the task is updated with the final outcome (see Figure 10-18).

When first Maggie activates one of the possible outcomes in the actionable e-mail (and thus
completes the task) and later on Jenny does the same, the e-mail sent from Jenny’s account is
ignored—the task has moved on and her e-mail cannot be meaningfully processed in conjunction
with that task. Of course, when the task is of type Group Vote, her e-mail can still constitute a
valid vote, as long as the task has not moved to the next stage. A user whose activation of the
actionable e-mail comes in too late to be handled is not aware of that fact. Only when Jenny
inspects the historic task view in the Worklist application would it occur to her that this task is not
listed—Margaret is the one recorded as the person completing the task.

FIGURE 10-17. Configuring actionable e-mails for the task ArbitrateHighPriority

Chapter 10: The Missing Link: The Human Service Provider 321

FIGURE 10-18. The task ArbitrateHighPriority is assigned to the group AppointmentPriorityArbiter
(Maggie and Jenny); Maggie utilizes the actionable notifications to execute the task

Mediator and Human Task
Human Task service components are SCA components, just like Mediator, Business Rule,
and BPEL components. Human Task components expose services that can be wired to other
components within the composite and that also can be promoted to public services
published by the composite to external consumers.

Much of the communication with a Human Task component requires a stateful,
long-running consumer that can receive asynchronous callbacks. The initial creation of a
task happens through a synchronous service call. Subsequent status changes in the lifespan
of the task instance—such as reassignment, expiration, and completion—are reported back
to the invoker using a callback interface. This nature of the interaction with the task service
positions BPEL service components as the ideal partner for Human Task components—or
other composites when the human task is reusable! The vast majority of human tasks in the
SOA composite application will be initiated from BPEL components.

(Continued)

322 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 323

There are a few use cases where a task can also be instantiated from a Mediator component.
In situations where neither the final task outcome nor the midway status changes are of
relevance to the task initiator and the only requirement is to kick off the task, it might be logical
to trigger the task from a Mediator.

One such fire-and-forget human task situation is when events that appear on the Event
Delivery Network should be turned into a more human form of notification (telephone call,
message posted on the message board in the break room, and so on). Mediators can
consume such events from the EDN and invoke a Human Task service component to turn
the event into a notification and possibly call for action targeted at a user or group of users.

The Mediator will not be able to wait for the outcome of the task or one of the callback
calls. All it could do is use the synchronous reply from the Task Service and forward it to,
for example, an event log. This reply contains task details such as the name of initial
assignees, the expiration date, and the task instance identifier that can be used to look up
the task through the Java API exposed by the Human Workflow Services.

Figure 10-19 shows how a Mediator component consumes the DoctorSickEvent from
the Event DeliveryNetwork and then initiates a Human Task for the secretarial pool to let all
relevant parties know about Dr. Steve Knuckles’ illness.

FIGURE 10-19. Mediator consuming EDN events and turning them into human tasks

Chapter 10: The Missing Link: The Human Service Provider 323

The Scheduler Service—Beyond Mere Decisions
Our first encounter with the Human Task service component focused on one unique capacity of
humans in the context of our composite applications: decision making beyond the purely
rational, fact-based realm that the Business Rule component governs. When it comes to dealing
with more subtle, fuzzy, or unstructured data or political considerations on which to base a
decision, or when the impact of a decision is very large and requires a level of authority we are
not (yet) prepared to hand to a machine, human staff members with special roles are brought in to
make the final call. The outcome of this category of human tasks is fairly simple: In the first case,
we discussed a simple yes or no (approve or reject). Decisions can range over a larger set of
possible outcomes, but they essentially always result in one value being picked from a number of
predefined values.

Other tasks have more interesting outcomes. Some tasks may require the user to not only
inspect but also modify or complement the payload provided with the task. For example, in cases
where we have an incomplete address or contact details for a patient, there could be a task
assigned to the front desk to question the patient when she arrives at the hospital and complete
these details. Such a task would result in updated patient details being returned to the task
invoker.

Tasks with Complex Outcomes
We are now going to look at another task definition that produces a more complex result: the
SchedulerService. First introduced in Chapter 6, the SchedulerService is invoked by the BPEL
process PatientAppointmentService with data from the appointment request. This service is
expected to produce a scheduled appointment with the appropriate doctor in a suitable room at a
specific date and time. We wondered in Chapter 6 whether this service was in fact implemented
by a fancy computer application or had a pool of human staff members lurking behind it. It turns
out the latter is the case, although St. Matthews is looking for ways to have at least a subset of all
appointments scheduled automatically or have an automated process come up with a number of
suggestions that the human schedulers can then choose from or replace if necessary with their
own schedule.

The human task we will define for scheduling appointments uses several task parameters, one
of which is designed as editable in the task. This means that the user can create and manipulate
values in the parameter, and the augmented parameter data is made available to the caller of the
task service. This task will also work with a generated task form—a straightforward user interface
that is embedded in the Worklist application.

Configure Parameters for ScheduleAppointment Task
To begin, open the composite application SchedulerService and then open the Composite Editor.
Drag a new Human Task component to the composite and call the task ScheduleAppointment.

Double-click the new Task component to bring up the task editor. We need to define the
parameters for the task on the Data tab. Task parameters are based on XML types or elements defined
in the XSD documents available in the project (or MDS, see Chapter 18). The SchedulerService.xsd
contains a SchedulingRequest element as well as a PlannedSchedule element. The former represents
the input data that the human operator should be able to use to schedule an appointment for the
patient. The latter contains the details for the appointment’s schedule. This parameter needs to
be modified, so enable the Editable Via Worklist application option. Create both task parameters,

324 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 325

based on the elements in the XSD, as indicated, and set the parameter PlannedSchedule to be
editable (see Figure 10-20).

Next, create an assignment of the task to a single user—Maggie, again, to keep things simple.
You may want to specify a nondefault notification header to embellish the e-mail that Maggie is
going to receive—however, once we have generated the task form, you will find the e-mail to be
quite enriched as a result!

Add a Human Task to the BPEL Process
To start, return to the composite application and double-click the SchedulerService BPEL
component. Drag a human task from the Component Palette to the BPEL process, drop it after the
dummy activity Lot_of_Asynch_logic_to_determine_schedule, and select the ScheduleAppointment
task component. Configure the mapping between the task parameters and the BPEL variables: Map
the SchedulingRequest on the inputVariable to the first task parameter and the PlannedSchedule on
the outputVariable to the second (updatable) task parameter (see Figure 10-21).

The OK branch of the taskSwitch should contain an Assign activity that copies the contents of
the plannedSchedule task parameter to the BPEL outputVariable. We will ignore the other branches
for now—they are not part of the “happy flow” we are focused on currently.

FIGURE 10-20. Creating the PlannedSchedule parameter—editable in the Worklist application

Chapter 10: The Missing Link: The Human Service Provider 325

Generate the ScheduleAppointment Task Form
Human tasks can have much richer user interfaces than we have seen so far in the Worklist
application. We can create our own advanced custom applications—from scratch, using any user
interface technology we fancy—for working on the tasks using the Human Workflow services
API. At the near end of the task user interface spectrum, we find the generated task form. This is a
generated ADF application that contains a so-called ADF Task Flow along with an ADF Faces
page that is bound to the Human Workflow Service. It basically is a piece of user interface and
flow logic in which one or more graphical components are combined in a single logically related
user interface component. The ADF application that contains the task form is deployed to the
same WebLogic domain as the SOA Suite. It is used at run time by the Worklist application with
the appropriate parameter values to show the details for the selected task. The task assignee finds
an overview of the values of the task parameters in a form layout. Fields associated with editable
parameters are enabled and allow data manipulation. Changes made in the form to the payload
data can be saved and will be persisted by the Human Workflow Services. We will have JDeveloper
generate a standard ADF task form for the ScheduleAppointment task. This form can be used to
inspect the details for the appointment request and enter the data for the appointment schedule.

FIGURE 10-21. Adding the ScheduleAppointment task to the BPEL process

326 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 327

ADF is the Oracle Application Development Framework used by Oracle for developing most
of its own user interfaces, such as Fusion Applications, WebCenter, the BPM Worklist application,
and the Enterprise Manager Fusion Middleware Control. Chapters 20 and 21 provide more details
on ADF and explain how to customize the generated task form we will create next.

Generate the Task Form for the Task ScheduleAppointment
To generate the task form, go to the top of the task editor and select Auto-Generate Task Form
from the Create Form drop-down menu. A pop-up window appears in which we need to enter
the name of the project that will be created to hold the ADF artifacts that implement the
generated task form. Click the OK button to kick off the generation of the form (see Figure 10-22).

At this point, your computer starts making whizzing or rattling noises with your hard disk activity
indicator flashing excitedly. The new JDeveloper project is created, containing a number of XML
files, derived in part from the ScheduleAppointment task definition. An interesting file to take a look
at is taskDetails1.jspx. This is a JSF (JavaServer Faces) page that presents the task form. It contains
fields corresponding to the contents of the task parameters, as well as controls required to manipulate
the task. The page contains tables for comments and attachments that the user can add to.

Scheduling in Action
The PatientAppointmentService calls upon the SchedulingService to schedule the appointment.
A good way of seeing the SchedulingService in action therefore is through a call to the Patient
AppointmentService. That also gives us a good idea about whether the outcome of the task—the
schedule itself—is properly set and returned to the invoker (first the SchedulerService BPEL process
inside the composite and indirectly the PatientAppointmentService BPEL component).

First, we need to deploy the SOA composite application along with a web application that
contains the generated task form. We deploy the SOA composite in the regular way—and we can

FIGURE 10-22. Generating the task form for ScheduleAppointment

Chapter 10: The Missing Link: The Human Service Provider 327

indicate which web applications should be deployed alongside it, such as the ScheduleAppointment
TaskForm project with the generated task form (see Figure 10-23).

The association between the Human Task service component and the ADF Task Form
application can be inspected and manipulated in the FMW Control. Select the Scheduler composite
in the tree navigator. When the dashboard for the composite appears, click the ScheduleAppointment
task component. Navigate to the Administration tab, which lists the associations between the
ScheduleAppointment Human Task component and task forms in the context of specific applications.
Initially there is only the link to the SchedulerAppointmentTaskForm task form application in the
context of the (BPM) Worklist application (see Figure 10-24). This registration is created upon
deployment of the composite Scheduler.

Call the PatientAppointmentService with some appointment request. After some initial
processing, a ScheduleAppointment task will be created and assigned to Maggie. She receives an

FIGURE 10-23. Deploying the task form application as part of the SOA composite deployment to the
SOA server

FIGURE 10-24. The registered association between the human task and the ADF task form

328 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 329

e-mail notification that is quite rich: It contains all the details that will also be presented in the
task form inside the Worklist application in a HTML layout.

Because she needs to provide the actual appointment-scheduling details, clicking an actionable
link in the e-mail will not suffice. Therefore, she needs to enter the Worklist application. When she
selects the assigned task, the Worklist application will invoke the task form it has been configured to
utilize. This task form is embedded in the Worklist application itself. It presents the details from the
task parameters to the user and enables the user to fill in fields that correspond with the editable
task parameters—in this case, fields for the date and time, the name of the doctor, the room, and
additional comments about the schedule for the appointment (see Figure 10-25).

Maggie can fill in the fields, save her changes, and then complete the task by selecting the
option OK from the Actions menu. The task result—the appointment schedule—is returned to
the SchedulerService BPEL process and in turn handed to the PatientAppointmentService that
subsequently sends it, together with the patient’s instructions, to the original invoker.

The message flow trace is updated to reflect all this, and from the audit details, we can see
that the appointment schedule was indeed passed back from the task form all the way to the
original requesting SOA composite instance (see Figure 10-26).

FIGURE 10-25. The task form embedded in the Worklist application

Chapter 10: The Missing Link: The Human Service Provider 329

FIGURE 10-26. Message flow trace showing the ScheduleAppointment task’s results being passed
back

Just Press Next
It is a paradigm shift to approach applications from the angle of workflows and tasks rather
than the data-oriented, global menu-powered, CRUD-style application angle that has been
so common for the last decade or more. Traditionally, end users navigate their way through
an extensive menu that takes them to pages where data is presented—usually a lot of data.
And power users who work with the application, day in and day out, hardly need any UI
features to perform their work. They operate on the records using shortcuts and years of
routine. They select these records, for example, based on status flags that they query
explicitly on in the page, or perhaps they select them working from a stack of paper forms.

This (traditional) way of working does not sit well with less experienced users. Nor does
it appeal to a younger generation of computer users who were not raised with green-font
terminals but rather grew up in the Internet era and are exposed to Web 2.0 user interfaces
all over the World Wide Web. A more current approach to applications is one where user
interfaces are task driven, presenting only data that is relevant for the task at hand and with
guided, wizard-style navigation that takes the user through a workflow. The user only has to
click the Next and sometimes the Previous button to visit the pages she needs for her tasks.
Furthermore, the application knows what her tasks are and presents them automatically.

(Continued)

330 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 331

Acceptance of New Patient:
Complex Task Routing
The human tasks we saw earlier were fairly simple and only involved a single actor—although
selected out of potentially a much larger group. Tasks can be far more complex than that—
involving multiple actors, each with their own responsibility. Some of these actors can work on
the task at the same time, while others work in sequential order. Some actors or stages in the task
may be conditional—only to be performed when certain conditions are met. It is possible to have
steps within the task that require a consensus (unanimous) or majority in favor of one outcome or
another. Task participants can be allowed to delegate their responsibility to another user, or they
can escalate it to their manager. Tasks can also be escalated by the task service itself, when the
deadline isn’t met, for example.

We will take a look at some of these workflow aspects of human tasks when we implement
the “acceptance of new patient” task.

Accepting a New Patient
The PatientAppointmentService calls upon the PatientDataService to retrieve the patient identifier and
some key patient data. Sometimes it happens that an appointment request is being made for a new
patient—one not yet known in Frank’s database with patient records. The current implementation of
this composite application ends with a fault when that is the case. Creating an appointment for an
unknown patient is not supported. However, hospitals typically have to accept new patients from time
to time, and St. Matthews is no exception. However, the hospital wants to carefully screen new
patients before accepting them as such. So instead of simply aborting the BPEL process when a request
is made for an appointment for a new patient, something else needs to happen.

When it turns out that the appointment request that is processed by the PatientAppointmentService
is in fact one for a new patient, a workflow needs to be executed for screening the new patient, in
various steps by a number of different actors.

Instead of an application that consists of dozens of pages that are bound together in a
central menu, we could have individual task UIs that are invoked by a workflow engine
when the user embarks on a specific task. The workflow engine presents the user with a
to-do list of tasks, the user selects a task, and the engine opens the corresponding user
interface. When the user has completed the task, she can press the Next button and the
workflow engine presents the page for processing the next task on the list—or shows the
overview with tasks. Users can then decide for themselves what task to do next.

The human task in SOA composite applications, in conjunction with the Task and
Workflow Services and the Worklist application, comes very close to achieving the
scenario described here. E-mails can invite the user to come and execute a task. The
Worklist application presents open tasks that should be attended to. When we define the
process as a workflow with Human Task components in between the automated actions,
we can have our users be guided by the engine, thus allowing them to focus on the highest
priority task while presenting all relevant data in context. All the user has to do is click Next
in order to be taken to the next task that requires typical human skills to be performed.

Chapter 10: The Missing Link: The Human Service Provider 331

First, every candidate patient is subject to a general admissibility check, which involves
looking at criteria such as priority, address, the GP’s diagnosis, and the “general impression” of
the staff member. A patient is either outright rejected or moved to the second stage.

The nature of the second stage depends on whether the potential patient has valid insurance.
When she does, the second stage consists of conferring with the insurance company and getting
its approval. This is done by a group called “the insurance liaisers.” The third stage for patients
with insurance is the final go/no-go from the patient account managers at St. Matthews. A single
account manager can make this final decision.

For patients without insurance, the second stage consists of a credit check, where credit
assessors investigate the financial status and payment history of the applicant. Depending on their
findings, they may decide to turn the patient away or nominate her for the third stage. The final
stage is a group vote by the patient account managers.

Each of the stages has a maximum processing time assigned to it; the overall new patient
acceptance flow should not take too long. Stage one must be completed within four business
hours; stage two also has a deadline of four hours for patients with insurance and eight hours for
patients without insurance. Stage three must be done in under two business hours for insured
patients and in under four hours in case of a majority vote for uninsured patients.

Note that at each of the steps in this flow, the patient can be rejected and the task concluded
immediately and the patient informed.

Parallel Activities
Although he is mighty proud of his database, Frank will have to admit that many patient records
are incomplete. Contact details are incorrect or incomplete, essential information about birth
dates or even gender may be lacking, and so on. The hospital management has urged the staff to
be more diligent about gathering and entering complete and correct patient data. At the very
least, new patient records should be immaculate.

It seems like a good idea to use this opportunity of the new patient acceptance workflow to
have one of the secretaries work on the record for a candidate patient while various other actors
work on their part of the task—dealing with the evaluation of the new patient. This ensures that at
least for new patients, the record is complete and correct. It is accepted that in a minority of cases
this work will have been in vain, because the patient for which the data has been assembled will
not be accepted after all.

For Your Information: The Task’s Carbon Copy
In the past, the financial controllers in the hospital were cc’d on e-mails regarding uninsured
patients. They did not actually join in the decision process—although they could escalate it when
they felt things went horribly wrong—but they liked to be kept in the loop. We will implement
the same thing in the workflow we set up next by including them as a FYI participant. This type
of assignment does not allow them to edit the task parameters or influence the task outcome.
However, they can see what is going on and they can add comments or attachments to the task.

Developing the “Accept New Patient” Task Definition
Before we create the “accept new patient” task, it is useful to create the groups we are going to
assign the subtasks to. We do this in the identity store from the WLS console. Create the following
groups and assign at least two users to each group: FinancialControllers, SecretarialPool,
PatientAccountManagers, CreditAssessers, InsuranceLiaisers, and PatientAdmissibilityCheckers.

332 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 333

Open the Composite Editor in the PatientAppointmentService application. Add a human task
component to the application and enter AcceptNewPatient as the task name. Enter a meaningful
namespace and then double-click the task definition to open the task editor.

Accept the default outcomes: Accept [new patient] and Reject [new patient]. Maggie is the
owner of the task, so at least initially she can monitor the process and intervene when necessary.

On the Data tab, create an editable task parameter that is (again) based on the
AppointmentServiceProcessRequest element in the PatientAppointmentService.xsd document.
The parameter should be editable because patient details can be added or corrected by
secretaries in this task.

Things start to get interesting on the Assignment tab. This is where we create the flow for this
task, using various stages, both parallel and sequential. Click the default stage and change the
name of the participant and the stage itself to AdmissibilityChecker and AdmissibilityCheck,
respectively. Click the Advanced icon to open the editor for some advanced settings. These
settings are for task stage deadlines, participant invitation, and skipping rules. The latter is used to
specify under which conditions the stage can be skipped.

Click the green plus icon and select the option Parallel Stage. This creates a new stage in the
task that is positioned next to the AdmissibilityChk stage, in a parallel flow. Edit this stage to set its
name and participant label to RefinePatient and SecretarialPool, respectively. Select stage
AdmissibilityChk, click the green plus icon, and add a sequential stage. Call this stage CreditChk
with participant CreditAssesser. This stage has a sequential succeeding stage, Go/NoGo, performed
by the PatientAccountManagers. Parallel to CreditChk is stage InsuranceChk, by InsuranceLiaiser,
followed by the (sequential) stage Go/NoGo, by a single PatientAccountManager (see Figure 10-27).

Click the edit icon in the upper-right corner. In the pop-up dialog, specify that the task should
be completed as soon as the outcome REJECT is set by a participant. This means that the task can
be aborted at any stage.

Edit each of the participant types by selecting the appropriate group from the identity store.
Allow the participants of the RefinePatient stage to invite other participants. Set the stage duration
in the Advanced Settings section according to the functional description—four, four, and two
business hours.

In the function description of this task, we defined deadlines in terms of business hours.
Unfortunately, the Human Task component itself is currently not aware of business hours—it only
works with plain clock hours. The next chapter discusses the BPM service engine that runs
workflows defined through BPMN. This type of workflow is slightly more business oriented and is
aware of opening hours and the work days of an organization.

Add the FYI Participant Select the stage CreditCheck and then select the option Add Parallel
Participant Block. A new participant is created parallel to CreditCheck. Set the participant type to
FYI and set the label to FYIFinancialController. Note that it does not matter very much whether
the FYI task is created as a sequential or as a parallel participant block because the task flow
continues without waiting for an outcome of that particular participant.

Configure the Group Vote for the PatientAccountManagers We want all PatientAccount
Managers to be invited to vote on the candidate patient. Double-click the participant type. We need
to change the participant type for the PatientAccountManagers from Single to Parallel. This turns the
stage into a group vote. We can specify the minimum percentage required for an outcome to be
selected. In this case, any outcome that reaches 51 percent of the vote (a majority) is selected as the
outcome for this participant type (see Figure 10-28).

Chapter 10: The Missing Link: The Human Service Provider 333

Skip Irrelevant Branches For a candidate patient without insurance, the parallel steps
InsuranceChk and its subsequent Go/NoGo do not need to be executed. And for new patients who
do have insurance, the CreditChk and subsequent Go/NoGo can be skipped. Go to each of these
participant types that only need to be performed under certain conditions. Double-click to edit and
expand the Advanced section. Mark the check box Specify Skip Rule. The field for entering the
skip rule’s XPath expressions appears. You use the XPath expression editor for creating the XPath
expression that tests whether the policyId element has a value (see Figure 10-29).

Note that the use of the concat is a shortcut that prevents us from having to explicitly check
the existence of the policyId element as well as its value.

Restrict Secretaries Through Limited Access Privileges Not all participants in a task are
created equal—not all of them have the same privileges. We can set authorization details on the
Access tab—per role or, even more detailed, per participant type, and for content and actions.

FIGURE 10-27. Parallel and sequential stages in the task assignment flow

334 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 335

In this case, we do not want secretaries to set the task outcome Reject—which means specifying
a restriction on an action. Go to the Actions tab. Select the radio button Fine Grained (to switch
from roles to participant types) and uncheck the check box in the column for SecretarialPool and
the row for REJECT (see Figure 10-30).

Generate the Task Form We need to provide our users with the information required to act upon
the task. Therefore, we should generate the task form for the Accept New Patient task. In the same

FIGURE 10-28. Configuring the parallel participant type with a group vote

Chapter 10: The Missing Link: The Human Service Provider 335

FIGURE 10-29. Specifying the skip rule for CreditChk to be only performed for uninsured patients

way we saw in the previous section, select the option Create Form | Auto-Generate Task Form from
the menu in the top bar of the task editor. Enter a project name of AcceptNewPatientTaskForm. The
ADF web project is generated. We deploy it along with the composite application just like before.

Integrate the Task in the PatientDataService
BPEL Component
Leave the task editor, return to the composite, and double-click the BPEL component to edit the
PatientAppointmentService. Add a fault handler to the scope RegisterPatientData. This handler
catches the fault client:PatientNotFoundFault. Add a human task to this fault handler. Select the
AcceptNewPatient task and map the BPEL InputVariable’s ApppointmentServiceProcessRequest
part of the task parameter (see Figure 10-31).

In the Reject branch of the task switch, we should throw a fault—the situation we end up in
cannot be resolved and is also not the desired end result.

In the Accept branch of the task switch, we should invoke the PatientDataService to create the
new patient. Then we need to load the patient’s data in the BPEL variable Patient. Subsequently,
the PatientAppointmentService process can continue normally.

336 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 337

See Some Action: Requesting an Appointment
for a New Patient
After deploying the PatientDataService composite with the AcceptNewPatient human task
integrated into the BPEL component, it is time to see everything in action. Let’s invoke the
composite’s “process” operation with an appointment request for a new, unknown patient. The
BPEL process will enter the fault handler because of the (functional) “no patient found” fault
thrown by the PatientDataService. At this point, the “accept new patient” task is instantiated
and assigned (see Figure 10-32).

Advanced Features for Human Tasks
Human tasks in SOA Suite 11g do not end with what you have read in this chapter so far.
Chapter 20, for example, describes how we can create custom (and customized) task forms—more
tailored to the specific needs of the organization or specific users. Additionally, there is a series of
advanced features and options that are beyond the scope of this book but should however be
mentioned, no matter how briefly.

FIGURE 10-30. Prevent the SecretarialPool from setting the task outcome to REJECT

Chapter 10: The Missing Link: The Human Service Provider 337

Business Rules for Task Allocation
When creating the participant list, we can select individual users or groups from the identity
management system or use an XPath expression for creating straightforward logic to derive the
task actors. There is a third, more advanced option: Build a list of the task participants using a
Business Rule component. Upon selection of this rule-based option, a rule dictionary is created
that contains predefined functions such as CreateResourceList and a series of fact types for various
aspects of the task, including the parameters. This function creates a fact of a type understood by
the task service and that contains the assignees for the task. A rule set is created in the dictionary
that works on the facts that the task service passes to the Business Rule component. The rule set
can use this function in its actions. The task definition refers to this rule set.

Java and WebService API for Human Workflow Services
The Human Workflow Services can be accessed through a Web Service API as well as a Java
API—based on EJBs that can access the SOA Suite both locally for classes running in the JVM as
well as remotely. The APIs allow applications to browse, query, and manipulate tasks—and can

FIGURE 10-31. Integrating the accept new patient task in the BPEL process

338 Oracle SOA Suite 11g Handbook Chapter 10: The Missing Link: The Human Service Provider 339

thus be used to develop custom applications that expose, modify, and/or complete tasks to
assignees through tailor-made user interfaces. Appendix D provides some details on accessing
this API.

Todo List Service Portlet in WebCenter
One prebuilt user interface that leverages the WebService API is the Worklist Service in
WebCenter. This service consists of an ADF task flow that can be integrated in custom ADF
applications as well as WebCenter spaces. The Worklist Service queries the Human Workflow
Services API to find the 25 most recent tasks for the current user, presents them in a Todo List,
and allows navigation into the Worklist application.

Database Views for Inspecting Task Details
Tasks are persisted in the database. We are not supposed to access those task tables directly, of
course, nor is this supported. However, a number of database views has been published to give
us insight in the tasks directly from SQL. Views such as WFUNATTENDEDTASKS_VIEW and
WFPRODUCTIVITY_VIEW can be queried to report on task instances. There is no PL/SQL API for
querying or manipulating tasks.

FIGURE 10-32. An appointment request for a new patient has started the accept new patient task

Chapter 10: The Missing Link: The Human Service Provider 339

Using Excel as an Alternative Worklist Application
We can use Excel worksheets that connect to the Human Workflow Services as an alternative for
the Worklist application. Such Excel worksheets can be sent to users as attachments to the
notification e-mail. They can provide a great number of task details in a structured spreadsheet
format. These worksheets can contain buttons that act like the actionable links in e-mails and send
task updates to the task service. The Excel worksheets are powered by ADF DI (Desktop Integration)
and can be created in a similar way to the ADF Faces browser-based task form.

Human Task Callbacks
The Workflow Service can be configured to call back (to the task initiating the BPEL process) or
call out (to a Java class or the Event Delivery Network) upon certain events and status changes
that take place for the task. The events that can trigger such a call are Assign, Update, Complete,
Stage Complete, and Subtask Update. The callback sends a notification about what just happened
with the task, including relevant details such as the user who updated the task, the new assignee,
and the values of task parameters. Callbacks are configured for a task in the task editor on the
Events tab. Three types of callbacks can be discerned:

 ■ Java callbacks A custom class that implements the interface IRoutingSlipCallback can
be registered to be called upon task update.

 ■ Business events A task can be configured to produce events on the Event Delivery
Network. These events are specified in a pre-seeded EDL file: HumanTaskEvent.edl.
Mediators and BPEL components can subscribe to these task events.

 ■ BPEL callbacks When a human task is added to a BPEL process, the process is extended
with a Receive activity based on the onTaskCompleted operation in the callback
interface. However, the BPEL process can be made to accept other callbacks from the
task service as well. On the bottom of the Events tab in the task editor is a check box
marked “Allow task and routing customization in BPEL callbacks.” When you check
that box, open the Human Task activity editor in the BPEL process, and click OK, the
BPEL process is extended again with a while loop and a Pick activity that has onMessage
branches for the various callbacks the task can make. The BPEL process can do various
things with the information received in a callback. Among those things is the option to
invoke the task service to update the task instance—for example, with new parameter
values or by ending the task.

Custom Task Allocation and Escalation Mechanisms
The Task Service works with a number of built-in algorithms for assigning tasks to users—such as
least busy and round-robin. If you have a need for a specific, custom method for assigning a task
to a user or a group (for example, based on task properties or parameter values), you can register
a Java class that is invoked at run time to determine the assignee. In the same way the Task
Service can work with a custom task-escalation method implemented in a registered Java class.
The book’s wiki contains an example of using a custom assignment function.

340 Oracle SOA Suite 11g Handbook

Summary
A business process typically consists of a combination of human activity and automated service
calls that make computers perform some work. These actions are wired together in a process flow
with additional logic, including decision points, loops, and parallel paths. The Human Task
service component introduced in this chapter enables the implementation of the human activity
in SOA composite applications. It seems almost as if the human actors come with a WSDL
interface, just like truly automated services. Human tasks can be handled by the assignees
through a generated or custom-created user interface and in some cases through actionable
e-mails. The result of the human activity consists of the task outcome and possibly an updated
task payload. Both are returned to the invoker of the Human Task component, which will
frequently be a BPEL process component.

We saw in the last step—the process around the acceptance of a new patient—that a single
task can be defined as a workflow with fairly complex routing that takes the task and its payload
to various participants, who can be selected dynamically, work in parallel, and under specific
conditions only. However, it is still a single task, a single packet of data, that is routed to human
actors only. The routing logic is limited, and service calls are not part of the task route. The
definition of the Accept New Patient flow was pushing the human task to the limits.

To implement business processes that consist of various tasks with different payloads and
have both services and human agents to execute activities, we need to step outside the scope of a
single human task component. Such a process can be implemented using a BPEL process that
embeds multiple human tasks, service calls, and the flow logic to wire them all together. We will
discuss such workflows in the next chapter.

In that chapter, we will also meet another service engine: the BPMN service engine that runs
business processes developed using the Business Process Model Notation. Such BPMN processes
also combine human operations and service invocations.

BPMN allows for a more intuitive, business-driven definition of processes and workflows than
the combination of BPEL and Human Task. In addition, the run-time BPM Process Composer
tool—somewhat similar to the SOA Composer we used for run-time editing of business rules and
Domain Value Maps—allows business analysts and other run-time participants to maintain
process definitions on the fly, after deployment, and in the production environment.

Chapter
11

Business Process
Management with BPEL

and BPMN

341

342 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 343

he previous chapter introduced the Human Task component. We have seen how
human contributions can be integrated into SOA applications. Individual tasks that
require decisions, data entry, and manipulation—based perhaps on interpretation
of unstructured or graphical data, or verbal communication and deliberation, or
even sensitivity, intuition, improvisation, or creativity—can be incorporated into

otherwise automated applications. These tasks can be shared, escalated, and routed in various
ways. They remain the same task, though, with the same task contents, and the routing patterns
are fairly limited.

A business process or workflow typically consists of a combination of human activities and
automated service calls that make IT systems perform some work. These actions are wired
together in a flow with additional logic, including decision points, loops, and parallel paths.
Human Task service components do not implement that typical workflow all by themselves.
Instead, they implement the individual actions during the workflow—or at least trigger and
represent the fact that they are (to be) executed.

To implement workflows or processes that consist of various tasks with different payloads
and have both services and human agents execute activities, we need to step outside the scope
of a single Human Task component. Such a workflow can be implemented using a BPEL process
that embeds multiple human tasks, service calls, and the flow logic to wire them all together.
We will study that approach in this chapter, and we will meet a new service engine—the BPMN
service engine—that runs business processes developed using the Business Process Modeling
Notation (BPMN). BPMN is often applied in the context of a broader Business Process
Management (BPM) approach that focuses on cross-enterprise business processes for achieving
business objectives. BPM is briefly discussed in this chapter, including the supporting tools that
Oracle provides.

BPMN is an industry standard for modeling and visualizing business processes. Its original
focus was not so much the execution of business processes but purely the ability to describe
these processes in a clear, unequivocal notation. The initial users of BPMN, therefore, were
business analysts who wanted to visualize and communicate the business processes as they
took place. They then also started to refine and redesign these processes using BPMN. Many
tools became available that supported the visual editing and publication of BPMN process
models. Some advanced tools then also introduced process simulation, and at some point the
first BPMN run-time engines appeared on the stage. These engines are very similar to BPEL
engines in that they take the process blueprint and create concrete process instances based on
the blueprint. Oracle provides one such BPM(N) engine, and SOA composite applications can
incorporate BPMN components run by that engine—which turns out to be the same engine on
the inside that runs the BPEL process components in the SOA Suite. We will see in this chapter
how we can embed BPMN components in composite applications—and how such BPMN
components can call out to services, possibly exposed by other composite applications.

The BPMN service engine comes with a special run-time editor called the Process Composer
tool. It is somewhat similar to the SOA Composer that we used for run-time editing of business
rules and Domain Value Maps, and it allows business analysts and other run-time participants to
review and maintain process definitions through a browser-based environment. At development
time, JDeveloper—with the special BPM 11g plug-in—is used to model processes.

T

Chapter 11: Business Process Management with BPEL and BPMN 343

NOTe
This chapter can only scratch the surface when it comes to the
rich, complex BPMN process components and how to use them for
designing and implementing applications. The online complement
for this chapter provides a detailed example of the step-by-step
implementation of the Treatment Approval business process discussed
in this chapter—with many dozens of detailed screenshots and fine-
grained instructions.

Business Process Management (BPM)
Business Process Management—briefly introduced in Chapter 2—is concerned with the
management (design, improvement, execution, simulation, and so on) of business processes in an
organization. It is a holistic approach to aligning all aspects of an organization with the ultimate
business objectives and the needs of whoever the customers are. It promotes agility, flexibility,
and innovation, and attempts to integrate business and (information) technology in order to
achieve these goals. It is important to note that not everything within an organization can be
modeled using processes: Ad-hoc questions by users, for example, can be modeled in processes
but are usually not part of business process design. Also, out-of-the-ordinary events such as
earthquakes are dealt with by an organization even though they are most likely not modeled by
business processes.

BPM focuses on business processes—defined as a series of value-added automated or human
activities that together achieve a business objective and that may involve participants across the
entire organization and outside of it. The adoption of BPM in an organization mandates the use of
a modeling technique such as BPMN for analyzing and improving business processes as well as
possibly the utilization of a BPM run-time engine to automate the execution of these processes.

St. Matthews is anxious to have the entire organization act more as one, more streamlined—
focusing on the patient and the overall business objectives. It embraces BPM as an approach that
will also provide context and direction for the application of SOA. Mary, the enterprise architect
engaged by St. Matthews, leads the way in the introduction of BPM. BPM and SOA are very
complementary!

Mary decided to start the Business Process Management initiative with a process that is very
visible to the patients: the appointment process that we have worked on in the previous chapter.
She has analyzed the end-to-end appointment process and created a blueprint. She uses Oracle
BPA Suite for this. The blueprint created with this tool can be imported as either a BPEL or BPMN
process (or processes) into JDeveloper.

There are several reasons for selecting the first process to take on: the urgency of existing
problems, the visibility throughout the organization, the largest chance of a quick success (the
low-hanging fruit), and the toughest nut to crack that would provide the best possible proof for
the validity of the approach.

The BPM cycle consists of the following stages:

 Business process analysis ■ In this phase, we identify business processes, capture and
analyze existing processes, and/or design new ones. It is an activity that is usually
executed by business analysts. Once the business processes have been modeled, they
can be analyzed and simulated (for example, using what-if scenarios) to optimize them
for reduced risk, duration and cost, and for increased flexibility.

344 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 345

 Business process execution ■ The processes that are modeled are abstract and need to be
translated into concrete processes that can be deployed and run.

 Business process monitoring ■ The processes need to be monitored. When problems
occur, we can rectify them by assigning tasks to other people, rerouting actions to other
locations, and so on. After some time we evaluate the process. We can use historical
data about the process to see what bottlenecks exist, what activity is the most time-
consuming, and so on. This is input for the next step: optimizing the process.

 Business process optimization ■ Optimizing the process starts the cycle again, beginning
with business process analysis.

BPM from an Architectural Point of View
There are different types of processes. One category is formed by human-centric processes, where
most of the work is done by humans and the most important challenge is to assign workload
evenly and to monitor the progress of tasks. This is what is traditionally known as workflow.
Another category is document-centric processes. These are very dynamic processes that evolve
around documents, such as contracts or a press release for a website. Typically you will see this
in document management and content management systems. There will be processes for
scanning, editing, approving, and publishing the documents. The third category of processes is
system-centric processes. This is what is traditionally called orchestration. One of the biggest
improvements in system-centric processes in recent years has been the shift from batch
processing to straight-through processing of one item.

In most IT environments, a system-centric process is implemented as a chain of batches. For
example, suppose we have an appointment process in one of the departments of St. Matthews.
There are four steps in the “happy path” of the process. Until recently, the administrators at
St. Matthews used to run a batch every night to execute the steps in the process for all appointments
(see Figure 11-1).

In process-oriented IT environments, a particular process will run in its entirety for every
appointment (see Figure 11-2).

FIGURe 11-1. Batch processing of the appointment process

Register
patients

Notify
patients

Schedule
appointments

Prepare
instructions

Chapter 11: Business Process Management with BPEL and BPMN 345

This has the following advantages:

 A more even use of system resources ■ No need for ever-growing batch windows
anymore. Processes are running all the time, so the load on the systems doesn’t peak at
night.

 Processes finish sooner ■ Because we run a process immediately and complete every
step, we can minimize the duration of individual process instances. There are fewer
synchronization issues, too: Because the process runs immediately, we can postpone
fetching data until we need it. This means that chances that data has changed between
fetching it and using it are smaller.

So, does this approach have any disadvantages? Of course it does. If you have processes that
are kicked off periodically, they can flood your system with instant straight-through processing.
For example, a company that sells subscriptions will bill its customers every month. It is very
inefficient from a database point of view to fetch one record at a time, for every individual
subscription as it is processed. A batch process could use much more efficient bulk fetches of
records. Another disadvantage is that related processes can interfere with each other because they
might start at any time.

In cases where these disadvantages prove damaging, good-old batching may still be the way
to go—or the process design needs to be improved further (for example, using the so-called Claim
Check pattern). The architecture, therefore, cannot simply dictate that every process be run
immediately, completely, and independently when there has been a trigger for an instance of that
process; care needs to be applied to select the circumstances and (sections of) processes that
qualify for real-time straight-through processing. BPM and associated tooling, along with SOA, at
least offer the possibility.

The last category is called rule-centric processes. A rule-centric process is one that has many
alternative paths, depending on existing business rules. An example in healthcare is case management.
Case management focuses on delivering personalized services to patients to improve their care, and it
consists of the following four steps:

 1. Screening to find appropriate patients

 2. Planning and delivery of care

 3. Evaluating results for each patient and then adjusting the care plan

 4. Evaluating overall program effectiveness and then adjusting the program

FIGURe 11-2. Straight-through processing of the appointment process

Register
patient

Notify
patient

Schedule
appointment

Prepare
instruction

346 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 347

Every case has multiple possible outcomes, depending on the patient and the symptoms. This
type of process depends very much on business rules and logic. Rules engines and decision
services are appropriate for this type of process. Other examples of environments with many
occurrences of rule-centric processes include health insurance companies and government
agencies.

Apart from having different types of processes, we usually define different levels of processes
in the process layer (see Chapter 1). Mary decides to use three levels: The first level contains
value-added chains that may string several business processes together. (We saw an example in
Chapter 1.) The second level contains the end-to-end processes. The third (and lowest) level is the
one that is relevant for developers and end users: This is the process that will actually be
implemented and run. It contains implementation details about the types of activities (automated,
human step, and so on), and describes in detail the flow logic with loops and parallel flows that
can be left out of the model at the second level.

Design Guidelines
As with SOA, certain principles apply when you design and execute processes:

 Processes should be loosely coupled. ■ When defining the automated steps in business
processes, we do not define the applications that execute those steps, but just the service
interfaces that provide the required functionality. In short, we orchestrate autonomous
services instead of IT systems. This also holds for human interaction: We define the
task definition, not the actual implementation. The implementation of those services
is outside the scope of BPM. This makes it easier to separate technical changes from
changes in the process or the business logic. For example, the hospital might decide to
replace the clinical information system. This does not affect the appointment process—as
long as the new clinical information system implements the service interfaces on which
the process relies. The other way around is the same: Suppose the hospital decides to
change the appointment process. This does not necessarily mean that the IT systems that
provide the services need to change.

 Processes should not be too generic but also not too specific. ■ Designing business services
is different from designing a process. In software you are looking for reuse, whereas in
processes you are looking for efficiency and possibilities for improvement—goals that are
at odds with generic, all-purpose designs. In our appointment process, we want to make
a distinction between the first time we schedule an appointment and subsequent changes
in the schedule. We want to minimize the latter and monitor occurrences separately.

 Parallel execution flows should be used whenever possible. ■ One of the ways to speed
up a process is to have activities not wait for unrelated events. For example, if we need
permission from the insurance company before we treat a patient, we could do that
parallel to the appointment process. A technical ramification of parallel flows is that they
consume more execution threads and thereby present a larger load to the CPUs of the
system.

Tools to Facilitate BPM efforts
Oracle BPM Suite 11g and Oracle SOA Suite 11g offer several options for BPM. The components
are discussed in detail in the next chapter. To design processes, you can use either Oracle BPA
Suite or the lighter-weight Oracle BPM Studio—starting with BPM 11g available as a JDeveloper

Chapter 11: Business Process Management with BPEL and BPMN 347

extension—if you don’t need the full architecture features and the many dozens of diagram types
that BPA Suite offers.

Oracle BPA Suite is a better option when there is a need for formal description and
traceability. Mary has decided this is a good choice for St. Matthews: The hospital needs to
describe the processes rigorously, top-down, to comply with rules and regulations. These
descriptions can then be reused in the architecture to define services that are needed and to
describe detailed activities that are used in the processes.

The BPA Suite offers several diagram types to model processes and other Enterprise
Architecture (EA) artifacts. The first type is the value-added chain. This diagram specifies the
functions in a company that directly influence the real added value of the company. The second
type is Business Process Modeling Notation (BPMN). BPMN is based on flow charting for
Business Process Modeling. BPMN became an OMG final adopted standard in February 2006.
The specification defines the notation and semantics of a so-called business process diagram
(BPD)—a standardized, cross-industry way of visualizing business processes in a structured
manner. A BPD consists of flow objects, connecting objects, swimlanes, and artifacts. Business
processes can be designed in BPMN using many different tools. These tools usually have some
capability to publish the models as webpages on an organization’s intranet, making the process
visualizations available to all employees.

The 2.0 release of the BPMN standard has been in the works for several years and is
scheduled to be completed in the second half of 2010. Associated with BPMN is the XPDL
specification, which details how a process described in BPMN can be exchanged between BPMN
tools.

After we designed the process, we want to actually execute it. This means that the business
analyst is done and a developer comes in to enrich the process definition with data to make it
executable. Unlike other modeling approaches, such as Visio or brown paper, the BPMN
processes can also run on a server, and in such cases will never be out of sync with the living
code (because they are living code). A BPMN process is created as a service component inside a
SOA composite application and is deployed and executed as part of the application, in the same
way BPEL processes as well as Human Task and Business Rule components are. Note, however,
that the license for SOA Suite does not cover the BPMN Studio, Composer, and the run-time
engine. You will need the BPM Suite license to be able to design, simulate, and run BPMN
process components.

Alternatively, process models can be the basis for some other form of executable process
definitions, such as BPEL processes. The Oracle tooling works together here to form a closed
loop: Process models created in Oracle BPA can be generated into BPEL blueprints—abstract
BPEL processes that provide the overall structure for the BPEL processes that need to be fleshed
out by the developer. In the reverse direction, Oracle BPA can extract BPMN process models
from BPEL processes.

Implementing Business Processes
Through BPeL and Human Tasks
The missing link in the composite applications we discussed in the previous chapter was the
human contribution that is indispensable in many processes—people can contribute unique skills
such as fuzzy logic, improvisation, interpretation of unstructured information, and authority. The
Human Task component was introduced, which on one hand is a service interface that makes it

348 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 349

easy to wire a task into a composite application, like any other service component, and on the
other hand is the task’s user interface, the workflow engine, and the BPM Worklist Application
that allow humans to easily interact with the task and perform the action required. BPEL processes
can easily interact with Human Task components, in more or less the same way as with
asynchronous automated services.

Human task definitions can be fairly complex, with serial or parallel subtasks that can even
be nested, advanced rules for escalation, subtask skipping, and expiration. We have to be careful
to find an appropriate balance when crafting human tasks. One or only a small number of tasks
may initially sound attractive in terms of complexity and development effort compared to a larger
number of tasks forged together into a workflow by an orchestrating BPEL process. However, the
complexity of the individual task definitions, as well as their relative lack of flexibility, may well
undo that perceived advantage.

Let’s take a look at how a multitask business process with interspersed automated steps can
be constructed using a BPEL process. Later on in this chapter, we will go through a similar
exercise using the BPMN process approach—which is in many cases much easier and more
intuitive. Note that the same human tasks used with BPEL process provide the implementation of
human activities in BPMN processes.

“Accept New Patient” as a Multitask Process
The last human task discussed in the previous chapter was the “accept new patient” task (see
Figure 11-3). This task really explored the boundaries of what we can do with a single human
task definition in the SOA Suite today. This particular task contains several parallel subtasks; some
internal routing; and the use of skip rules, deadlines, escalation rules, early task completion, and
a number of different participant types, some in an FYI role and one in a group voting process. It
was not easy to develop, and it is not trivial to track its progress in detail. On the other hand, a
single task definition suffices to implement a complex workflow that determines whether a new
patient is accepted by the hospital.

Considerations for Single Task vs. Breaking Up into Multiple Subtasks
The task definition for accepting new patients has two main parallel flows: one for the secretarial
pool that has to enrich the patient details, and one that should lead to a decision about the
acceptance of the new patient. This last flow starts with a initial check on some key aspects—a
quick triage, if you will—performed by a user with the role AdmissibilityChecker. When a patient
is accepted in this first stage, he enters the next, which is one of two flows, depending on whether
he has health insurance. Both flows consist of two steps: It is either an interaction with the
insurance company and the final decision by a single patient account manager, or a credit check
followed by a group vote by (the majority of) the patient account managers. This entire workflow
results in an enriched patient record and either an acceptance or rejection of the patient.

There can be several reasons to implement this task in a complex workflow rather than a
single, complex, nested human task definition with multiple subtasks, like we did in Chapter 10.
For example, the routing between the subtasks and participant types can be predefined in a
static, linear, or parallel way, or it can be dynamic, governed by business rules that use the task
payload and the outcomes of earlier participant types to choose the next participant type or
decide on an early completion of the task. However, when the routing becomes very complex or
depends on information that is not available as part of the task routing slip or payload, it can no
longer be handled within a single task definition. Alternatively, when the various steps are quite

Chapter 11: Business Process Management with BPEL and BPMN 349

distinct and each requires its own dedicated user interface, we should consider splitting the task
up into several task definitions that have their own special task flow associated with them. Note,
however, that a single ADF task flow associated with the human task may contain multiple view
activities and special controller logic that can present a user interface dedicated to the current
subtask.

When steps that are currently manual could at some point be automated through a service
call or additional payload enrichment, routing or looping logic may be desired between the
various manual steps in the task, which could provide a trigger for breaking up the task into
multiple smaller tasks that are orchestrated together in a BPEL process that could easily include
those additional elements as well. The BPEL process with multiple finer-grained tasks results in a
more accessible, detailed audit trail than a more coarse-grained task will. And, frankly,
developing smaller-scale, more-focused tasks and combining them in a BPEL process is easier on
the developer than constructing a complex task with many subtasks and embedded routing logic.
As with services, in general, complex, coarse-grained human tasks are probably less likely to be
reusable than finer-grained tasks (although when they are, they can contribute a lot of value).
That could be a consideration as well.

FIGURe 11-3. Accept New Patient—a complex human task

350 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 351

The downside of breaking up the task is that the number of artifacts to develop increases with
every additional task. The complexity of the BPEL process increases and there is some run-time
overhead because of the additional “context switches” between the BPEL engine and the Human
Workflow Service—although these are usually negligible.

Implementing a Multistep Workflow Using BPeL
Instead of the single, coarse-grained human task definition AcceptNewPatient, we will create an
asynchronous BPEL component with that same name in the PatientAppointmentService
application. This BPEL will consist of more, simpler human tasks that together provide the same
functionality. It will take the AppointmentServiceProcessRequest element as its input and return
two response messages: one based on that same element—possibly enriched with additional
patient details (the task payload altered by the assignee)—and the other based on a simple string-
based type that either contains OK or REJECT (the task outcomes):

 <element name="HumanTaskOutcome" type="ap:humanTaskOutcomeType"/>
 <simpleType name="humanTaskOutcomeType">
 <restriction base="xsd:string">
 <enumeration value="OK"/>
 <enumeration value="REJECT"/>
 </restriction>
 </simpleType>

The BPEL process starts with a Flow activity that contains two parallel sequences. One
contains the human task EnrichPatientDetails, which is assigned to the role SecretarialPool. The
other sequence starts with the human task Accessibility Check. Depending on its outcome (OK or
REJECT), either the sequence is completed (with REJECT as the outcome) or a Pick activity is
entered that checks whether the patient for whom the appointment request is made has an
insurance policy. One case deals with insured patients and has two human tasks—the first
InsuranceLiason, and the second the Go/NoGo decision by the patient account manager. The
other case handles the uninsured patients and also has two human tasks—the first is the credit
check, and the second is the group vote by the patient account managers. Both of these cases
complete with either an OK or REJECT outcome. This outcome is returned in the response from
the process, along with the potentially updated patient record.

The BPEL process that implements the Accept New Patient workflow is illustrated in Figure 11-4.
All steps are clearly visible, and because they have been implemented as separate BPEL activities and
individual human tasks, it is easy to rearrange them, to mix in additional flow logic and service calls
or data manipulation, and to handle incoming events.

When we look at the composite diagram of the application, shown in Figure 11-5, it is clear
how the flexibility we have gained in the workflow and the implementation of the user interface
for each individual task come at a price: The application contains more artifacts that we need to
implement and that increase in complexity as well. Striking a balance can sometimes be a
challenge. What’s more, the BPMN process component introduced in the next section makes the
decision still somewhat harder by providing an alternative technique for the implementation of a
workflow that combines business logic, human activities, and service logic.

Calling the AcceptNewPatient Service Component
The BPEL process PatientAppointmentService, which we left in Chapter 10 with a call to the
Human Workflow Service for the task AcceptNewPatient from the fault handler that’s handling the

Chapter 11: Business Process Management with BPEL and BPMN 351

PatientNotFoundFault, requires only minor changes to invoke the AcceptNewPatient BPEL process
instead. The human task is replaced with an Invoke to AcceptNewPatient—preceded by an Assign
activity that prepares the input variable for AcceptNewPatient. Because this is an asynchronous
service, we should also add a Receive to get hold of the outcome of the AcceptNewPatient
workflow. This outcome consists of two parts: the enriched patient details (which can be copied to
the inputVariable) and the decision (either OK or REJECTED). In case the result is REJECTED, the
BPEL fault AppointmentFaultMessage is thrown, just like before when we handled the human task
result.

Figure 11-6 shows how PatientAppointmentService now calls the BPEL process AcceptNewPatient
instead of the human task of the same name that used to be invoked.

FIGURe 11-4. The BPEL process that implements the Accept New Patient workflow

352 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 353

FIGURe 11-5. The composite application overview for PatientAppointmentProcess

FIGURe 11-6. The fault handler for PatientNotFound calling the AcceptNewPatient BPEL process that
implements the workflow for thoroughly evaluating new patients

Chapter 11: Business Process Management with BPEL and BPMN 353

Introducing BPMN Service Components
Business processes described through BPMN are workflows that combine human operations,
business rules, and service invocations. The focus is often somewhat more on the business
process and the human activities in comparison to BPEL, which plays a slightly more technical
role and has its primary focus on service orchestration, with the task service and the human actors
providing just another service. BPMN can be very system oriented as well—although at a slightly
higher, more abstract level than BPEL.

BPMN can be used by both technical staff and business users, and is well suited to bringing
these parties together. One of the main reasons for using BPMN in addition to or even instead of
BPEL processes is exactly this fact—that business analysts and even end users can typically
understand, help maintain, or even own definitions of business processes, as opposed to BPEL,
which is mostly unreadable for business users.

Comparing BPMN and BPeL
BPMN is in several areas more intuitive and process oriented than BPEL—which is a rather
technical language for service orchestration and composition. Creation of conditional flows and
transitions, and even loops and iterations, for example, is quite straightforward in a BPMN
process and requires no understanding of technical constructs or XML manipulation.

BPMN—quite unlike BPEL—makes use of “swimlanes” that represent organizational units or
business roles or IT systems. Activities are assigned to a swimlane. This provides clear insight into
the responsibilities for and contributions from each part of the organization to a business process.
Additionally, the organization’s hierarchy can be defined along with calendars that specify per
organization unit or role the working hours, normal business days, and special holiday rules.
However, this information is currently not carried over when a project is deployed and executed
at run time. Unfortunately, it is not used in SOA Suite to allow, for example, deadlines defined in
terms of business hours or days rather than normal calendar time.

Manipulation of data objects included in the business process (instance) is largely done
through data associations that define how data is passed to and from script tasks, business rules,
human tasks, external services, and external processes. These associations use data objects and
expressions that are similar to but more (business) user friendly than the XSD elements and the
XPath expressions used in BPEL processes. For extensive data conversions, BPMN processes can
use XSL(T) transformations as well.

BPMN processes integrate with human tasks to provide the implementation of human
activities in the same way BPEL processes do. Integration of business rules is straightforward to
perform calculations on behalf of a business process or execute logic that returns the values that
determine which conditional flows are to be executed. Calls to other services as well as to other
business processes are easily included as well.

A BPMN process can also contain manual tasks. These represent activities that are part of the
business process but are not managed by the BPMN service engine. They are included to provide
a complete overview of the business process but are otherwise ignored. Note that these manual
tasks are not the same as human tasks—although also executed by humans, those are still under
the control of the SOA Suite’s Workflow service engine. BPEL processes would have to use the
Empty activity to approximate this concept of a manual task.

BPMN processes can broadcast signals and be initiated by the reception of signals, similar to
BPEL processes. Signals correspond to events on the SOA Suite Event Delivery Network. This
provides a second, more decoupled interaction mechanism between BPMN processes and other
service components and composite applications—in addition to direct service calls. BPMN has

354 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 355

an easy-to-leverage correlation mechanism that acts between BPMN process instances. However,
at the time of this writing, there does not seem to be an all-around correlation mechanism that
allows events or incoming request messages to be fed into specific instances of BPMN process
instances. BPEL seems superior in this respect.

A BPMN process can expose a Web Service interface that can be invoked to initiate a new
instance. Reception of a signal (which equals an EDN event) can also initiate a new instance, as
can a timer event. The latter can cause an instance to be started at a specific date and time or on
a specific interval. BPEL does not have a timer-based initiation mechanism.

BPM Studio—the JDeveloper extension for BPMN—has support for simulation of business
processes. Through the simulations, analysts can examine what-if scenarios for a business process
and achieve process optimization based on the results. BPEL does not offer anything like this.

BPMN processes can collect metrics during execution—similar to what BPEL sensors do—that
can be collected and monitored using process analytics. These metrics can be tracked in the BPM
Business Process Workspace application and Oracle BAM (see Chapter 19 for more on BAM).

Auxiliary Applications for BPMN Processes
The Business Process Workspace application (http://host:8001/bpm/workspace) has prebuilt
dashboards per business process for monitoring process performance, task performance, and
workload, and it also allows creation of custom dashboards. In a similar way to the BPM Worklist
application discussed in the previous chapter, it also provides access to human tasks that need to
be performed.

The BPM process composer (whose default location is http://host:8001/bpm/composer)
provides a visual representation of the processes through a browser-based application that can
make them accessible to a wide audience. Through this application, business analysts may
document and refine the business processes. These refinements can either be deployed to the
run-time SCA container or pushed back to JDeveloper, where the developer can evaluate and
complete them before deployment.

Process Spaces—also shipped with Oracle BPM 11g—is a WebCenter Spaces application that
brings together process participants and process owners. In Process Spaces, users can collaborate
on and communicate about business processes and process instances, track progress, and inspect
audit trails. The Process Work Space lists processes that the user can instantiate, shows tasks
assigned to the user for running process instances, and provides charts with statistics. The Process
Instance Space lists audit trails for running instances, provides a process calendar with deadlines
and other important dates related to process instances, and shows the stakeholders for each of the
running processes. The Process Modeling Space publishes a catalog with all deployed business
processes. Additional custom spaces can be created based on a series of task flows that publishes
details about business processes and instances. Note that you need to have WebCenter Suite
licensed and installed in order to make use of Process Spaces.

Designing the “Treatment Approval” Workflow Using BPMN
The scope of this book allows us only a brief introduction to BPMN processes. We will create a
composite application using a BPMN component that supports the business process through
which a doctor gets approval for a special treatment she intends to apply to a patient.

Some treatments, though well established in medical practice and quite successful, are
expensive—more expensive than perhaps less effective alternatives. Unfortunately, someone has
to pay for those treatments and not all patients will be able to afford them or have insurance to
cover the costs for them. Other treatments may be somewhat experimental or controversial.

Chapter 11: Business Process Management with BPEL and BPMN 355

Such treatments should not be subscribed willy-nilly, and care should be taken to not expose the
hospital or the doctor to bad publicity or legal actions by the patient, his relatives, or any other
who may see a reason for doing so. St. Matthews has had some bad experiences in the past where
treatments were given without proper consideration up front, with no documentation of this
consideration nor a written consent form from the patient and no confirmation from the health
insurance company. It is determined to prevent this from happening again.

Business analysts have conferred with doctors, the legal and financial departments, and
representatives from health insurers. They have designed a business process that should not make
life any harder on the doctors yet guarantees a proper decision-making process as well as an audit
trail of the essential steps along the way. While they started with napkins and whiteboards, soon
they resorted to BPM Studio to create the definition of the process using BPMN.

Outlining the Treatment Approval Business Process
The doctor who wants to start a specific treatment for a certain patient needs to get approval as
well as create an audit entry. The Treatment Approval business process is initiated to take care of
these two requirements. The input for the process consists of the identification of the doctor,
some patient details (including gender, age, body weight, and medical insurance details), the
proposed treatment, estimated total costs, as well as a motivation for administering treatment.

The first step in the process, after the request for treatment approval is created, is a business
rule that checks whether the proposed treatment is one that requires formal approval. If approval

Guided Business Processes
It is not uncommon for business processes to consist of a fairly large number of steps to be
performed by a business user. These steps can frequently be clustered together in a
milestone. Although all (mandatory) milestones must be completed in order to finish the
entire process, users can be guided through the process in smaller, easier-to-understand
stages that lead to intermediate milestones. The structure of a (guided business) process as
well as the progress of the user in a specific process instance can be visualized very well
using a breakdown structure with milestones that contain human tasks and possibly other
service calls (including calls to other guided business processes).

A guided business process is an asynchronous BPEL process or a BPMN process that
orchestrates a set of human tasks and provides a common user interface to complete and
track these tasks. Such a guided business process is created by configuring a BPEL or BPMN
process (for example, through the Activity Guide node or icon). Milestones are added to the
process and human tasks are assigned to the milestones. Milestones have a name and
display title, an associated image, the progress percentage, and an expiration date. When a
milestone contains a required task, it is automatically required for the process as a whole,
meaning that it must be finished before the process can be successfully completed.
Alternatively, tasks and milestones can be optional as well.

When an instance of a BPMN or BPEL process configured as a guided business process
is initiated, the service engine keeps track of the current, future, and completed milestones.
These can be displayed in the client application used by the business users to access the
process and perform the tasks. Guided business processes provide you with predefined ADF
task flows that you can use to build an ADF application to display and run the guided
business processes. Alternatively, information about instances of guided business processes
and their milestones is available to client applications from Web Service and EJB-based APIs.

356 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 357

is not required, the doctor may proceed as planned. If it is required, the request is evaluated by
the financial department—in a human task. This department cross-checks the patient and
treatment details with the patient’s financial history and credit status as well as the insurance
policy and then comes up with its verdict: It grants the approval, it rejects the approval, or it
enlists the help of the health insurance company to make the decision. This last part is done via a
service call to a Web Service available from the enterprise service bus.

When the approval for the treatment has been granted or denied, a service is called to make
an entry in the audit trail, so as to create a traceable history of treatment requests and approval
decisions. Subsequently, the doctor is notified of the decision (that is, whether the approval has
been granted or denied).

Creating the BPMN Process Definition
A BPMN process is created in JDeveloper with the BPM (Studio) extension installed on top of the
SOA (Composite Editor) extension. A BPMN process is just another service component in a
composite application. The Treatment Approval process is created in a brand-new JDeveloper
application of type BPM, called TreatmentApprovalProcess. Note that a BPM application is also
an SOA application—with BPMN as an additional component.

The BPMN process component is called TreatmentApproval. It is based on the Manual
Process pattern because it will be initiated by a doctor who, through a human task, requests
approval to perform a certain treatment (see Figure 11-7).

FIGURe 11-7. Creating the new BPM application with the TreatmentApproval BPMN process component

Chapter 11: Business Process Management with BPEL and BPMN 357

To begin, open the BPM Project Navigator if it is not open already. Select the node Organization.
Open the Organization editor by right-clicking the node. Change the name of the default role (Role)
to Doctor and then create these additional roles: FinancialDepartment, InsuranceCompanies, and
HospitalPoliciesAndRegulations. Close the Organization editor.

Back in the BPMN editor, right-click the swimlane for Doctor. Select the option Add Role
from the context menu. Select the role HospitalPoliciesAndRegulations from the list of roles. This
will add a swimlane for this particular role. Add swimlanes for the other two new roles as well.

Create a Business Rule step in the HospitalPoliciesAndRegulations swimlane called Approval
Requirement Check. Create a human task called Financial Cross Check in the swimlane for the
Financial Department.

Add a Service Call activity called Request Insurance Company’s Approval. Finally, create a
service call with label “Create Audit Entry” in the Doctor’s swimlane and another one called “Send
Notification to Doctor.” The BPMN component will now look as is shown in Figure 11-8—a series
of currently unrelated activities.

Create the Flows and Gateways
To begin, create the default sequence flow through the activities in the order in which you have
just created them. This is the happy path—the no-exception flow that results in a straightforward
approval of the treatment.

Reroute the default sequence flow from the Initiate Request For Treatment Approval human
task. It should get the Business Rule activity as its destination instead of the End node. Create a
sequence flow from the Business Rule activity to the Financial Cross Check and from there to the
service task that calls the insurance company. Link this activity to the Create Audit Entry activity
and connect that to Send Notification To Doctor, which itself connects to the End node (see
Figure 11-9).

However, processes are never that simple, and the facilities offered by BPMN for conditional
flows, loopback constructs, and parallel paths are required to deal with the subtleties. Various
types of gateways are used to create decision points: an exclusive gateway where the flow goes
this way or that way (and start or merge parallel paths) as well as a parallel gateway and parallel
merge gateway where the flow goes this way and that way or converges again into a single flow.
Note that parallelization of flows is an important tool for process designers to achieve more
efficient processes with a shorter duration.

Create an exclusive gateway in the swimlane HospitalPoliciesAndRegulations that’s labeled
“Is Approval Required?” The outcome from the business rule Approval Requirement Check is fed
into this gateway. The flows from this gateway lead to the steps Add Audit Entry and Financial
Cross Check. An exclusive gateway is a decision point: The process token is sent to one and only
one of the outgoing flows. Each flow will be associated with a condition that determines whether
the flow is the one selected; one flow can be the default flow—the unconditional one—that is
executed when none of the conditions on the other flows are satisfied.

Also add an exclusive gateway after the task Financial Cross Check that’s called “What is the
outcome of the Financial cross check?” It will pick a flow to either the Insurance Company
Consultation or the Create Audit Entry activity. The default flow from the Financial Cross Check
should go to this gateway (see Figure 11-10).

358 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 359

FIGURe 11-8. Treatment Approval business process—all activities

Chapter 11: Business Process Management with BPEL and BPMN 359

Simulate the execution of the Business Process
One of the benefits of BPM Studio is its simulation capability. Even at this fairly early stage, where
we have only created an outline of the process without going into any of the data structures
involved or a discussion of the actual implementation of each of the steps in the process, we can
start simulating the execution of the process—and improve the design if the simulation gives
cause to do so.

Create the Process Simulation
To begin, open the node Simulations in the BPM Navigator. Select the node Simulation Models,
open the context menu, and select New Process Simulation. Set the name of the new Process
Simulation to TreatmentApprovalSimulation. Accept the default number of process instances to
be created in the simulation at 100. Click the tab Flow Nodes. Each of the activities in the process
can be selected and its costs and metrics can be set. Select the node for Financial Cross Check.
Set the mean time to 6 hours and 30 minutes and the deviation to 2 hours. Set the duration for the
other steps to small values in the order of magnitude of tens of seconds (see Figure 11-11).

FIGURe 11-9. The happy flow through the Treatment Approval process

360 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 361

FIGURe 11-10. Exclusive gateways to implement the decision points in the process flow

Approval requirement check

Financial cross check

Request insurance company’s approval

EndStart Send notification to doctor
Create audit entry

What is the outcome of the Financial cross check?

Is approval required?

Initiate request for treatment approval

FIGURe 11-11. Creating and configuring a process simulation

Chapter 11: Business Process Management with BPEL and BPMN 361

Select the Flow node for the gateway “Is Approval Required?” We can indicate for each
gateway what percentage of process instances will flow through which of the outgoing sequence
flows. Set the percentage for the flow to Create Audit Entry to 0.9 to indicate that 90 percent of
the treatment approval requests can be handled automatically. The Financial Cross Check
probability is automatically set to 0.1, which means that 10 percent of all approval requests have
to be evaluated by the financial department (see Figure 11-12).

Next, select the exclusive gateway “What is the outcome of the Financial cross check?”
Seventy percent of the process instances flowing through this gateway are routed to Create Audit
Entry (either because of rejection or immediate acceptance); 30 percent require consultation of
the insurance company.

Create the Simulation Definition
In the BPM Navigator, select the node Simulation Definition and choose the option New
Simulation from the context menu. Call the new definition TreatmentApprovalSimulation.
Configure the simulation to represent a ten-hour period. Add a resource (capacity set to 1) for the
role FinancialDepartment. Also add a resource for the role Doctor; set the capacity for this
resource to some fairly high number.

Run the Simulation
Open the Simulations tab in the console (View | Simulations). Click the green triangle icon to
start the simulation. The process editor shows the simulation in action: New instances are
created, and the process token flashes across the screen according to the various flows and the
relative weights that have been defined for the gateways (see Figure 11-13).

The Simulations tab can show a number of charts representing various metrics for the process.
Important metrics include the average and maximum process time—for the entire process as well
as for individual steps. We learn, for example, that the process activity that consumes most of the
time spent on the process is Financial Cross Check. The average processing time is determined
primarily by the mean processing time of this activity. If we could speed up this activity—or
increase the number of resources available to perform the financial cross-check—that would help
boost the overall performance of the entire process. Set the mean duration for Financial Cross
Check to 2 hours and 30 minutes and run the simulation again. Both the average and the
maximum wait time are substantially decreased.

Other ways to improve the process and achieve faster average processing speed include the
introduction of some parallel flows, adding resources (assigning more staff members) to execute

FIGURe 11-12. Configuring the sequence flow ratios for the exclusive gateway “Is Approval Required?”

362 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 363

a certain step, and changing the percentages of the requests that require the more expensive
manual Financial Cross Check activity (for example, by creating more sophisticated business rules
to prevent too many requests from reaching a [slow] human operator).

Implement the Treatment Approval Process
At this point, the design of the business process that has evolved from the analysis of all
requirements from various interested parties has been laid down in a formal BPMN-based design.
The actors have been identified, the individual process steps have been specified, and the flow
through the process has been charted. This involves both the happy flow as well as some
variations on the happy theme. Gateways have been used to specify conditional transitions.

This design is a first step that allows us to communicate, discuss, simulate, and possibly
further refine this process. However, nothing has been said about the actual implementation of

FIGURe 11-13. Running the simulation for the BPM process Treatment Approval

Chapter 11: Business Process Management with BPEL and BPMN 363

the process. The implementation of each process activity is still to be created, and we have not
yet even defined which data is associated with the process, each of the process steps, and the
conditions that steer the execution.

The composite application at this point only contains the BPMN process component. Shortly,
as we provide the implementation of the activities in the process, it will also have other
components and references as well as wires to these from the BPMN component.

NOTe
Detailed descriptions and screenshots regarding the implementation
of the various process activities are available in the online chapter
complement.

Business Objects and Process Data Objects
A business process has data associated with it—data that represent the input and the output for
human tasks or other activities such as automated services and business rules. Data objects are
the equivalent in BPMN to variables in BPEL—the carriers of data in an actual process instance
that are passed as input, modified by services, and returned as output. Data objects in BPMN can
exist at the process (global instance) or activity (local) level, or even at the project level, spanning
multiple related processes.

Data objects are based on business objects. The latter define the type and structure of the
data, and the former are the data: XML versus XSD. Business objects correspond with elements
defined in XSD documents. Business objects are created through BPM Studio—either from scratch
or based on XSD elements. When the required complex business objects have been defined, the
Process and Activity data objects can be defined.

We need a business object to describe the data carried by the TreatmentApproval process: the
TreatmentApprovalRequest. It must contain attributes for all pieces of data required to evaluate
the request. These include the name of the doctor, gender, age, body weight, ZIP code and
insurance policy ID of the patient, the diagnosis, proposed treatment, and a motivation from the
doctor.

To create this business object, right-click the Business Catalog node in the BPM Navigator,
as illustrated in Figure 11-14. Select New | Business Object from the context menu. Enter
TreatmentApprovalRequest as the name for the business object. Create and select a target
module called Data. (We could now select an element defined in an XSD definition. Instead,
we will specify the structure of the business object in BPM Studio.) Click OK.

Add the scalar attributes as described earlier.
Business Rule activities can only handle input and output based on nonscalar data objects

defined through XSD. Even though the Evaluate Approval Request business rule needs only to
return a string to indicate the outcome, we have to create a business object called
BusinessRuleOutcome with a single attribute outcome of type String.

Process Data Objects—Variables to Hold the Process State Process data objects are the
variables that hold the state of the BPMN process. They are based either on scalar types—String,
Decimal, and Time—or on business objects, such as the two we have just created.

We need a Process data object to hold the treatment approval request submitted by the
doctor. In addition, we need Process data objects to hold the results from the Business Rule
activity, the Financial Cross Check task, and the Insurance Company Result service call.

364 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 365

To create the Process data objects, open the structure window for the BPM process. Select the
node Process Data Objects and select the option New from the context menu. Create a Process data
object called treatmentApprovalRequest based on the business object TreatmentApprovalRequest
we just created (see Figure 11-15).

The Process data object approvalEvaluationOutcome is based on the business object
BusinessRuleOutcome. Also create Process data objects called financialCrossCheckOutcome and
insuranceCompanyDecision—both of type String.

Activity Instance Attributes In addition to the data objects we create, the BPM engine
provides a number of predefined activity instance attributes. These read-only attributes provide
information, for example, about the number of times a loop or an activity has been executed.
Values are retrieved using the XPath function getProcessInstanceAttribute(). Note that a BPMN

FIGURe 11-14. Creating the business object TreatmentApprovalRequest

FIGURe 11-15. Create the Process data object treatmentApprovalRequest

Chapter 11: Business Process Management with BPEL and BPMN 365

can contain a subprocess—similar to a BPEL scope—that can be configured through the loop
characteristics to run multiple times. Alternatively, loops can be implemented using gateways and
loopback flows.

Implement the Human Task “Request Treatment Approval” to Initiate the Process
Our process contains two human tasks. However, other than identifying them and associating
them with a specific role, we have not yet done anything to implement them. That is the reason
for the alert indicators that these tasks—and the other not-yet-implemented activities—have in the
editor.

Human activities in BPMN processes are implemented using the Human Task or Workflow
Service component that was first introduced in the previous chapter. When we implement the
human activities, what we really do is create a Human Task component and associate it with the
human activity in the process.

Right-click the human task Initiate Request For Treatment Approval and select the option
Properties. Click the green plus icon to create the human task that provides the implementation
for this activity. In the Create Human Task pop-up, set the name of the task to
CreateTreatmentApprovalRequest. Select Initiator as the pattern to specify that this task will
create a new instance of this process. When you select this pattern, the Outcomes field is set to
SUBMIT, because that is the only outcome required for a task of this type. Figure 11-16 shows
these steps.

Next, we need to create the parameters for this task. All we need is single parameter, based
on the treatmentApprovalRequest process data object. Click the green plus icon above the
Parameters table. The Data Object window opens. Drag the treatmentApprovalRequest data
object to the Parameters table. Mark the check box in the Editable column to make this parameter
updateable by the task definition. Click OK to complete and close the Human Task dialog.

FIGURe 11-16. Creating the Human Task to implement the process activity Request Treatment
Approval

366 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 367

When you open the Composite Editor, you can see that the BPMN service component is
wired to the newly added Human Task component. We also need to create or generate the task
form for this task, as was described in Chapter 10. Double-click the human task to open the task
editor. Click the Create Form menu, select the option Auto-Generate Task Form, and specify the
name of the project that is to be created for this task form. Click OK, and the project with the
ADF page is now generated.

Implement the Human Task “Financial Cross Check”
Return to the process editor. Right-click the human activity Financial Cross Check and select the
option properties from the context menu. The activity properties editor opens. Click the
Implementation tab and then click the green plus icon to create a new human task definition as
the implementation for this process activity.

The task creation window opens. Select the Simple pattern for this task and then specify a
name (for example, PerformFinancialCrossCheckForTreatmentApprovalRequest). Click the
looking glass icon behind the Outcomes field. The default outcomes APPROVE and REJECT are
perfectly acceptable, but we need one additional (custom) outcome to indicate that the financial
department can accept the proposed treatment but needs confirmation and consent from the
health insurance company.

The Outcomes dialog appears. Click the green plus icon, enter the name for the custom
outcome (for example, OK_BUT_NeeD_INSURANCe_APPROVAL), and click OK. The Add
Custom Outcome dialog closes. The new outcome is added and automatically selected as well.
Click OK to return to the Create Task dialog.

Next, click the green plus icon above the parameters table. The Data Object window opens.
Drag the treatmentApprovalRequest data object to the parameters table. Note that this time the
parameter is not editable (see Figure 11-17).

Also, drag the financialCrossCheckOutcome process data object to the Outcome Target field.
This ties the outcome from the human task to this process data object—which we will inspect
later on in the conditions on the flows in the exclusive gateway.

FIGURe 11-17. Creating the human task PerformFinancialCrossCheckForTreatmentApprovalRequest

Chapter 11: Business Process Management with BPEL and BPMN 367

A quick look at the Composite Editor tells us that a new Human Task service component has
been added and wired to the BPMN process. This component requires implementation, in the
same way we did for the first Human Task component, by auto-generating the task form.

Implement the Business Rule “Task evaluate Treatment Approval Request”
The business rule activity in the BPMN process also needs to be mapped to an executable
implementation that will perform the work. Open the process editor. Right-click the Business Rule
task and select the option Properties. In the properties dialog, go to the Implementation tab. Click
the green plus icon to create a new Business Rule component in the composite application that
provides the implementation for this process activity. The Create Business Rule dialog opens.
Type the name for the business rule (for example, evaluateTreatmentApprovalRequest).

Next, click the green plus icon in order to add parameters for the business rule, as illustrated
in Figure 11-18. The Data Object window is presented. Drag the treatmentApprovalRequest
parameter to the parameters list. This is added as an input parameter. Switch the drop-down list
labeled Direction to Output. Drag the data object approvalEvaluationOutcome to the Input and
Output Data Objects table. This process data object will be set by the business rule. Click OK to
close the dialog and complete the creation of the business rule.

Open the Composite Editor to see if indeed the component was added and wired to the
BPMN process.

Next, we need to implement the Business Rule component in the same way we did in
Chapter 8, where the business rules were first discussed. Double-click the component in the
Composite Editor to bring up the business rule editor. See the online chapter complement for
detailed instructions. Note that the business rule has two possible outcomes: NO_APPROVAL_
NEEDED and APPROVAL_IS_REQUIRED.

Implement the Automated Service Tasks
Implementing a service task—such as the creation of the audit entry and the consultation with
the insurance company—is done in two steps. The implementation is created as a component—
Mediator or BPEL—in the BPMN composite application or added as reference binding to that
application, such as a technology adapter binding or an (external) Web Service binding. The
component or reference can be mapped to the service task in the BPMN process.

FIGURe 11-18. Creating the business rule EvaluateTreatmentApprovalRequest

368 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 369

As an example, let’s look at mapping of the Create Audit Entry activity. First, the implementation
is prepared through a Mediator/file adapter combination. When the Service component is created,
return to the BPMN process. The Mediator component is available now in the Business Catalog
under the Services node. Right-click the Create Audit Entry activity and select the menu option
Properties, as shown in Figure 11-19. In the properties dialog, select the Implementation tab. Select
Service Call in the Implementation drop-down, click the search icon to select the service that
provides the implementation for this service task, and then select the Mediator component
RecordTreatmentApprovalAuditEntry from the list of services that appears.

After mapping the process activity to the service, we need to specify the data associations
that describe how process data objects are mapped to the input and output of the service (see
Figure 11-20).

Next, in a similar fashion, create a Web Service binding for the service to consult the
insurance company and a service component for the Notify Doctor service. Subsequently, map
the service tasks in the BPMN process to these implementations.

Take a quick look in the Composite Editor, as shown in Figure 11-21. You will see how the
application has expanded and how the BPMN component has grown tentacles (or rather wires)
that connect it to a serious number of component and reference bindings.

The BPMN process definition defines the flow, the data objects, and the logic between them;
the composite application provides the implementation of each of the activities in the process.

Implement the Conditions on Conditional Flows
The two last remaining alert icons point out that we still have to indicate the conditions for two
conditional flows: when will the process token be routed from the Business Rule activity to the

FIGURe 11-19. Mapping the Service Task process activity Create Audit Entry to the service
RecordTreatmentApprovalAuditEntry—provided by a Mediator component

Chapter 11: Business Process Management with BPEL and BPMN 369

FIGURe 11-21. The Composite Editor, showing the BPMN component and wires to the components
and references providing the implementation of the process activities

FIGURe 11-20. Creating data associations for the mapping of the service task Create Audit Entry

370 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 371

Create Audit Entry activity instead of the Financial Cross Check default destination from the
gateway “Is approval required?” And when does the gateway “What is the outcome of the
financial cross check?” send the process token to the Create Audit Entry activity, and when to the
consultation with the insurance company?

Now that we have implemented the process activities, we have a fairly good idea about what
each activity does and what it may return as its outcome (we could have been a little bit more
conscious of that during the design and stipulated the to-be-supported outcomes in advance).
We now know that the human task Financial Cross Check results in APPROVE, REJECT, or
OK_BUT_NEED_INSURANCE_APPROVAL and that the business rule Approval Requirement
Check produces NO_APPROVAL_NEEDED and APPROVAL_IS_REQUIRED. We have passed
these outcome values without conversion into process data objects. Therefore, these are the
values the gateways and the conditions on the sequence flows have to work with.

Select the flow from the gateway “Is approval required?” to Create Audit Entry, as shown in
Figure 11-22. Right-click the flow and select Properties from the context menu. This flow needs to
be followed when the business rule outcome indicates that a further formal approval procedure is
not required. Therefore, set the transition condition for this flow to the following expression:

approvalEvaluationOutcome.outcome == "NO_APPROVAL_NEEDED"

Next, set the condition for the flow from the gateway “What is the outcome of the Financial
cross check?” to Create Audit Entry. This flow is to be followed when either the Financial cross-
check rejects the treatment approval request or when it accepts the request without further need
for consultation with the health insurance company. Here is the condition expression that
implements this logic:

financialCrossCheckOutcome == "APPROVE" or financialCrossCheckOutcome == "REJECT"

FIGURe 11-22. Specifying the transition condition from “Is approval required?” to Create Audit Entry

Chapter 11: Business Process Management with BPEL and BPMN 371

Role Implementation
For our fairly straightforward example, we will use a fairly simple approach—well, actually, an
embarrassingly simple approach—to role implementation. Instead of defining groups on the
WebLogic Server or an external LDAP and mapping the organization roles in our BPMN process
to those enterprise roles, we will simply make user “weblogic” a member of all roles that need to
execute human activities. To that end, select and open the Organization node in the BPM
navigator. Select the first tab, Roles. Select the role Doctor, add weblogic as a member, and do
the same thing for the role FinancialDepartment. It is left as an exercise to the reader to map roles
to different groups and persons. The online chapter complement for Chapter 10 shows in detail
how to add users and groups to an identity store.

Run the Business Process and Track Its Progress
In order to run the business process and execute the implementations of the process activities, we
first have to deploy the composite application to a running SOA Suite environment—just like we
have been deploying composite applications in previous chapters. So even though we deal with
a BPM application, it is still an SOA composite application with a special service component
(a BPMN process component) inside.

Publish the BPM Project to MDS
In addition to the deployment to the SOA Suite run-time container, BPM projects can be deployed
to the MDS repository. BPM projects loaded in MDS are available for publication, review, and
even editing through a shared browser application. Select the TreatmentApprovalProcess project
node in the BPM project navigator. Right-click to open the context menu and then select the
option Publish To BPM MDS. Select the MDS connection to use and the target folder to publish to.

The publication proceeds and gives no additional feedback. To verify that the publication was
successful, either check in the BPM Composer application, which we will use later on, or open
the BPM MDS Navigator in JDeveloper (BPM Studio, if you like) and check the contents of the
Public folder.

Create a New Process Instance from BPM Workspace
To begin, open the BPM Workspace application, through which we can instantiate the
TreatmentApprovalProcess. Note that this process does expose a Web Service interface and can
therefore not be started from the FMW EM Console. However, once an instance is created, the
message flow trace and audit details are available in that console, just as for other types of
composite applications.

Go to http://host:8001/bpm/workspace and connect as weblogic. Initiate a new instance of the
TreatmentApprovalProcess by clicking the link in the Applications box, as illustrated by Figure 11-23.
A new process instance is created. The first step in the process is to create the treatment approval
request. The task form appears in a pop-up window in which the treatment approval request is
created. When the details have been entered and the task submitted, the BPMN process will run its
course.

Because the cost category is 2, no formal approval is required and the process instance comes
to completion without further human participation. For BPMN components, the message flow
trace provides a visual flow diagram that provides insight in what routes were followed in the
process and what its current status is (see Figure 11-24).

372 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 373

Alternatively, the BPM Workspace application supports tracking the progress of process
instances, with both tabular and graphical overviews. This is particularly useful because the FMW
Enterprise Manager is typically not made available to end users and business analysts, whereas
the BPM Workspace application is targeted at these user groups.

The Next Process Instance That Does Require Formal Approval
Create another new process instance in the BPM Workspace application. Provide treatment
details that will lead to the full approval procedure. In other words, set the estimated cost
category to 5.

FIGURe 11-24. Message flow trace for the Treatment Approval process

FIGURe 11-23. Create a new instance of the Treatment Approval process from the BPM Workspace
Manager

Chapter 11: Business Process Management with BPEL and BPMN 373

When you click the SUBMIT button, the process will execute the business rule, and because
this time it will indicate that the financial cross-check is required, a task will appear in the to-do
list for the user weblogic (see Figure 11-25).

In the task list, select the pending task and select the outcome OK_BUT_NEED_INSURANCE_
APPROVAL. This allows the process to run its full course automatically—invoking the insurance
company’s service, writing the audit entry, and sending the notification to the doctor.

Revising the Business Process
The initial design of the Treatment Approval process has raised a number of questions and
concerns, and some revisions are required. The functional changes that are to be applied are as
follows:

 The business rule that performs the initial check whether a formal approval is required ■
contains logic that refers to the estimated cost level of the treatment. Initially, any
treatment in cost categories 1, 2, and 3 was automatically approved, while categories 4
and 5 required the formal approval of at least the financial department. This level is to
be adapted: Category 3 is no longer automatically approved, but will also require the
financial department to consent.

 It is concluded that although the financial department definitely has a say in whether ■
a treatment can be performed, there is a need for a different type of evaluation as well.
Medical treatment can be controversial for purely medical and ethical reasons, not
necessarily directly connected with money issues. The business process should explicitly
cater to this fact by introducing two new steps that can be performed in parallel with
the financial validation. The first step is the peer review, where a fellow doctor needs
to indicate whether the proposed treatment is the regular approach or whether it is
something that is out of the ordinary that requires the stamp of approval from St. Matthews
ethics committee, which is the (optional) second new step. This committee is composed
of legal, medical, and public relational experts who together decide whether treatments
deemed controversial in any way should be performed. Any decision by the committee
needs to be carefully monitored and recorded.

FIGURe 11-25. Task list with the Financial Cross Check task

374 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 375

Online Redefinition of the BPM Process
Through the Process Composer
The business process as designed and implemented in the previous section is available to
authorized parties in an online format through the Process Composer application. Business
analysts and others can also use this application to further refine it—for example, by editing
business rules or changing the flow in the application. These changes can be deployed to the run-
time environment or they can be imported into BPM Studio in JDeveloper for consideration by
the developers.

Open the BPM Composer, located at http://host:8001/bpm/composer. Projects that have been
published to MDS can be opened, as well as BPM projects deployed to the SOA Suite. When
changes are made, these are saved to MDS in both cases.

When the project has opened, the same process diagram is presented as we have been
working on in BPM Studio (aka JDeveloper). Therefore, this browser-based facility presents the
same visual overview of the business process (see Figure 11-26).

When we want to—and have the proper privileges—we can even start editing the process
definition. Later on, we share the changed definition with other users and we can export it to
further refine it in BPM Studio. We can also deploy the modified BPMN process definition to the
running SOA Suite environment. Alternatively, Composer can export projects to an SAR archive
that can then be deployed from the FMW Enterprise Manager console or through WLST (see
Chapter 17 for details).

edit the Business Rule
The proposed change to the business rule EvaluateTreatmentApprovalRequest can be made in
various places. One is the SOA Composer, where the change will immediately take effect.

FIGURe 11-26. BPM Process Composer with the TreatmentApproval process

Chapter 11: Business Process Management with BPEL and BPMN 375

Another is the BPM Process Composer, where the change is made, saved, published, and possibly
deployed after review and approval. Chapter 8 discussed the online editing of business rules in
the SOA Composer. The procedure is very similar in the BPM Process Composer—but without
the immediate live run-time repercussions.

Open the TreatmentApprovalProcess in BPM Process Composer and switch to edit mode.
Select the Business Rule component EvaluateTreatmentApprovalRequest and open Ruleset_1.
Remove the string operand “3” from the first rule (CheapTreatments) and add that value as an
operand to the second rule (ExpensiveTreatments), as shown in Figure 11-27.

Save the changes by clicking the Save icon. This will save a draft that is not yet visible to
other users. Only when you stop editing and publish the modifications you have made will the
changes be shared.

NOTe
Unlike in the SOA Composer, saving these changes does not
immediately make them effective in any run-time environment.

Add a Parallel Flow with the Peer Review and ethics Committee
Next up is a change in the process flow itself. After leaving the Initiate Treatment Approval
Request, the process token should split into two parallel flows. One consists of the existing flow

FIGURe 11-27. Update the business rule EvaluateTreatmentApprovalRequest

376 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 377

through business rule evaluation, financial cross-check, and insurance company consultation.
The other one is a new flow, with as a first step the peer review by a fellow doctor and as an
optional second step the decision by the ethics committee. Both parallel flows should merge just
before the Create Audit Entry activity. Only when both parallel branches are complete should the
audit entry be created.

The business analyst prepares the outline of these changes. The developer will further refine
them (for example, by providing the implementation of the human tasks) in BPM Studio later on.

Open the process in BPM Process Composer. Drag a parallel gateway from the Component
Palette and drop it on the flow from the Initiate Treatment Approval Request human activity to the
Evaluate Treatment Approval Request business rule activity.

Drag a default sequence flow from the parallel merge gateway to the Create Audit Entry
activity. Make sure that all other sequence flows currently linked to Create Audit Entry are linked
to the parallel merge gateway instead. Drag a user activity to the sequence flow from the parallel
gateway to the merge gateway. Call this activity Peer Review. Drag an exclusive gateway to the
flow from Peer Review to the merge gateway. This gateway will distinguish between “yes or no
ethics committee required.” Call the gateway Review ethics Committee Required? Next, add a
User Task activity called ethics Committee and link it to the merge gateway. Also link the
“Review Ethics Committee Required?” gateway to this activity (see Figure 11-28).

This more or less completes what the business analyst can do in the Process Composer. It is
now up to a developer working in BPM Studio to create additional process data objects and
provide the implementations for the two new activities. The online chapter complement describes
in detail the refinements applied by the developer.

FIGURe 11-28. The revised TreatmentApproval process

Chapter 11: Business Process Management with BPEL and BPMN 377

Running the Revised Business Process
When the implementation of the process extensions has been done as outlined in the online
chapter complement and redeployed as suggested, we can see the effects of these changes when
we run a new instance of the business process from the BPM Workspace application. We can
track the progress of each instance in either the BPM Workspace application or the FMW
Enterprise Manager.

Create a treatment approval request for an expensive treatment (cost category 5). This will
result in the most extensive variant of the business process to be executed. After clicking the
Submit button, we will find two concurrent tasks for this process instance. The parallel gateway
has been passed, and now both the Peer Review activity and the Financial Cross Check activity
are waiting on their respective operators (see Figure 11-29).

Note that the only reason why these two tasks are shown in the same list is because user
weblogic is wearing many hats—one for every role identified in the organization. Normally these
different tasks require different persons to execute and will not be shown in the same task list for
a single user.

Execute the Financial Cross Check task—suggest consultation of the insurance company. The
message flow trace for this composite application instance in the FMW Enterprise Manager
Console indicates what has been done and which step is currently pending—the Peer Review
task.

The merge gateway has been reached by the flow from the insurance company. It is waiting
for the flow currently halted at the peer review to catch up so the process token can be passed
onward to the Create Audit Entry activity.

Let’s complete the Peer Review task, indicating that this approval request should be reviewed
by the ethics committee. The visual flow is shown in Figure 11-30.

A new task is instantiated, this one for the committee members to review and decide upon.
Complete the task by granting the approval for the treatment. The process can now be completed
automatically: Both tokens have arrived at the merge gateway, so the flow from this gateway can
be executed.

FIGURe 11-29. Two parallel tasks for the same process instance

378 Oracle SOA Suite 11g Handbook Chapter 11: Business Process Management with BPEL and BPMN 379

Summary
The objectives of an organization can only be achieved through the execution of business
processes. This chapter introduced Business Process Management as a means to improve the
performance of an organization through a constant focus on its business processes in an iterative
cycle of design, execution, and improvement. BPM describes a structured approach to analyzing,
designing and modeling, simulating, executing, and monitoring the business processes. BPMN
offers a language for formally describing processes. In addition, BPMN run-time engines such as
Oracle BPM are capable of executing the processes based on this formalized definition.

FIGURe 11-30. Visual flow of the TreatmentApproval process instance, waiting for the ethics
committee to render its verdict

Chapter 11: Business Process Management with BPEL and BPMN 379

This chapter introduced the BPMN service component in SOA composite applications that is
available through the BPM Studio extension to JDeveloper and the BPM extension to the SOA
Suite WebLogic domain. Note that in order to use BPM with the SOA Suite, you need an
additional license.

BPMN components contain business process definitions that are created from a purely
business perspective, without focus on technical aspects and implementation details. A process is
defined through flows—conditional, parallel, iterative—in combination with various types of
activities allocated to different business roles. The process can be simulated—long before any
implementation details have been specified.

In a next iteration—probably where the developer takes over from the analyst—the
implementation for the process activities is created. The implementation is provided by other
service components in the composite application—such as human tasks, business rules, and BPEL
processes—or through external references bound to the composite application.

The SOA composite application with BPMN processes inside is deployed in the same way as
the composite applications discussed in previous chapters. However, the run-time BPM
environment offers various additional browser-based applications through which instances of
BPM processes can be created and monitored (BPM Workspace) and the BPM process definition
can be published, reviewed, and refined (BPM Composer).

Another way to implement business processes is through BPEL components. BPEL supports a
similar set of flow, logic, and data-mapping facilities and can have more or less the same
interaction with other service components and reference bindings. Workflows composed of
several human tasks as well as automated steps with complex flow logic and data manipulation
can be implemented well using BPEL. The run-time engine for BPMN and BPEL processes is
exactly the same! However, the design experience for BPEL is far more technically oriented and
less business (analyst) friendly than BPMN. If you approach applications from a business process
perspective and your organization has acquired the BPM license, you will be able to make
excellent use of BPMN components in your composite applications. Note that BPMN does not
replace BPEL, which still has added value for designing and running complex, orchestrated
services.

This page intentionally left blank

Chapter
12

Leveraging Java in
Composite Applications

381

382 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 383

n the previous chapters, we discussed the integration of human actors into SOA
composite applications. When the standard service engines need help in areas
such as interpreting unstructured data, making ultimate decisions, conferring and
communicating with multiple human participants, or applying intuition and fuzzy
logic, we can bring in the human touch using the Human Task component.

This chapter discusses the introduction of another element into the composites: Java. Oracle
SOA Suite 11g offers many different ways in which Java and JEE can be engaged in SOA
composite applications—from the Java Messaging Service (JMS) and EJB Adapter Services and the
Spring Java Service component to intra component SDO entity binding, Java snippets in BPEL,
and Java callouts in the Mediator.

There can be various reasons for introducing Java in composite applications. We may need
our application to access third-party applications through existing, possibly remote, Java or JEE
APIs for which no Web Service interface has been published. We will see an example of the
finance department accepting requests through a JMS queue only.

We may also want to leverage capabilities of Java and JEE to perform calculations, specialized
conversions, or device interactions that are perhaps much better implemented in Java than in one
of the other service engines in the SOA Suite. We may be able to use packaged functionality from
third-party libraries or just the flexibility of the programming language in general (possibly
indirectly utilizing Groovy or Scala).

Java can also be used to extend the functionality of the SOA Suite by registering local Java
classes and libraries on the SOA Suite server itself. For example, we can create new, specialized
XPath functions by creating custom Java classes that we then register with the SOA Suite, or we
may want to create our own OWSM (Oracle Web Services Manager) audit or security policy in
Java or handle faults in Java code. Appendix D discusses the hooks provided in the SOA Suite to
extend functionality of the run-time framework using custom (Java) code. That appendix also
describes the Java API available in the SOA Suite to interact at run time with the SCA container to
initiate, manage, or monitor instances of composite applications.

The online chapter complement provides more in-depth details and screenshots on the examples
described in this chapter and adds some examples as well.

Java Integration in Various Ways
If you want to invoke business logic implemented in Java from an SOA composite application,
the easiest way from the perspective of the SOA developer is quite obvious: Ask the Java
programmers to deploy this logic as a Web Service using JAX-WS, the Java specification for
publishing Web Services. Such Web Services can be invoked from composites like any other
Web Service implemented in any technology stack.

At the same time, there can be various reasons why that approach is really too simplistic.
The overhead of calling the Java code via SOAP and XML can be prohibitive. Perhaps the Java
developers are not inclined or do not have the skills to publish their logic as a Web Service.
They may already offer different public APIs via EJBs or JMS queues, for example, and think that
is quite enough. We may not even know the developers and therefore simply have to work with
whatever API is available in some legacy or third-party product. Then again, perhaps we need a
tiny nugget of logic somewhere inside our BPEL process or just prior to the Mediator performing
a transformation or filter operation. We do not want to call a full-blown Web Service at that
point—we just would like to implement that snippet of logic in Java and inject it into the service

I

Chapter 12: Leveraging Java in Composite Applications 383

component we are putting together. Or perhaps it is not just a snippet but a fair-sized chunk of
functionality that needs to be executed inside the composite application, for which Java provides
the superior implementation—over other service components such as BPEL, Business Rule, and
Human Task. In that case, the Spring Context Component can be used to expose Java beans as
component-level services inside the composite application.

This chapter discusses several ways to integrate Java and the logic implemented in Java into
SOA composite applications (see Figure 12-1).

JMS Adapter Services
JMS is an API for messaging services provided by some messaging technologies. Messaging
provides a decoupled, scalable, robust, and proven way to distribute messages to possibly
unknown consumers. The Event-Driven Architecture (EDA) and the Event-Delivery Network
(EDN) are based on the same concepts and largely the same infrastructure—yet they operate on
a slightly higher level, more business event oriented and somewhat abstracted away from J(2)EE
technology.

Many Java applications use messaging through JMS to achieve decoupled interaction—for
example, using Message Driven Beans (MDBs, a special type of EJB) that listen to messages
arriving on a JMS queue or topic. Applications can also publish events on a JMS topic that they
thus make available to potential consumers—of which they do not specifically want to or need to
be aware.

The SOA Suite has the JMS Adapter that integrates this JEE messaging world into composite
applications. JMS adapter services can be inbound (they listen for messages to be published on a
queue or topic and instantiate a new composite instance or update a running one) or outbound
(they publish messages to a JMS destination). Through the JMS adapter, we get a decoupled
integration with Java/JEE applications.

FIGURE 12-1. Java inside and in sight—integration of Java into SOA composite applications

JAX-WS
Java Class

WebServiceBPEL

Mediator

JMS

scheduleSer...

HospitalCalcul...

FinanceQueue...

process

InformFinanceO...
ReceivePatient...

calculateSDO

EJB

Java
application

–

–

–

Operations:

Operations:

Operations:

384 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 385

EJB Service Adapter and ADF Binding
The EJB Service Adapter facilitates interaction between composite applications and (potentially
remote) Enterprise Java Beans. Functionality implemented in EJBs that run on either the same or a
remote JVM can be invoked from the composite application in much the same way as stored
procedures can be invoked through the database adapter service: To the composite, the EJBs are
made to look like a Web Service, described by WSDL and XSD documents. Note that the EJB
Service Adapter can be used for reference bindings (to invoke EJB-based logic from composite
applications) as well as service bindings (to expose the composite application itself as an EJB).

The data exchange between composite and EJB can be done in two ways. The conventional
way can be used over RMI, using POJOs based on Java Interface definitions. The second way is
based on Service Data Object (SDO) parameters; this requires the EJB to have been published as
an SDO data service. SDO provides a way to map the EJB interface and parameters to a Web
Service (WSDL) and XML-based parameters (described in an XSD).

Socket Adapter
For tightly integrated, high-speed, low-level TCP/IP socket communication, we can use the Socket
Adapter. This adapter supports both inbound and outbound communication patterns, both
synchronous and asynchronous. Socket communication is fairly coupled—on several levels.
However, in specific circumstances it can help bridge interoperability issues and provide a high-
speed data-transfer connection. A Java application can be a partner at the other end of this
connection, as well as any other piece of software that accepts TCP/IP.

Spring Context Component
The Spring Context component makes it possible to create service components that execute Java-
based logic exposed through Spring Beans. Instead of deploying Java classes in a stand-alone
application, exposed as JAX-WS Web Services or EJBs, we can include these classes in the SOA
composite application and integrate them more directly, more privately (or encapsulated), and
more natively as a Spring service component. Such service components are accessed like any
other SCA component—through wires based on WSDL and XSD contracts.

Note that Spring service components can expose both services and references. In other
words, they can be invoked by other components and other service components—for example, a
Mediator or BPEL process and—can be injected into the Java beans to satisfy their dependencies.

Java Inside
At a finer level (inside service components), we can add specialized behavior programmed using
Java.

Embedded Java in BPEL
We can embed Java snippets in special activities inside BPEL process components—at a more
granular, tighter integrated, less formal, typically more specialized level than using partner links
to other components or even external services. Embedded Java has access to all BPEL variables,
both for reading and writing. It can bring the full power of Java, JEE, and other Java libraries
installed on the SOA Suite server environment to custom BPEL activities, while fully integrating
with the BPEL process instance. Using Embedded Java, however, does raise the issue of less
decoupled code, less reuse potential, and harder maintenance as a result.

Chapter 12: Leveraging Java in Composite Applications 385

Embedded Java can be used for fairly small things—a calculation, for example—or for much
more advanced effects, such as invoking EJBs or RESTful services.

BPEL Custom Sensor Action
BPEL processes can send signals out through so-called sensors. These signals inform the world of
the progress in the process. Sensors can be targeted at a database table, a JMS queue or topic, or
a custom Java class. Note that in this case the Java class is called and notified; it cannot respond
to the process and it cannot manipulate its data or impact its flow. Chapter 16 introduces BPEL
sensors as well composite sensors—the latter are defined at the composite level, and do not
support custom Java actions.

Mediator Java Callouts
The Java callouts that we can specify on Mediator components can act on the data that comes
into a routing rule before transformation takes place, as well as on the transformation result before
it gets passed onward to the target service or event. The same applies to fault or reply traveling in
the reverse direction. The Java callouts are typically used for special validation (beyond what XSD
or Schematron can do), message enrichment (in a way that resembles the OSB XQuery
manipulations introduced in the next chapter), advanced transformations, and fine-grained
logging and auditing.

The online chapter complement contains an example of using the Mediator Java callout for
debugging.

Registering Custom Classes with the SOA Suite
Other hooks for extending and customizing the behavior of the SOA Suite are available through
the creation of custom XPath functions based on Java classes. These XPath functions are
registered with the SOA Suite and are available in BPEL, Mediator, and other XPath expression
editors. Likewise, we can create custom classes that, for example, assign human tasks to
participants according to special rules, escalate tasks in specialized ways, provide special fact
types in business rules, implement custom security assertions, preprocess files read by the file
adapter, and handle run-time faults. These custom extensions are available across the SOA Suite,
in any composite.

Another way of extending the SOA Suite is through the creation of a custom JCA adapter. The
technology adapters shipped with the SOA Suite, such as the File Adapter, JMS Adapter, and
Database Adapter, are all created according to the JCA (J2EE Connector Architecture)
specification. We can implement our own adapter in Java, following this specification, and
register this adapter with the SOA Suite. Subsequently, we can use this adapter—or any third-
party custom JCA adapter—to create adapter services in SOA composites.

BPEL Entity Variables Bound to Service Data Objects
An intricate type of integration with the world of Java-powered components is the binding of
BPEL variables to Service Data Objects (SDOs) offered by a Data Access Service (DAS),
implemented by an ADF Business Components Application Module. BPEL variables that are
bound like this are called entity variables. These variables are not just populated with data from
the DAS at one moment in time. Instead, they contain a reference to the SDO that is maintained
by the DAS acting against some back-end data store, which could be a database, a file repository,
or something else altogether. Any change in SDO is immediately available in the BPEL process
when it accesses the variable—no explicit refresh is required.

386 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 387

Additionally, updates of the BPEL entity variable are sent to the DAS to be applied to the SDO
(and the underlying data store). Again, no explicit action is required on the part of the BPEL
process. Although this all happens transparently, it is still nice to know that the SDOs can have a
complex, nested structure of extensive data graphs and that the communication between the Data
Access Service and its clients uses deltas to only communicate the changes in the graph instead
of the entire structure.

The topic of BPEL entity variables bound to SDOs is discussed in Chapter 20, which also
introduces ADF in more detail.

Invoking SOA Suite from Java
Most of these integrations between the SOA Suite and the world of Java are initiated from the end
of the SOA Suite. The composite applications call out to engage Java-based logic. However, there
are several ways to integrate in the other direction. Java applications can interact with SOA
composite applications and with various facilities in the SOA Suite infrastructure.

Java applications can fairly easily call the Web Services published by the SOA composite
application over SOAP/HTTP. However, both the EJB Adapter Service and the Direct Binding
Service provide ways for Java applications to invoke the services in a faster, more native fashion
and exchange messages over a remote (cross-JVM) method invocation (RMI). Another way to
interact with composite applications is by exposing services using an ADF Binding. Such services
can be invoked remotely over RMI through the SOA Suite run-time Java API. This interaction uses
XML messages rather than plain Java objects.

The JMS Adapter provides another Java-based entrance to composite applications: This adapter
listens to messages arriving on JMS queues or topics and initiates new instances or correlates into
running instances.

The SOA Suite exposes APIs for querying, retrieving, and manipulating composite instances.
Other APIs provide programmatic, Java-based access to the User Messaging Service (UMS) and
the Human Workflow Services. The Business Rules engine also publishes a Java API through
which business rules can be invoked from any Java application.

Appendix D provides more details about many of the APIs available to access the SOA Suite
programmatically from your own applications. This chapter focuses on the interaction in the other
direction: composite applications calling out to Java logic. The online chapter complement has
detailed examples of invoking composite applications from Java, as well as the other way around.

Using the JMS Adapter to Loosely Couple
with Java Applications
JMS (Java Message Service) is a Java standard (JSR-194) that describes an API for interacting with a
messaging infrastructure. Many open-source projects and commercial vendors offer messaging
technologies—such as Apache ActiveMQ, SonicMQ, WebSphere MQ (aka MQSeries) from IBM,
Oracle AQ, and EMS from Tibco—that can be accessed via JMS, either directly or through
adapters. JEE application servers also contain messaging frameworks that publish a JMS API—
including JBoss Messaging, Glassfish Sun Java System Message Queue, and Oracle Enterprise
Messaging Services (based on WebLogic JMS or Advanced Queuing).

Messaging according to JMS comprises two main models:

 Publish a message to a ■ queue and have it consumed by only one consumer.

 Publish a message to a ■ topic, where it can be consumed by potentially many consumers.

Chapter 12: Leveraging Java in Composite Applications 387

These fundamental models are embellished and refined in many ways, including topics that
persist messages until all registered consumers have consumed them (even when they were
unavailable at the time of publication), various retry patterns for delivering messages, high
availability and performance features, transactional support, and so on.

Using the JMS Adapter to Integrate with the Finance
Department’s Java Application
The finance department at St. Matthews is very keen to know about new patients as early as
possible. Even when the patients have never yet visited the hospital or are still in the process of
making their first appointment, the accountants would like to know about them so they can start
doing credit background analysis, confer with insurance companies, check against black lists,
and so on. The finance department uses their own application—that they zealously guard against
other departments. No one gets access to their system. They do not publish open APIs. Their
application’s only supported mode of communication is through a JMS queue that it monitors.

The finance department has requested to be notified of every new patient who is created
through the PatientDataService, via a message that is to be sent to their JMS queue. Also,
Margaret has been advised by the upper management echelon that it would be a good idea to
heed this request. So there we go, as is depicted in Figure 12-2.

Preparing the Finance Department for JMS Communication
We have to do a number of things in terms of preparation. Set up the JMS queue financeNewPatients
Queue (normally the finance department would do that, of course) according to the instructions in
Appendix C and configure the JMS Adapter, also described in Appendix C (that is the part we always
have to do ourselves—to hook into the queue we want to listen to). The JNDI name for the JMS
adapter connection factory we will use is eis/Queue/patients, as stated in the appendix.

Next, we need a mock application that emulates the financial application. The mock
application subscribes to the financeNewPatientsQueue and processes the messages it receives.
In our simplified environment we will have the mock application write to the console about the
new patients it receives from the PatientDataService. We can test the mock application by

FIGURE 12-2. Loose integration between the patient platform and the financial application based
on JMS

Mediator

Patient platform
financeNew

PatientsQueue

financePatient
ResponseQueue

Finance application

Process
patient

Prepare
advise

FinanceQueue...

InformFinanceO...
ReceivePatient...

–

Operations:

388 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 389

publishing dummy messages on the queue, either from the WebLogic Console or from a second
Java program. The online chapter complement describes both procedures.

The steps for creating TheFinancialApplication—described in detail in the online chapter
complement—are to create a generic application in JDeveloper and a project with this name and
then add the library WebLogic 10.3 Remote Client to the project (we will need that to do
programming against the JMS API).

Then, we create the class JMSQueueHandler. This will be the abstract superclass that does
some of the JNDI and JMS plumbing, such as acquiring the JMS connection factory and finding
the destination queue based on the JNDI properties, including host, user, password, and
connection factory name (again, see online chapter complement for more details).

Next, we create the class NewPatientsQueueListener. This class extends from
JMSQueueHandler, instructing it on the JMS queue name and registering itself as a listener to the
destination. It implements the onMessage method described by the JMS MessageListener
interface. This method is invoked by the JMS implementation for every message that arrives on
the queue. The method expects a comma-separated string with data for the new patient. It writes
the salient details out to the console—where, of course, the real application would start all kinds
of interesting actions with this data.

A simple main method runs this mock financial application. See the online chapter
complement for the source code and detailed description of the two classes that make up
TheFinancialApplication.

Adding JMS Capabilities in SOA Composite Applications
Our next step can be approached in two ways. The first approach: We open the
PatientDataService composite application, add a JMS adapter service, wire it to the BPEL
component, and add an Invoke activity to the BPEL process. Fairly straightforward.

In the second approach, the PatientDataService composite application publishes an event on
the Event Delivery Network when a new patient is created: a PatientDetailsChangeEvent. We can
create a new composite that listens to that event and upon reception invokes a JMS adapter
service.

Clearly the second approach should be picked, because it is much more decoupled than the
first. The event already gets published on the EDN by the existing application, so we need not
disturb the PatientDataService in order to grant the finance department’s wish. What if we pick the
first approach and then discover in a few months, time that the finance guys have changed their
minds about receiving these messages—or they want to receive slightly different message formats?

By going with the second design based on the EDN event, we minimize the impact on our
existing applications—now and in the future. It also gives us a nice demonstration of two very
similar mechanisms: the Event Delivery Network and JMS, both for decoupled information
distribution over a generic messaging infrastructure. One is fairly abstract and tightly integrated
into the SOA Suite, and the other is somewhat lower level, more technical, and coupled with the
Java/JEE platform.

Having made this clear design decision, we can move forward and create the
implementation. The steps are fairly straightforward. To begin, create a new SOA application
called FinanceInformer. Choose the Composite With Mediator template. Then indicate that this
Mediator subscribes to the PatientDetailsChangeEvent that is specified in PatientEvents.edl, which
we created in Chapter 9 (see Figure 12-3).

Time at last to meet the JMS adapter. Drag a JMS adapter service from the Component Palette to
the References swimlane. Configure the adapter reference in the wizard. Enter FinanceQueueInformer

Chapter 12: Leveraging Java in Composite Applications 389

in the first step as the name of the reference. On the JMS Provider page, select Oracle Enterprise
Messaging Service and the WebLogic JMS implementation.

Select the same application server connection that you use to deploy SOA composite
applications. Indicate that the adapter interface will be specified later from an operation and
schema. For the operation, choose Produce (because this reference should publish messages to a
JMS destination). Then specify an easy-to-understand name for the operation, something like
ProduceNewPatientMessage (see Figure 12-4).

In Step 7, “Produce Operation Parameters,” several important values must be set. The
destination name (the JNDI name of the queue to publish to) is jms/financeNewPatientsQueue.
Note that you can browse this queue directly from the application server.

We will allow the messages to live for 15 seconds—that will give us an opportunity to spot
them in the administration console. The JNDI name for the JMS connection corresponds with the
value specified in the outbound connection factory when we configured the JMS adapter (see

FIGURE 12-3. Creating the new composite FinanceInformer with the Mediator
NewPatientEventConsumer

390 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 391

Appendix C). The name is eis/Queue/patients. Figure 12-5 illustrates these steps in the JMS
Adapter wizard.

The Messages page is a familiar one—the same page is used in the database adapter and
the file adapter. We can have the XSD created that goes with a comma-separated values format
and enables the JMS adapter to take our XML message and create a CSV from it. Click Define

FIGURE 12-4. Adding and configuring a JMS adapter service to publish messages to the
financeNewPatientsQueue

Chapter 12: Leveraging Java in Composite Applications 391

Schema For Native Format and create a sample file with one or two lines of comma-separated
patient details as an example of the format that the JMS messages will deliver to
TheFinancialApplication. Let the native format builder do its job using that sample file.

When the JMS adapter service has been configured, wire the Mediator to the JMS adapter.
Edit the Mediator. Create the mapping from the incoming event to the format required by the JMS
adapter in the usual way.

This completes the composite application—which is really just a pipeline from the EDN event
to the JMS message. We can deploy the application to the SOA Suite.

New Patients Communicated via JMS to the Finance Department
When the application has been deployed, we can invoke the RegisterNewPatient_ep service on
the PatientDataService composite. Let’s create a new patient by the name of James Ulohado of
Qotica City in New Mexico, as shown in Figure 12-6. A database record is created, and the
PatientDetailsChangedEvent is published to the Event Delivery Network.

This event is consumed by three different composites, one of which is the FinanceInformer
through its NewPatientEventConsumer Mediator. The Mediator forwards the transformed message
to the JMS Adapter Service.

FIGURE 12-5. Completing the configuration of the JMS Adapter Service

392 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 393

The JMS adapter creates the JMS message with the CSV string and publishes it to the
JMS queue. The message for new patient James Ulohado is consumed from the queue by
TheFinancialApplication—which in this case writes the information to the console.

The essence here, of course, is the fact that through the JMS adapter we managed to inform
the black-box Java application from the finance department using standard Java/JEE infrastructure
without compromising the service-oriented nature of our application. In this case, the JMS adapter
produced a message. It is important to realize that it can just as easily consume messages from a
JMS queue or topic and instantiate (or correlate) a composite instance.

Return to Sender
As it happens, the financial guys are opening up a little. They think it is beneficial for all
participants if they provide some instructions regarding the new patients in a very early stage. In
fact, they have promised to respond to the new patient events that are published to their JMS
queue with a message of their own on a second JMS queue within a five-second window. They
indicate that their message can provide useful information with regard to the financial situation of
a new patient.

To process their response in the same composite instance that sent the new patient event
message, we will utilize a special mode of operation of the JMS adapter: the request/reply pattern.
This mode is used to send out a request and consume the corresponding reply, thus turning the
JMS adapter service into a two-way service.

FIGURE 12-6. TheFinancialApplication is notified via JMS of the creation of the new patient.

Chapter 12: Leveraging Java in Composite Applications 393

This third mode (next to the regular consume and produce modes) is quite advanced—it
supports a correlated message exchange with a third party, using one queue for sending out the
request and another queue for consuming the response. The adapter itself is capable of correlating
the reply with the response and presents itself to the composite as a two-way service (either
synchronous or asynchronous). The correlation requires the header property JMSCorrelationId in
the reply message to be set to the JMSMessageId header property value of the request message.
The property JCA_JMSReplyTo is set in the request message with the name of the destination
queue that the adapter listens on for the reply in case the client is not aware of the name of that
queue.

The request/reply mode relieves us from implementing an explicit correlation ourselves
where a BPEL process has a Receive activity connected to an inbound (consume mode) JMS
Adapter service with an associated correlation set that was initiated by the earlier invoke of an
outbound JMS Adapter service. The only requirements for leveraging this advanced mode with
built-in correlation are the use of the correct queue for the reply message and the use of the
JMSCorrelationId header property by the party at the other end of this JMS-based interaction.
With explicit correlation—using separate outbound and inbound JMS adapter services, we
would still have the requirement on the queues. The correlation could then be done on some
custom element in the message payload.

Before we can receive any response messages, the queue for those messages must be created.
This is done in the WebLogic Administration Console, as explained in Appendix C. The name of
this second queue is jms/financePatientResponseQueue.

Modify TheFinancialApplication to Have It Send Response Messages In the scenario we are
implementing, we need the financial Java application to publish messages on the response queue,
as was promised. In order for the JMS adapter to properly correlate those response messages with
the original request messages and thus forward the messages to the correct composite instance, it
is essential that the response messages contain a correlation ID property that is set to the message
ID of the corresponding request message. Here’s the essential snippet of Java code:

public void onMessage(Message msg) {
 String correlationId = msg.getJMSMessageID();
 ...
 jmsTextMessage.setJMSCorrelationID(correlationId);
 jmsTextMessage.setText(xmlPayload);
 jmsMessageProducer.send(jmsTextMessage);

The published message has its header property JMSCorrelationId set to the JMSMessageId
value that was received in the incoming message.

The XML Payload is defined as follows:

String payload = "<?xml version=\"1.0\" ?>" +

 "<NewPatientAdvise

 xmlns=\"http://com.stmatthews.hospital/finance/FinanceQueueTwoWayInformer\">" +

 "<PatientName>"+fields[0]+" "+fields[1]+"</PatientName>" +

 "<Advise>this patient poses no special financial risks</Advise>" +

 "</NewPatientAdvise>";

394 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 395

Create New JMS FileAdapterService with Request/Reply Create a new XSD document with
the definition for the NewPatientAdvise element that has child elements named PatientName and
Advise.

Delete the existing JMS Adapter Service and create a new one under the name FinanceQueue
TwoWayInformer. On the Operation page, select the operation type Request/Reply. Pick the
Asynchronous option and specify operation names—for example, InformFinanceOfNewPatient
for the request and ReceivePatientAdvise for the reply.

Specify the request operation parameters: These are the same as in the JMS adapter service
we configured before, with jms/financeNewPatientsQueue as the destination and eis/Queue/
patients as the JNDI name for the JMS connection.

The next page is for configuring reply operation parameters. The name of the destination is
different this time: jms/financePatientResponseQueue. The JNDI name for the connection is the
same.

The Messages page has us define the message types for the request (the same NewPatients
element as before) as well as the reply. For the reply we can select the NewPatientAdvise element
from the NewPatientAdviseJMSMessage.xsd document. Click Next and then Finish to complete
the JMS adapter service (see Figure 12-7).

Reconfigure the Mediator We can do several things with the advice we receive from the
financial department as a response on our JMS message. We can turn it into an event on the EDN,
or we can invoke an “update patient” operation on the PatientDataService. We can also just
ignore it. The latter is what we will do for now.

When we wire the Mediator to the FinanceQueueTwoWayInformer JMS adapter service and
open the editor for this Mediator, we will see a routing rule with the two sections. One is the
same as before, for the forward direction to the JMS adapter service. And the other one is for
handling the asynchronous response that the JMS adapter will return. Here is where we can
forward to either an event or a specific target service.

To begin, create the mapping between the PatientDetailsChangedEvent and the request
element configured for the JMS adapter service. Then close the Mediator editor and redeploy the
composite. Make sure that TheFinancialApplication is running the latest version that publishes
response messages on the response queue with their JMSCorrelationId set.

Now, call the RegisterNewPatient_ep service on the PatientDataService composite with data
on some made-up patient. Check in the FMW Console whether the composite did indeed receive
sound advice regarding the patient from the financial application (see Figure 12-8).

Embedding Java Logic in BPEL Processes
If you want to add Java-based logic to your BPEL process—not through invocations of partner
links, but really embedded execution of Java code—you can make use of the Oracle-specific
BPEL extension activity Exec. This activity contains a snippet of Java code that is executed by the
JVM that executes the BPEL process—in the same JTA transaction context as the BPEL process and
without any context switches.

Embedding Java like this is primarily useful for advanced validation and manipulation of BPEL
variables and for auditing and debugging purposes. One usage is to fill the metadata attributes in
the instance table in the dehydration store with functional data, such as the patient identifier, to
be able to correlate composite instance IDs with meaningful instance data. This can be handy for
error recovery.

Chapter 12: Leveraging Java in Composite Applications 395

FIGURE 12-7. Configure the two-way request/reply JMS adapter service

396 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 397

The Java snippet can use a number of special built-in methods that facilitate integration with
the BPEL process instance. These methods, for example, allow direct read and write access to
BPEL variables. Java exceptions thrown and not handled in the Embedded Java activity are
converted to BPEL faults and can be dealt with in the BPEL process in the normal way.

The Embedded Java snippet can do JNDI lookup operations that make it possible to invoke
EJBs from within the Exec activity. Note that although this is possible, it is certainly not the
recommended way to interact with EJBs from within composite applications.

It sounds too good to be true: the power of Java in the best-performing, transaction-preserving
way. Wow! Well, although it seems pretty good, it is very tightly coupled. Before you get too
excited about the ability to use Java inside BPEL, remember why we do not use Java for all the
functionality of our composite applications. We strive for decoupled, reusable components that
bring us business agility. Embedding small or even large chunks of Java code inside BPEL
processes threatens this ambition: The code is not reusable at all, and it is difficult to develop,
test, and subject to version control, as it is pretty much hidden inside the BPEL process. However,
for relatively localized and fairly small operations, it can be quite powerful.

However, before you dive into the Embedded Java in the bpelx:exec tag, I suggest you
carefully consider whether that is the best way to go about it. Later in this chapter, you will meet
the Spring Context component, which allows Java logic to be exposed as a regular service
component in a much more service-oriented way, even though it is less integrated with the BPEL
process—no direct access to BPEL variables, for example—and has somewhat more overhead
when invoked from BPEL via a Partner Link.

FIGURE 12-8. The two-way request/reply JMS service in action: The Mediator that publishes the new
patient event to the JMS adapter service now receives an advise in response.

Chapter 12: Leveraging Java in Composite Applications 397

Using Embedded Java in a BPEL Process
The Embedded Java can do very local, Java-specific manipulation or validation of a BPEL
variable—or call out of the JVM to external components such as EJBs or RESTful services. The
Exec activity is best used for fairly small-scale tasks because calling out to external services
should probably be handled through references and possibly via the enterprise service bus (see
the next chapter on Oracle Service Bus). However, to give you a taste of what you can do and
show you how to do it, we will discuss how to call a RESTful service from the BPEL component
ConsultPreparationInstructionService, which prepares the instructions to be sent to the patient
along with the appointment schedule. The service we want to invoke will translate the
instructions, which are originally in English, into Spanish to cater to the very mixed patient
population.

In the near future, we intend to record every patient’s preferred language and make sure all
St. Matthews’ communication with patients are in that language. For now we will offer the
instructions in Spanish (or “Spanglish,” depending on the quality of this translation service).

NOTE
The book’s wiki has two other examples of leveraging this same
RESTful service—one using the Mediator Java callout function and
one using the Spring component. A third option would be engaging
the OSB because it knows how to talk “RESTish.”

Create Java Code That Does the Job
Our first step will be to create a stand-alone Java application—well, Java class—that has the logic
we need to embed later on. We have no easy way to test the Embedded Java—only by deploying
the composite and testing it can we test the Java logic in a very indirect way. It is a best practice
to have as little Java code inside the Exec tag—only the direct interaction with the BPEL process
and a call to a custom class that does the actual work. Note that this custom class needs to be
explicitly imported in the BPEL process.

Download the JAR file json_simple-1.1.jar from http://code.google.com/p/json-simple/ and
copy this file to the directory SCA-INF/lib.

Next, open the SOA application ConsultPreparationInstruction. Add the JAR file to the
ConsultPreparationInstructionService project (on the Libraries and Classpath tab in the project
properties dialog).

Finally, create the class StringTranslator. This class uses JSON-Simple to call out in a RESTful
way (a simple HTTP Get request with JSON payload) to the Google translation service. The public
method we can use to have some text translated is called translate. This static method will be
used from the Embedded Java snippet in the BPEL process, as shown here:

public class StringTranslator {

 public static String translate(String sourceString

 , String sourceLanguage, String targetLanguage)

...

NOTE
See the online chapter complement for the complete source code for
this example.

398 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 399

Embed the Java Logic in the BPEL Process
We have the Java code working on its own; we can now leverage it from an Exec activity in the
BPEL process and integrate it with the BPEL variables in that process.

Open the BPEL component ConsultPreparationInstructionService and add a bpelx:exec tag (in
the source tab) as the first child of the process root element:

<bpelx:exec import="com.stmatthews.hospital.StringTranslator"/>

Create variables to hold the (English) instructions (the source text for the translation) and the
translation result (the Spanish instructions):

<variable name="instructions" type="xsd:string"/>
<variable name="spanishInstructions" type="xsd:string"/>

Extend the Assign activity to copy the value of the instructions already set in the
outputVariable to the new variable: instructions. Add an Embedded Java activity to the BPEL
process and set its name to RESTfulTranslation (see Figure 12-9).

FIGURE 12-9. Adding an Embedded Java activity to the BPEL process

Chapter 12: Leveraging Java in Composite Applications 399

Add the following code snippet to the Embedded Java activity:

<bpelx:exec name="RESTfulTranslation" version="1.5" language="java">
 <![CDATA[System.out.println("Translation Request for string="
 + getVariableData("instructions")+" from=en, to=es");
setVariableData("spanishInstructions"
 , StringTranslator.translate
 ((String) getVariableData("instructions")
 , "en","es"
)
);
]]>
</bpelx:exec>

Note that getVariableData and setVariableData are predefined methods that we can use in
Embedded Java snippets to get and set BPEL variable values. Another built-in method we can use
is addAuditTrailEntry(String). We can include calls to this method if we want information written
to the audit trail of the BPEL process. Here’s an example:

addAuditTrailEntry("RESTfulTranslation: Translation Request for string="
 + getVariableData("instructions")+" from=en, to=es");

Finally, add an Assign activity that takes the result of the translations and concatenates it with
the original English instructions. This completes the BPEL process with Embedded Java logic. The
real work is done, of course, in the StringTranslator class that is imported into the BPEL process
and invoked from the Exec activity.

Run the Composite with Embedded Java Inside
With all the code in place, we can deploy the composite application. The json_simple-1.1.jar file
is deployed along with the application, so you do not need to do separate server-side deployment
of the JAR file—or any custom classes for that matter.

Deploy the composite and test the Web Service ConsultPreparationInstructionService. You
will find the predefined (and somewhat simplistic) English instructions as well as the translated
Spanish version of these instructions, obtained from the RESTful translation service that the BPEL
process was able to invoke through an Embedded Java snippet that leveraged a custom class that
used a third-party library to make the call (see Figure 12-10).

The Spring Context Service Component for
Custom Java Service Components
The PS2 release of SOA Suite 11g introduced a new type of service component: the Spring
Context component. This component allows us to publish Java interfaces implemented by Spring
Beans—Java classes configured in a Spring Beans Configuration file—as services that can be used
inside a composite application. This essentially means that we can implement part of the logic
required in our SOA composite applications in Java and use it like any other service component.
Unlike BPEL’s Embedded Java, a Spring Context service component can be reused within the
composite, invoked by various other components, and even exposed outside the composite,
either as an EJB or as a Web Service. Additionally, the Java beans in the Spring Context
component can call services exposed by other Service Components and Adapter Bindings.

400 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 401

This means, for example, that a Java bean can retrieve records from a database table using a
Database Adapter service.

We can use the full breadth of the Java language and platform, including third-party libraries.
The Java classes to be exposed as service components are developed as any Java application is,
and they can be version controlled, unit tested, and debugged just like a regular Java application.
All libraries and classes in the project are packaged and deployed along with the composite
application, so you do not have to copy classes or JAR files to the SOA Suite classpath on the
server. There are some definite advantages over Embedded Java in BPEL processes.

NOTE
You can add an extension for the Spring Framework to JDeveloper
that makes working with Spring artifacts a bit easier. The book’s wiki
has an article describing the configuration and use of that extension.

FIGURE 12-10. The embedded Java activity invokes a RESTful translation service to retrieve the
Spanish version of the instructions. Notice the message in the audit trail.

Chapter 12: Leveraging Java in Composite Applications 401

Using the Spring Context Service Component
The Spring Context service component can make the hands of Java developers itch. Because it
allows us to integrate almost any piece of Java logic into the composite applications, the
temptation can be huge to forget about the other service components and technology adapters
and implement all logic in Java. That would not be a good approach. It is highly recommended to
use the service components and adapters for their respective tasks and leverage their built-in
features, functionality, and facilities for configuration and administration.

Having issued that warning, it is clear that there are frequent circumstances where the
standard service engines and adapters do not offer everything we want—or at least not in a very
intuitive, productive way. Having Java—and the richness of the Java platform and community—at
our fingertips through this Spring Context component is a real boon in such cases. When it comes
to interaction with specialized interfaces for hardware equipment, or the generation of images or
documents, the interpretation of information in binary formats, communication with non-JDBC
databases, performing complex calculations, absorbing readings from physical sensors, and other
use cases for which custom-built or standard third-party Java logic provides a solution, this
component can be of tremendous value.

We will use the Spring Context component to enrich the SchedulerService. This service,
which schedules an appointment based on an incoming appointment request, will generate a
PDF document with the appointment details and write it to a central directory where the mail
room can pick it up. A future version of the PatientAppointmentService could also process this
PDF document and attach it to the e-mail notification that the patient receives when the
appointment is scheduled.

NOTE
The complete source code for this example is available in the online
chapter complement.

Implement the Java Code for Generating the PDF Document
We will take a very straightforward route here—we just implement a single class that does the
PDF generation using the open source iText library. We will add a main method to be able to
locally run, debug, and unit-test this class. When we have it working, we will move to the next
step where the Spring Context is added.

Before we continue, you need to download the iText library that we will use for generating
the PDF document. Go to http://itextpdf.com/ and download itext.jar. Add this JAR file to the
SCA-INF\lib directory in the SchedulerService project.

Next, open the SchedulerService application in JDeveloper. Add the itext.jar file to the
SchedulerService project (from the Libraries and Classpath tab in the project properties dialog).

Create the classes Patient and AppointmentSchedule—simple Java Beans with properties such
as firstName, lastName, city, and state for the patient and appointmentDateTime, room, and
doctor for the appointment schedule.

402 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 403

Create a new class called PatientAppointmentPdfGenerator (in the package com.stmatthews.
hospital) and add the following method:

 public byte[] createPDFforAppointmentSchedule(Patient patient
 , AppointmentSchedule schedule) {
 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
 Document document = new Document();
 try {
 PdfWriter.getInstance(document, buffer);
 document.open();
 prepareDocument(patient, schedule, document);
 } catch (DocumentException e) {
 }
 document.close();
 byte[] bytes = buffer.toByteArray();
 return bytes;
 }

This public method creates a new PDF document, calls upon a private method (prepare
Document) to add the actual contents to that document, and then returns the document as a
byte array. This is the method we will expose in the Spring Context to be invoked from the
composite.

Now you can implement a very basic or more advanced version of the method
prepareDocument. Here’s a fairly simple implementation:

 private void prepareDocument(Patient patient, AppointmentSchedule schedule,
 Document document) throws DocumentException {
 Paragraph addressHeader = new Paragraph();
 addressHeader.add(new Chunk(patient.getFirstName()+" "+ patient
.getLastName()));
 addressHeader.add(Chunk.NEWLINE);
 addressHeader.add(new Chunk(patient.getAddress()));
 addressHeader.add(Chunk.NEWLINE);
 addressHeader.add(new Chunk(patient.getCity()+", "+patient.getState()+"
"+patient.getZipcode()));
 addressHeader.add(Chunk.NEWLINE);
 document.add(addressHeader);
}

The source code for this application on the wiki contains a more extended version of this
method that creates a more verbose letter for our patients (see Figure 12-11).

Create the Spring Context Service Component
Now that we have the Java logic we want to expose as a service component, we will bring in the
Spring Framework. First, open the context menu for the PatientAppointmentPdfGenerator and
under Refactor choose the option Extract Interface. In the dialog that opens, provide the name of
the interface (IPatientAppointmentPdfGenerator) and select the public method
createPDFforAppointmentSchedule to be included in the interface.

In the Composite Editor, drag the Spring Context component from the Component Palette and drop
it in the components area. Set the name of this new Spring Bean configuration to scheduleService-
beans.xml. Double-click the newly added component to bring up the source editor.

Chapter 12: Leveraging Java in Composite Applications 403

Add the following bean definition to this file:

<bean name="patientAppointmentPdfGenerator"
 class="com.stmatthews.hospital.PatientAppointmentPdfGenerator" />

Configure an sca:service in the scheduleService-beans.xml file that declares this bean to be
exposed as an SCA service:

<sca:service name="appointmentScheduleGenerationService"
 target="patientAppointmentPdfGenerator"
 type="com.stmatthews.hospital.IPatientAppointmentPdfGenerator"/>

FIGURE 12-11. The PDF document generated by the PatientAppointmentPdfGenerator

404 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 405

The target attribute refers to the bean that implements the service, whereas the type attribute
indicates the Java interface that describes the service. This interface is the starting point for the
generation of the WSDL and XSD.

In the Composite Editor, you will see that the Spring Context component now has a service
icon, based on the <sca:service> element we just inserted. However, at this point there are no
WSDL or XSD documents created for this component. Only when we create a wire to the
component will they be created.

Wire the PDF Generator to the SchedulingService BPEL Process
We will create a File Adapter service to write the PDF document to the central directory just
mentioned. This service will receive a binary block of data and just write it out to the file without
touching the contents.

A Mediator will be created next that first calls the appointmentScheduleGenerationService
Spring service component and then forwards the response to this file adapter. We will then
invoke this Mediator from the SchedulingService BPEL process.

Configure a File Adapter Service to Write the PDF to the File System Add a File Adapter
Service to the composite. Call the service WritePDFDocumentToFile. We’ll define the adapter
interface later (from schema and operation). On the next page, pick Write File as operation and
specify WritePDFDocumentToFile as the operation name.

On the File Configuration page, enter the logical directory name CENTRAL_PDF_DIRECTORY
and enter AppointmentSchedule%SEQ%.pdf for the filename.

NOTE
Later on we will set a file adapter header property to customize the
filename using the name of the patient.

In Step 6, “Messages,” we would normally either choose an element from an existing XSD or,
even more frequently, use the Native Format Builder to create the XSD for some comma-separated
values file format. Not this time: The content of the file to write is the binary definition of the PDF
document. The file adapter can pass the contents without transformation. Therefore, we need to
check the box marked Native Format Translation Is Not Required (Schema Is Opaque). Click
Finish.

Create a Mediator to Call the Spring Component and the File Adapter Service To prepare
for the Mediator we are about to create, open SchedulerService.xsd and add the following
element and type definitions that will define the input for the Mediator:

<xsd:element name="PatientAppointmentSchedule"
 type="PatientAppointmentScheduleType"/>
 <xsd:complexType name="PatientAppointmentScheduleType">
 <xsd:sequence>
 <xsd:element name="patientDetails" type="ap:patientDetailsType"/>
 <xsd:element name="scheduleDetails" type="PlannedScheduleType"/>
 </xsd:sequence>
 </xsd:complexType>

Chapter 12: Leveraging Java in Composite Applications 405

Spring Dependency Injection and SCA References
An important concept for Spring Beans is dependency injection. When a bean has
dependencies on other objects that it needs to call to, these dependencies are not hard-
coded in the bean’s source code. Instead, the bean exposes a setter method through which
an object reference can be set with an implementation of the interface required by the
bean. In the Spring Bean configuration file, a bean that provides the implementation is
wired to the dependency, exposed as a bean property. However, if no bean is available to
satisfy the dependency, we can use an sca:reference element in the bean configuration file
to expose that dependency at the level of the Spring Context Service Component. Another
Service Component can then be wired to that reference.

For example: A Java Class ComplaintsHandler is to be configured as Spring Bean. The
bean requires the injection of a file writer. It has information to write to a central patient
complaints register, and it requires an object that implements the IMessageFileWriter
interface that it can call upon to perform that action (and that should know where the
destination file is and how to write to it). This class has a property with the associated setter
method:

private IMessageFileWriter writer;
public void setWriter(IMessageFileWriter writer)

Note that we could express this in SCA terminology quite easily, replacing Java Class
and Spring Bean with Service Component (such as Mediator) and dependency and
property-to-set with reference.

The configuration for this bean would be as follows:

<bean name="complaintsHandler"
 class="com.stmatthews.hospital.ComplaintsHandler">
 <property name="writer" ref="theFileWriter" />
</bean>

and the Spring configuration file also needs to define theFileWriter that is referenced by the
complaintsHandler bean in order to be valid. This theFileWriter can be just another Spring
Bean or it can be an sca:reference element that exposes the dependency outside the Spring
context component:

<sca:reference name="theFileWriter"
 type=" com.stmatthews.hospital.IMessageFileWriter"/>

We could now, for example, create a Mediator in the Composite application and wire it to
the theFileWriter reference exposed by the Spring context component. The WSDL for the
Mediator would be generated for us when we create the wire, based on IMessageFileWriter
interface definition. This Mediator could, for example, route to a File Adapter service.

406 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 407

Add a Mediator to the composite and call it WritePDFDocumentToFile. Select the template for
the one-way interface. Select the PatientAppointmentSchedule element from SchedulerService.xsd
for the input and then click OK.

Wire the Mediator to the Spring Context service component PatientAppointmentPdfGenerator.
At this point, JDeveloper generates the IPatientAppointmentPdfGenerator.wsdl document for the
PatientAppointmentPdfGenerator. An alert to that effect is shown in Figure 12-12.

Open the Mediator to edit the mappings for the routing rule. First, create the mapping to the
Spring Component. Using AutoMap will get you a long way in creating all the mappings—for
both the patient details and the appointment schedule.

Next, select the target for the synchronous reply. Click the icon and select Service. Then
select the WritePDFDocumentToFile operation in the File Adapter Service (see Figure 12-13).

Create the mapping from the reply from the Spring Component to the File Adapter Service.
Include the initial request in the mapping by checking the box. Map the return element in the
source—the byte array with the PDF inside—to the opaqueElement in the target and then close
the mapping editor (see Figure 12-14).

Now you may wonder why you had to include the request in the mapping if we do not even
use it! To the contrary, we will use it—to assign the name of the PDF file that is written by the file
adapter, by setting one of the file adapter’s header properties. We have to do this in a roundabout
way, because we need to set the property using data from the initial request instead of the
message we are now forwarding to the file adapter.

FIGURE 12-12. Wiring the Mediator to the Spring Context component prompts JDeveloper to
generate the WSDL for the PatientAppointmentPdfGenerator.

Chapter 12: Leveraging Java in Composite Applications 407

Open the GeneratePDFforPatientAppointmentSchedule.mplan file. Open the Source tab and
locate the <onReply> element. Insert the following XML snippet between the transform and
forward elements:

<assign>
 <copy target="$out.property.jca.file.FileName"
 expression="concat('AppointmentScheduleForPatient'
 ,$initial.request/sch:PatientAppointmentSchedule/...
...sch:patientDetails/ap:firstGivenName
 ,$initial.request/sch:PatientAppointmentSchedule/...
...sch:patientDetails/ap:lastName
 ,'.pdf')"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/...
...oracle.tip.pc.services.functions.Xpath20"
 xmlns:sch="http://stmatthews.hospital.com/Scheduler"
 xmlns:ap="http://stmatthews.hospital.com/patient/AppointmentProcess"
 />
</assign>

FIGURE 12-13. Forwarding the reply from the Spring Component to the File Adapter Service

408 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 409

We assign a value to the header property called [$out.property.] jca.file.FileName. The value
we assign is taken from the $initial.request and is the concatenation of a static string and the first
and last name of the patient. Notice how we need to define the namespaces in order to extract
the correct elements from the initial request message.

Invoke the Mediator from the BPEL Component Open the Composite Editor. Create a wire
from the Scheduler BPEL component to the Mediator GeneratePDFforPatientAppointmentSchedule.

FIGURE 12-14. Creating the mapping for the reply from the Spring Component to the File Adapter
Service

Chapter 12: Leveraging Java in Composite Applications 409

Open the BPEL editor for the Scheduler component and add an Invoke activity immediately after
the task switch. Wire the Invoke to the partner link that was created for the wire to the Mediator
and then have a local input variable created.

Add an Assign activity to initialize the input variable. Use two copy steps to populate the two
elements patientDetails and scheduleDetails in the input for the Mediator from the BPEL variables
inputVariable and outputVariable. Then close the BPEL editor.

And Action: The SchedulingService Composite Generates PDF Documents
Open the Composite Editor. Click the File Adapter Service and open the property inspector. Set a
proper value for the property CENTRAL_PDF_DIRECTORY (for example, c:\temp).

Next, deploy the composite application to the SOA Suite in the familiar way. Test the
SchedulerService with proper patient details. It is an asynchronous service with a human task
inside, meaning you will not get a response in the FMW control test window. Open the Worklist
application, log in as Maggie, and check out the tasks assigned to her. Process the Schedule
Appointment task that has been assigned as a result of the call to the SchedulerService. Fill in
some meaningful scheduling details, save the data, and click the OK button to complete the task.

We can check the flow trace for the Scheduler instance to see whether it has completed—and
successfully so. Also, we can verify on the file system whether the expected PDF is indeed written
to the central PDF directory that we have configured—with the customized filename we specified
through the header property (see Figure 12-15).

Leveraging the Outbound EJB Binding
An Enterprise Java Beans binding adapter reference allows an SOA composite application to
invoke Enterprise Java Beans through RMI. The EJBs that are invoked in this way can be SDO
enabled, or they can be defined through a (remote) Java interface.

The EJB binding reference is configured through the EJB Adapter Wizard. The wizard asks for
the JNDI lookup name for the EJB, the Java Remote EJB interface, whether the EJB binding is
WSDL (SDO) based or Java based, and in the former case the WSDL that describes the service
provided by the EJB. The parameters sent into the EJB service and returned by it in that case are
SDO types, which means they are described in an XSD that follows the SDO specifications.
Because we have the parameter definitions generated for us, it is not a large burden to work with
these SDO-enabled EJBs. However, it means that we have to morph the EJB into a shape that the
EJB adapter can work with—and it requires us to manipulate the EJB, which may not be possible
at all. Working with a Java (interface)–based EJB binding is usually the easier option.

NOTE
The online chapter complement has a detailed example of using the
SDO-based EJB binding, as well as the step-by-step instructions and
screenshots for creating the EJB binding based on a Java interface, as
described next.

Create the EJBs and Configure the EJB Adapter Reference
We will go through two sets of steps: First, we create and deploy the EJB Session Bean. Second,
we create a simple SOA composite application that calls upon the EJB to perform its
mathematical wonders.

410 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 411

Create the EJB Session Bean
The steps for creating what is probably the world’s simplest and least useful EJB Session Bean are
as follows: To begin, open JDeveloper and create a new generic application. Create a generic
project as well. Create a new EJB Session Bean from the New Gallery—Category Business Tier,
Node EJB. The Create Session Bean Wizard appears. Enter HospitalCalculatorEJB for the name,
set HospitalCalculatorBean as the mapped name, and accept all other defaults. Click Next. The
Bean class is to be called HospitalCalculatorEJBBean, in the package hospital. Click Next and
indicate that only a remote interface is to be created—called HospitalCalculatorBean. Click
Finish. The class and interface are now generated, with some annotations.

FIGURE 12-15. This instance of the Schedule composite produced a PDF letter for the patient.

Chapter 12: Leveraging Java in Composite Applications 411

Now, open the interface and add a single method signature:

public interface HospitalCalculatorBean {
 public Float calculate(int a, int b, String operation);
}

Go to class HospitalCalculatorEJBBean and add the implementation for the method calculate
(for now, a very simple one):

 public Float calculate(int a, int b, String operation) {
 return new Float(a+b);
 }

Right-click the Session Bean in the project navigator. Select the option Create EJB JAR
Deployment Profile. Enter a name and click OK three times in a row, accepting all defaults.
Deploy the application according to this profile, using the Application Server connection that you
also use for deploying SOA composite applications. Target the application at the soa_server1
server in the domain.

This next step is entirely optional: When deployment is done, you could try out the new
remote EJB. When you select the option New Sample Java Client from the context menu on the
EJB Session Bean class, you can let JDeveloper create a new project with a Java class that looks
up the EJB in the remote server and invokes the method it publishes. Through a tiny bit of code
editing, you can have this class write the result of the EJB invocation to the console.

With the EJB deployed and running, we can continue to create an SOA composite that will
consume it.

Develop the SOA Composite with EJB Adapter Reference
We will create a simple SOA composite application from scratch—to have a clear view on what
is needed to configure the EJB adapter reference that calls out to the Session Bean.

First of all, create a brand-new SOA application in JDeveloper—say ConsumeHospitalLogic,
with a fresh project with that same name. Copy the Java interface HospitalCalculatorBean.java to
the SCA-INF\src directory in the ConsumeHospitalLogic application (and remove the EJB
annotation @Remote).

Open the Composite Editor. Drag the EJB Service Adapter from the Component Palette to the
References lane (see Figure 12-16).

The Create EJB Service dialog appears. Enter the name for the reference (for example,
HospitalCalculatorBean). Enter the JNDI name (binding name) for the EJB; you may know the
name from the annotation in the EJB itself or from the sample Java client you generated earlier on
for the EJB. Alternatively, you can browse through the JNDI tree for every server running in the
SOA domain of our WebLogic instance and locate the binding name of Enterprise Java Beans.
Browse to the Java interface that is the remote EJB interface (hospital.HospitalCalculatorBean) and
select it. Select Java as the interface rather than WSDL, and then close the window.

An earlier version of JDeveloper scrambled the values you entered into the dialog a little.
They did not end up quite correctly in the composite.xml file. To make sure that the right values

412 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 413

are in the reference element, you should inspect this element on the Source tab of the composite.
xml editor. Make sure that the value for the javaInterface is set.

<reference name="HospitalCalculatorBean">
 <interface.java
 interface="com.stmatthews.hospital.utilities.HospitalCalculatorBean"/>
 <binding.ejb
 uri="HospitalCalculatorBean#...
 ...com.stmatthews.hospital.utilities.HospitalCalculatorBean"
 javaInterface="com.stmatthews.hospital.utilities.HospitalCalculatorBean"
 ejb-version="EJB3"/>
</reference>

The most important part is done. Let’s create an XSD document that will underpin the service
we are about to publish. It should define a request element called calculationRequest, with two
operandi of type int and one string operator, and a response element called calculationResponse
with a single float value.

FIGURE 12-16. Adding an EJB Service Adapter for HospitalCalculatorBean to the References lane of
the composite

Chapter 12: Leveraging Java in Composite Applications 413

Now add a Mediator component called HospitalCalculationService that is exposed as a
synchronous SOAP service at the composite level. Generate the WSDL for the Mediator’s service
based on the two elements defined in the XSD. Close the window and then wire the Mediator to
the EJB reference. The composite application now looks as illustrated in Figure 12-17.

Open the Mediator editor. Create the mappings for the calculationRequest and calculation
Response elements to the XSD elements generated for the EJB binding.

Deploy the composite application to the SOA Suite as always. We can now call the SOA
composite application to help us with complex calculations as demonstrated in Figure 12-18;
under the covers it will leverage the Enterprise Java Bean. To accomplish this, we did not have to
adapt the EJB that is invoked, nor did we have to manually create XML mappings or derive WSDL
files describing the Java interface.

FIGURE 12-17. The SOA composite application that consumes the EJB HospitalCalculatorBean

FIGURE 12-18. Testing the composite ConsumeHospitalLogicBean in FMW Control

414 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 415

Next Steps
It would now be interesting to see if we can extend the logic of the HospitalCalculatorBean with
additional operations (using the operation parameter to pick the operation), redeploy the EJB
application, and leverage these new operations when testing the Web Service without touching
the composite application; see the online complement for this next step.

Exposing SOA Composite Applications as EJB
SOA composite applications can expose SOAP Web Services—via binding.ws. Alternatively,
services can be exposed as EJB to be invoked over RMI. SOA composites can use both binding.
ejb and binding.adf on services. The former supports communication in native Java objects; the
latter communicates with XML messages.

Inbound EJB Binding
To expose a composite application as an EJB, we need to define a Java interface that describes the
contract for the EJB. You probably also need to create Java domain classes or Bean types
describing the structure of the input and output of the methods on the EJB (which should
correspond with the operations available in the composite application).

Next, create an EJB binding in the Services lane, based on this Java interface. Specify the JNDI
name for this EJB; the EJB will be published on the WebLogic server when the application is
deployed. You probably have to go to the source of the composite.xml to add the javaInterface
attribute, which is often not set by the wizard.

Create a Mediator to connect the EJB binding to the rest of the composite application. When
this wire is added, JDeveloper will create a WSDL for the inbound EJB binding, based on the Java
interface and the domain objects. Next, create the mappings in the Mediator for the request and
response message. When the composite application is successfully deployed, the EJB with the
specified JNDI name will be listed in the JNDI tree in the WebLogic Administration Console and
is ready to be invoked from a Java client.

public class RemoteSOAServiceClient {
public static void main(String [] args) {
 try {
 final Context context = getInitialContext();
 MyJavaInterface myJavaInterface =
(MyJavaInterface)context.lookup("JNDINameOfSOACompositeEJB");
 System.out.println("The result: "+myJavaInterface.getResult("hello world");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}
private static Context getInitialContext() throws NamingException {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY
 , "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3://localhost:8001");
 return new InitialContext(env);
 }
}

Chapter 12: Leveraging Java in Composite Applications 415

Inbound ADF Binding
There is another way to invoke an SOA composite as an EJB via RMI. This other way is through
the binding.adf binding type. The main difference with the inbound EJB binding is that we
communicate in terms of XML (over RMI) with the SOA Suite’s generic Client API—and not
directly to a service-specific EJB. We will expose the PatientDataService using this type of binding
and then create a client to invoke this composite using binding.adf.

Expose the binding.adf Service
To begin, open the PatientDataService composite application. This application exposes services
to retrieve data for a specific patient and to create a new patient. The former is to be exposed
with binding.adf in order to make available to Java clients for invocation over RMI.

Open the composite.xml file. The service element named client describes the SOAP interface
for retrieving patient data. Copy this element and configure the clone as binding.adf (based on the
same WSDL):

<service name="PatientDataServiceEJBClient"
 ui:wsdlLocation="PatientDataService.wsdl">
 interface="http://stmatthews.hospital.com/patient/PatientDataService...
 ...#wsdl.interface(PatientDataService)"/>
 <binding.adf serviceName="ejbPatientDataServiceClient" registryName=""/>
</service>

NOTE
The values for the attributes serviceName and registryName are not
used in this example.

Deploy the composite with this new service of type binding.adf.

Create a Java Client for Calling the Composite Through Binding.adf
Create a new application and project. Add three libraries to the project: WebLogic 10.3 Remote-
Client, SOA Runtime, and Oracle XML Parser v2. Create a class called PatientDataService that
uses the Locator() class in the SOA Suite Java Client API.

private Locator locator = null;
...
private void prepareLocator() {
 Hashtable jndiProps = new Hashtable();
 jndiProps.put(Context.PROVIDER_URL, "t3://localhost:8001/soa-infra");
 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 jndiProps.put(Context.SECURITY_PRINCIPAL, "weblogic");
 jndiProps.put(Context.SECURITY_CREDENTIALS, "weblogic1");
 jndiProps.put("dedicated.connection", "true");
 // connect to the soa server
try {
 locator = LocatorFactory.createLocator(jndiProps);
 } catch (Exception e) { }
 }

416 Oracle SOA Suite 11g Handbook Chapter 12: Leveraging Java in Composite Applications 417

The salient part of the getPatientDetails method that interacts through the Locator with the
SOA Suite and the PatientDataService is shown in part here (the complete source is shown in the
online chapter complement):

...
 prepareLocator();
 Composite composite=null;
 try {
 composite = locator.lookupComposite("default/PatientDataService!1.0");
 } catch (Exception e) {
 }
 Service service = composite.getService("PatientDataServiceEJBClient");
 NormalizedMessage input = new NormalizedMessageImpl();
 String uuid = "uuid:" + UUID.randomUUID();
 input.addProperty(NormalizedMessage.PROPERTY_CONVERSATION_ID, uuid);

String inputPayload =
 "<ns1:PatientDataServiceProcessRequest xmlns:ns1=\"http://stmatthews
.hospital.com/patient/PatientDataService\">\n"
 + "<firstName>"+firstName+"</firstName>\n"
 + "<lastName>"+lastName+"</lastName>\n" +
 "</ns1:PatientDataServiceProcessRequest>";
 input.getPayload().put("payload", inputPayload);
 NormalizedMessage res = null;
 try {
 res = service.request("process", input);
 } catch (Exception e) {
 e.printStackTrace();
 }
 Element payload =
 (Element) res.getPayload().get("payload");
 }

Summary
The various service engines in the SOA Suite can run composites programmed in BPEL or BPMN,
execute business rules and human tasks, and perform message routing and transformation through
the Mediator. And still, that may not be enough. There may be a need to extend the functionality
available in these engines using custom Java logic. This chapter explained how we add fine-
grained Java functionality to Mediators (through Java callouts) and BPEL processes (using
Embedded Java). We then made things much more interesting through the introduction of the
Spring (Context) service component, which can expose Spring Beans as services that can be
invoked within and even exposed from composite applications and that can call upon other
service components that are injected to satisfy the dependencies of these beans.

In addition to adding functionality implemented in Java to composite applications, there are
various ways for these applications to interact with external Java-based partners. One of the
technology adapters in the SOA Suite is the JMS Adapter. This adapter caters to interaction with
JMS queues and topics, both inbound and outbound. JMS is commonly used in Java and JEE
applications for communications.

Chapter 12: Leveraging Java in Composite Applications 417

The EJB Binding Service Adapter makes it possible for composite applications to invoke
externally exposed Enterprise Java Beans. Both SDO-enabled EJBs and regular EJBs can be called
from SOA composite applications. The services exposed by the composite application itself can
also be published as an EJB to allow Java clients to invoke the composite via RMI. The (inbound)
EJB Binding and the ADF Binding are the two ways to expose an EJB interface—the first publishes
a specific EJB and communicates in Java objects, whereas the second leverages the SOA Suite
Java Client API using XML messages communicated via RMI.

The next chapter introduces the Oracle Service Bus—a product that adds support for even
more communication protocols to our SOA infrastructure.

This page intentionally left blank

Chapter
13

Enterprise-Level
Decoupling with Oracle

Service Bus

419

420 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 421

hapter 2 introduced Service-Oriented Architecture and stressed the importance of
decoupling in order to achieve BAD (Business Agility through Decoupling). In that
chapter we also discussed the concept of an enterprise service bus (ESB) as a
concept to manage all the connections (including message format and service
location) between services and service consumers. The ESB facilitates interactions

between potentially very disparate partners—without coupling them in a tight, inflexible manner.

An enterprise service bus in general adapts between the different realms that interacting
partners may be living in—for example, in terms of security, physical location, business
terminology and data structure, synchronicity, enterprise, and communication protocol. The ESB
exposes services in ways that make them accessible to many and diverse potential consumers. As
such, the ESB is a main factor in promoting reuse of services.

The Mediator component in the SOA Suite fulfills a role that comprises a number of the
characteristics of an ESB: The Mediator facilitates interaction between partners that speak in
potentially different data structures, protocols (WS vs. PL/SQL vs. RMI), and synchronicity. It does
content-based message routing and makes a contribution to service virtualization—that is, hiding
the exact service implementation and its physical location from the service consumer. Together
with technology adapters, it also enables interaction across technology stacks—such as file
system, database, and messaging infrastructures.

However, the Mediator plays its role primarily locally—between components in the same
SOA composite applications and to a limited extent between composites in the same SCA
domain. A true enterprise service bus is ideally introduced to mediate between different SCA
domains within the enterprise and to connect the enterprise’s composites to the outside world,
and vice versa. Such a bus may also provide enterprise-level capabilities in areas such as security,
handling peak loads through throttling, load balancing, and result caching.

In Oracle SOA Suite 11g—this enterprise service bus with true enterprise scope is provided
through the Oracle Service Bus (OSB), which is shown in Figure 13-1.

NOTe
Many of the examples in this chapter are described in more detail
and with many illustrations in the online chapter complement. When
you want to follow through these examples, refer to this online
complement.

Introducing the Oracle Service Bus
The Oracle Service Bus appears to all its consumers as a provider of a possibly very large
number of services, exposed as HTTP-based Web Services, SOAP, and RESTful, as well as via
JMS and e-mail interaction. What goes on inside the OSB and how it interacts with the “real”
services that do the actual work is hidden from view—as it should be in a decoupled world.
The services exposed by the OSB are called Proxies (or Proxy Services). They are invoked by
clients as services for all intents and purposes, but they are really nothing but the store front.
Inside the OSB there can be a lot of activity going on in the flow from consumer to the
underlying services that do the actual work—called business services—and on the response’s
way out, as shown in Figure 13-2.

C

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 421

Functions Performed by the Oracle Service Bus
Before the OSB can do anything, it first needs to properly receive a request message from a service
consumer—either synchronously via a call or asynchronously through, for example, fire-and-forget
or message polling. It is capable of receiving messages from a variety of transport protocols such
as HTTP(S), e-mail, JMS, RMI (for EJB), FTP, and File System. OSB 11g also debuts “Java on
the Bus”—native EJB 3.0 transport for inbound proxy and outbound business services and the
ability to transmit native Java types and Service Data Objects (SDOs) through message flows

FIGURe 13-1. The Oracle Service Bus is the two-way insulation layer between various SCA
domains, other applications, and enterprise resources and external partners.

SCA domain
(SOA Suite)

SCA domain
(SOA Suite)

Custom
application

E-mail server

Mainframe

SAP

Oracle Service Bus

FIGURe 13-2. OSB exposes proxy services that connect through a message flow (including
routing and transformation logic) to business services.

Consumer ProviderBusiness
service

Proxy
service

Message
flow

(VETRO)

422 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 423

(no serialization to XML DOM objects necessary). The native Java objects can be passed along to
JMS and Java callouts.

OSB can, of course, return response messages via those same protocols, and it can itself
invoke services along those protocols. OSB has support (“native transport”) to Tuxedo, Oracle
Data Services Integrator, and SOA Suite, among others.

The contents of the messages are typically presented inside the OSB message flow as if they
are XML messages, with header body and optionally MIME attachments. Non-SOAP messages are
mapped to this paradigm—including e-mail bodies, messages in binary format, JMS messages,
and REST-style requests with JSON or plain text. The processing in the message flow has easy
access to header variables that provide metadata about the message.

Once messages are safely delivered to the bus, an ESB is expected to be able to perform
several standard operations (see Figure 13-3). Most definitions of the term enterprise service bus
include the so-called “VET(R)O pattern” that an ESB should implement. This acronym stands for
Validate, Enrich, Transform, (Route), and Operate. The OSB has support for this integration
pattern besides various other patterns, such as fan-in and fan-out, fire-and-forget, and so on. Note
that the SOA Suite Mediator component is more limited when it comes to enrichment and has
less functionality than OSB in the other three departments. This is partially due to the fact that
OSB can store data in intermediate variables, whereas Mediator is mostly stateless when it comes
to data—it does not have the concept of temporary variables.

FIGURe 13-3. Functions performed by an enterprise service bus such as the Oracle Service Bus

HTTP, JMS, E-mail, JCA, Tuxedo,
(J)EJB/RMI, File, FTP, MQ, custom

Security
Enforce policies & adapt between schemes

Validate & transform
Convert message structure (XSLT, XQuery, Java)

Enrich & service callouts
Enhance content (WebService, Database, Java)

Miscellaneous adaptations
(SOAP/REST, Async/Sync, one-way/two-way)

Performance & availability
Throttle, parallellize (split/join), load balance,

service result cache

Routing
Address virtualization, content & identity-

based routing, publish (one-to-many)

Operational
management

&
governance
dashboard,

SLA
monitoring,
logging and
reporting,
alerting,

error handling,
resource

versioning

Oracle
Enterprise
Repository

Oracle
Service
Registry

HTTP, JMS, E-mail, JCA, Tuxedo, EJB/RMI,
File, FTP, MQ, Custom, SOA Suite 11g

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 423

Validation
Validation is supported, too, in OSB—again, like transformation, on various levels. The message
can be validated as a whole against an XSD schema definition. However, it is also possible to
define validations for smaller sections of the message, or even individual elements, also using
XSD definitions.

Validation results can be stored in temporary variables, used for conditional flow logic or the
updating of the message headers, for example. Alternatively, an error handler can be specified
that may send alerts, report the error, or perform other actions. The use of temporary variables is a
major boon in OSB over Mediator, not only for use with validation, but also for complex
transformations and enrichments, to name but two circumstances.

enrichment
One of the differentiators between the Mediator component and the OSB is the latter’s capability
to enrich a message both on the way in and on the way out. The OSB can invoke Web Services,
query a database, or execute custom Java logic to get hold of data that is subsequently used to
update the message. Existing message elements can be removed or have their contents replaced.
New elements can be inserted into the message.

Complex and extensive enrichments are easier to implement and are typically better
performing when executed in OSB.

Transformation
An important function of an ESB is the transformation of messages from the incoming structure to
the structure required for invoking the business service(s). In Chapters 2, 4, and 7 we discussed
the canonical data model (CDM) as the ‘esperanto-like’ enterprise-wide language for XML
messages. The OSB will frequently transform incoming messages to and outgoing messages from
the CDM-based structure.

OSB provides “any-to-any” mapping and uses XQuery as the primary transformation mechanism.
Additionally, XSLT can be used, as well as custom Java transformation code. MFL (Message Format
Language) is an Oracle proprietary XML-based language that is used to describe the format of a
non-XML text document (similar to the Native Format created in JDeveloper to create a structured
description for the presentation of plain-text documents read or written by, for example, the File
Adapter). MFL can be used in XQuery transformation to map non-XML to XML, and vice versa.

It is easy to perform multiple transformations on a message or on selected parts of a message.
OSB supports the use of variables in a message flow, making it possible and straightforward to do
complex calculations and conditional processing. With OSB we can manipulate individual
elements in messages. Note that these message manipulations can be performed both on
inbound, intermediary messages and on outbound messages.

Other transformations to be performed on messages include those between communication
protocols, message exchange patterns (synchronous to asynchronous), security protocols, and
business dictionaries.

Operate
The Operate action in the VET(R)O pattern refers to the primary function of the ESB: the delivery
of the message from the consumer through invocation of the target service or an interaction with
the target application. OSB can have a message flow invoke a so-called “business service” using
the many transports we discussed earlier for inbound messages. Additionally, or alternatively, it
can use service callouts to Web Services or custom Java code.

424 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 425

Note that a single message flow can use multiple calls to external services to compose the
response message. This means that we can use OSB to implement composite services from
elementary or at least finer-grained services. This is another important distinction with the
Mediator—which is not capable of implementing composite services (that is the role of the SOA
composite as a whole). However, OSB is not suitable for service orchestration like BPEL is; its
strength lies in short-timed interactions, not long-running processes. We can define error handlers
at various levels to take actions that work around a problem, retry an operation, or send out alerts
to have the administrator resolve the situation.

Routing
One aspect of routing is that a certain routing path can be chosen for the message, based on
specific conditions such as contents of the message, the meta-information in the header or the
identity of the requestor: content-based routing. OSB supports dynamic selection of the business
service to invoke as well as the transport protocol used for the invocation. Note that the
transformation to perform is dynamically selected depending on the target service that is to be
invoked.

An advanced form of content-based routing can be achieved when, for example, the target
database or database schema to access is dynamically determined, based on the content of the
request message. This can be done by OSB in conjunction with the database adapter by setting
the jca.db.DataSourceName header property. The book’s wiki has a reference to a resource
describing this special type of dynamic content-based routing.

Message exchange Patterns
OSB supports various MEPs (message exchange patterns) or integration patterns—as well as the
adaptation between some of them. This means that the proxy service exposed to consumers by
the OSB may adhere to one style (say, asynchronous request and response) while the business
service that is invoked itself has a synchronous request and response interface.

The messaging paradigms supported by the OSB include synchronous request/response,
asynchronous publish to one consumer (fire-and-forget queue style), asynchronous publish to
many consumers (fire-and-forget topic style), and asynchronous request/response.

Security
OSB has its own security framework that is based on WS-Policy. Security policies based on the
WS-SecurityPolicy (WSSP) 1.2 specification (for transport only) or on the Oracle proprietary Web
Services security policy schema can be attached to proxy services and business services. Through
these policies, OSB can be instructed to enforce authentication (establish identity), authorization
(establish and enforce access rights), encryption (for confidentiality), and signing (to verify
integrity) on messages. (More on security in Chapter 15.)

In addition to the ability to enforce security policies itself, OSB can adapt between different
security schemes when calling a business service. OSB can, for example, decrypt the messages
received from the service consumer to perform validation, enrichment, transformation, and
routing. It can then pass the unencrypted message to the business service—or encrypt in the way
mandated by that service. OSB can forward the identity token from the service consumer,
converting it if necessary from Basic HTTP Authentication to a SAML token, for example.

OSB can thus be used to add a security layer on top of business services that do not have any
security constraints enforced: OSB exposes proxy services with the appropriate policies applied
against them. OSB enforces the authentication, authorization, and so on, and only when the

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 425

request satisfies the requirements will the (unsecured) business service be invoked. Oracle Web
Service Manager implements a similar decoupled security approach—with more specialized
focus obviously than Oracle Service Bus.

However, OWSM (Oracle WebServices Manager) is a component of SOA Suite 11g and is the
preferred method for securing Web Services in either OSB or the SCA container. In the absence of
OWSM, OSB is the preferred approach, using the patterns described earlier. Chapter 15 describes
the use of OWSM.

Speeding Up and Slowing Down
The load on a particular service may be evenly spread out over time. No peaks—just a steady,
constant flow of request messages. However, it is more likely that the load varies over time, with
specific peaks at possibly even predictable moments. Note that the (web) service can become the
object of denial of service (DoS) attacks, just like websites.

OSB supports throttling for business services. This means we can specify the maximum
number of concurrent requests that can be sent to a business service. When there are more
requests than that number, the remainder is moved to a queue and then sent to the business
service when previous requests have completed. We can specify an expiration time for messages
in the queue, waiting for processing by the business service.

Also, the total number of requests in a given timeframe may be regulated. You might specify
that a particular service consumer can access a proxy service 100 times an hour and then specify
that all requests exceeding that rate are returned with exception information.

Note that neither the SCA container nor the Mediator component has out-of-the-box defense
mechanisms against peak loads of request messages. You can resort to queuing mechanisms such
as JMS and AQ to decouple the destination composite from the incoming message flow, but that
is a lot of additional work.

Speeding Up Using Split-Join Almost the opposite of throttling is the use of Split-Join to speed
up the processing of individual messages. Split-Join is used to process multiple small parts from
the same message in parallel threads (split) before merging the results back together (join). Split-
Join can be static (fixed number of branches) or dynamic (the payload of the message dynamically
determines the number of branches).

St. Matthews could expose a service from the OSB that external healthcare organizations can
invoke to request a number of appointments for multiple patients at once. Using a Split-Join in the
message flow for this service, we can have each individual appointment request processed—in
parallel with the others. Each request results in an appointment identifier; all appointment
identifiers are joined back together in a single response message.

The Split-Join is somewhat similar to the Flow and FlowN activities in BPEL processes.

Service Pooling or Load Balancing Multiple endpoint URIs (physical locations) can be
configured for business services that are invoked from the message flows. This allows OSB to
spread the load over multiple instances of the business service, using the selected load-balancing
algorithm—such as round-robin, random, or random-weighted. Multiple endpoints are also useful
to cater for downtime: When one endpoint is unavailable, OSB can be configured to revert
automatically to one of the other endpoints.

Service endpoints that are removed from a pool (usually because they are not available due to
network errors or a restart of the host machine) can be configured to automatically be reintroduced
into the service pool after a specified time has elapsed. The helps to prevent the service pools from

426 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 427

shrinking to zero service endpoints. It also eliminates the need to manually reintroduce these
endpoints after they have “errored out” of the pool.

Service Result Cache Some services are called fairly frequently from OSB—multiple times
even with the same request message. Service calls can be expensive—in terms of performance
overhead and perhaps literally in dollar cost. OSB 11g introduced the WebService Result Cache,
functionality based on Oracle Coherence. This result cache makes it possible to cache results
from service calls in order to reuse those results for subsequent service invocations. This feature is
similar to the (PL/SQL) function result cache in Oracle 11g Database.

Simply put: When a result is available from a cache, the implementation behind the business
service does not need to be invoked to provide the result. This means that the response from the
business service is available much faster, near instantaneously, because it only needs to be
retrieved from the cache, without burdening the underlying systems. Caching improves response
time and decreases the load on system resources. The downside to caching results is that a
request to the business service does not return a freshly calculated result but rather a preserved
one that by now could be stale.

Operational Management
When in action, there can be a lot of activity in the OSB. It would not be uncommon to have
many thousands of service requests per hour, involving dozens of consumers and service
providers. Some of the interactions may fall under formal service level agreements, which gives
us a special responsibility to guarantee their availability and responsiveness. But even for services
that do not have such specific requirements, we probably want to ensure proper functioning.

The OSB has broad support for operational management. It offers a dashboard where
(aggregate) metrics can be monitored about the activity in the service bus. This includes the
number of invocations of a service, the average response time, recent trends with regard to
service invocation and responsiveness, errors reported by error handlers, the status of business
services (availability), and many other details.

SLA monitoring can be configured through alert rules regarding response time, number of
messages, success and failure ratios, validation errors, and security violations. Note that SLAs
apply both to proxy services (the service level the OSB must provide) and business services (the
service level we expect from third parties). Alerts can be sent via e-mail, to an SMNP trap,
through JMS, and to a custom reporting provider (custom Java code). Messages written by log
actions are forwarded to the WebLogic AdminServer log; these can be inspected in the Server
Health tab of the Oracle Service Bus Console.

Governance
The Oracle Service Bus can work closely with the Oracle Service Registry (a UDDI implementation)
and a separate product from OSB. All OSB proxy services can be uploaded to the OSR and
registered/published as services that can be consumed by others. Conversely, OSB can look up
services in the registry to consume (business services). When the endpoint of a service in OSR
changes and that service is a business service in OSB, then the change is propagated to OSB.

As stated before, the Oracle Service Bus is an important factor in achieving reuse of
functionality—by exposing services in ways that make them easily consumable for a wide variety
of consumers across the enterprise (typically a wider audience than the average SCA domain and
composite application). In Chapter 2, we noted that services can only be reused when people
know about their availability and can learn more about their characteristics, such as the functional

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 427

interface, nonfunctional specifications, and operational metrics. It is important to expose such
metadata on the services published from the OSB. One way to do this is through Oracle Enterprise
Repository (OER), the tool offered by Oracle to support governance of SOA artifacts. OSB services
can be harvested by OER, and through OER those services can be found, inspected, and then
analyzed for dependencies and impact of changes. (More on OER in Chapter 18.)

OSB at St. Matthews
Margaret is introducing the Oracle Service Bus at St. Matthews as the bridge from the hospital to
external parties (such as health insurance companies and third-party healthcare providers). Any
service exposed by the hospital to external consumers will have to be published on the OSB, and
likewise any external service that is invoked from within the systems at St. Matthews is to be
invoked via the OSB. She is intent on providing this single, central gateway that can be monitored
and managed, protected against security threats, and equipped with support for various transports,
message exchange patterns, and protocol adaptations.

Through the OSB, for example, general practitioners can communicate via e-mail with the
appointment-related services at St. Matthews. And through the OSB, composite applications can
interact with insurance companies without each application having to keep track of the
whereabouts and characteristics of the services of each individual insurance company. The OSB
will help lower costs and speed up execution of applications through the Service Result Cache,
which helps eliminate a substantial number of calls to external services that charge a fee per call.

Margaret is not just planning on using the OSB as a bridge between external and internal. She
also wants to decouple various business domains from each other. Selected services from SOA
Suite instances in various business domains will be published on the OSB, and that will be the
only way for a domain to access services in another domain.

Oracle Service Bus Product History and Architecture
The OSB is the next generation of the well-established AquaLogic Service Bus (ALSB), acquired
by Oracle when it bought BEA. After the acquisition, Oracle decided to make ALSB its strategic
ESB product and proceeded to improve the ALSB with features such as the JCA technology
adapters available with the SOA Suite (for example, the Database Adapter). The OSB 11g release
became available in the spring of 2010—the first release to be (somewhat) integrated with SOA
Suite 11g. Integration will continue to get tighter over subsequent releases. Oracle Service Bus
11g runs on the WebLogic Server and can share a WLS domain with the SOA Suite. However, it
can just as easily be installed independently of SOA Suite 11g. Figure 13-4 shows the product
architecture of OSB 11g.

The OSB exposes a browser-based user interface—the OSB Console—that is used for two
purposes:

 Operational management, done at run time, by administrators ■

 Service development and configuration, done at design time, by developers, architects, ■
and administrators

Most of the tasks developers need to perform can be managed through the browser in a
multiuser, central repository-based development environment.

Additionally, developers can install Eclipse with the OSB Workshop plug-in to do file-based
service development in relative isolation. In this chapter, we will only work through the browser-
based console because it is slightly easier to get going with. However, several options are only

428 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 429

available through the IDE, so it is recommended that you get familiar with that environment too. The
online chapter complement discusses Eclipse plus Workshop and shows screenshots of the IDE. A
(near) future release of Oracle Service Bus will also use JDeveloper as its design-time environment.

Oracle Service Bus 11g runs in the same WebLogic Server (11g, and more specifically 10.3.3
or higher) as the SOA Suite (unlike OSB 10g, which does not run on WLS 11g). Along with the
integration of OSB 11g on WebLogic Server 11g and the SOA Suite SCA container comes OWSM
integration for OSB with centralized policies. Invocations from the OSB to SOA composite
applications, and vice versa, are done using native bindings—the 11g SOA transport direct
bindings—rather than as normal Web Services. In the future, the message flow can be traced from
composites through OSB services and beyond.

FIGURe 13-4. The product architecture of the Oracle Service Bus 11g

RDBMS

Oracle
Enterprise
Repository

Oracle
Service
Registry

OWSM 10g

WebLogic 10.3.3+

SOA Suite 11g

Eclipse

Workshop

Mail server

SNMP
SOA extension

A
dapters

BPM extension

SOA-DIRECT

Direct binding
reference

Direct binding
service

OWSM 11g

OSB 11g

Console

Installation of Oracle Service Bus 11g
It is pretty easy to get going with the Oracle Service Bus. Details can be found in the
installation guide and in the online chapter complement.

The main steps involve downloading the OSB 11g installation file, running it, and
subsequently running the FMW Configuration Wizard to configure an existing or new WLS
domain with the Oracle Service Bus. Ensure that the OSB server listens to a different port
than the SOA server.

The installation file also contains the Oracle Enterprise Pack for Eclipse (OEPE), which
in turn contains the OSB IDE plug-in.

Note that the SOA Suite 11g license includes OSB, so no separate licenses are required.
Also, the decision between using a composite application with the Mediator component
versus services on the OSB does not need to be financially driven.

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 429

Sending Invoices to Patients
Who Had Appointments
The Finance & Accounting department at St. Matthews—which we briefly met in the previous
chapter—offers an invoicing service to authorized consumers from various departments inside the
hospital. The concept is pretty simple: A consumer sends in details about the patient, the address
where the patient lives and the address the invoice should be sent to, and a list of the items for
which the patient is to be charged. The F&A department’s service will create the invoice, send it,
and track its progress to ensure the bill is paid. This is a perfect example of functional decoupling,
where the F&A department performs a reusable, encapsulated service for other parties in the
hospital.

St. Matthews decides to extend the patient appointment process by adding billing to it. Once
the appointment has taken place, the InvoiceService in the back-office system is called to start the
billing process. The invoicing service is hosted on a different system in a different business
domain, as explained later, and St. Matthews uses Oracle Service Bus to decouple the
appointment process from the billing process.

Note that the term domain is used in several ways: one is the business domain—an area of
related concepts, processes, data definitions, and terminology. Closely related to this conceptual
business domain is the more concrete business domain that consists of one or several
departments, individuals, systems, and applications responsible for executing the processes and
managing the data. Then, of course, there is the WebLogic domain—a separate instance of the
application server in potentially a distinct environment.

Decoupling Between Business Domains
An enterprise service bus provides a number of types of decoupling in areas such as security,
transport protocols, message formats, peak loads, and message exchange patterns. Services
offered to consumers across the enterprise typically require “more” decoupling than
intradepartmental services. In this case, it is perfectly possible that some archaic legacy system is
wrapped by OSB, its functionality exposed as an ordinary (standardized) Web Service. When the
F&A department at some point migrates to a more modern application, it will probably be able to
continue offering the same InvoiceService—with OSB then wrapping a completely different
underlying application.

We will go through a number of steps in order to create this service. First, we implement a
simple Invoice Web Service and then create (or register) a business service in OSB for this
InvoiceService. Next, we create a proxy service—the service as we want the rest of the enterprise
to see it.

The last step is to connect the business service and the proxy service with a so-called message
flow. Figure 13-5 provides an overview of these services and their relation with the OSB.

Implementing the InvoiceService on Behalf of the F&A Department
There are many ways to implement an InvoiceService. We do not have the legacy system at our
disposal that the fictional F&A department has. Any implementation will do for the purpose of
demonstrating OSB in this chapter. The most simple route is probably to create a Web Service by
using a simple Java class that serves as an invoicing implementation, annotating it with JAX-WS
annotations, and deploying it to a JEE container. See the online chapter complement for the
detailed steps.

430 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 431

Creating the Invoice Business Service
There are two ways to configure services in the Oracle Service Bus: through Workshop (a plug-in
for Eclipse) or through the browser-based console. In this case, we will use the latter.

Access the Service Bus Console at http://localhost:7001/sbconsole and then log in as
weblogic/weblogic1 (the default credentials).

All changes made through the console are made in so-called sessions that can be activated or
discarded, like database transactions or WLS configuration changes in the WebLogic Server
Administration Console. Therefore, before we can start doing anything, we have to start a new
session. Click the Create button in the Change Center in the top-left corner of the console.

Create a new project by clicking Project Explorer in the bottom-left corner of the dashboard.
Enter the new project name (InvoiceProject)and click Add Project. Next, create two folders in the
InvoiceProject, called Resources and BusinessServices.

We need to register the WSDL for the InvoiceService that we want to use in the business
service we are about to create. Enter the new Resources folder. Select the option Resources From
URL in the Create Resource drop-down list. Enter the URL for the WSDL for the InvoiceService
Web Service. Type InvoiceService_WSDL as the name for this resource. Indicate that resource
type is WSDL and then click Next. In the next page, OSB shows us the resources it will actually
import—the WSDL document and the associated XSD. Click the Import button to actually create
the resources (see Figure 13-6).

Our next action is the creation of a business service based on this WSDL resource. Navigate
to the folder BusinessServices and create a new business service by selecting Business Service
from the Create Resource drop-down. Type Invoice Business Service as the name of the business
service. Select the WSDL Web Service radio button and click the Browse button to open the
Select A WSDL Browser. Select the InvoiceService_WSDL. A second window appears in which

FIGURe 13-5. The InvoiceService is exposed to other departments through the OSB

SCA domain
(SOA Suite)

Invoice
application

Oracle Service Bus Finance & Accounting

Proxy
service

Business
service

Message
flow

Invoice
service

Patients &
appointments

Billing and
invoicing service

Invoice business
service

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 431

we need to select the correct port (in this case, the InvoiceProcessorPort). Click the Submit button
to confirm this choice (see Figure 13-7).

You can click the Last button to accept all further default values and complete the creation of
the service. Alternatively, you can inspect the subsequent steps—HTTP Transport Configuration,
SOAP Binding Configuration, and Message Content Handling. On the Summary page, click Save
to actually submit the business service definition.

This is a good moment to activate the changes created in the current session. Click the Activate
button in the Change Center in the upper-left corner (see Figure 13-8). The OSB Console will
present a form into which change notes can be recorded for future reference.

FIGURe 13-6. Loading the InvoiceService WSDL as a resource into the OSB project

FIGURe 13-7. Creating the Business Service Invoice business service

432 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 433

Testing the Business Service
The business service we have just created can be tested from within the OSB Console. Open
the Project Explorer and navigate to the BusinessServices folder under the InvoiceProject. The
“actions” column has a bug-like icon; click that icon for the Invoice Business Service. This will
bring up the embedded Test Console. Based on the XSD for the request message, a prepopulated
XML document is shown that we can edit to add meaningful data. We can also manipulate the
headers that will be sent in the message as well as add attachments.

Click the Execute button to have the service invoked. The Response Message is shown, along
with the response metadata (see Figure 13-9). However sparse the response, the business service is
working—the custom Java class InvoiceProcessor that implements the service is called and executed.

Creating the BillingAndInvoicingService Proxy Service
Now that the business service is working, it is time to move to the proxy service that will be
exposed to consumers in other domains in the enterprise. Despite the fact that the proxy service is
primarily a wrapper around the business service, it is still a service in its own right, with its own
WSDL and XSD documents. Note that some proxy services call upon multiple business services
or even no business services at all.

Select the InvoiceProject in the Project Explorer and create a new session in the Change Center.
Next, create a folder called Proxy Services and then enter that folder.

Select Proxy Service in the drop-down for Create Resource. The Create A Proxy Service
Wizard appears. Enter the name of the new service: BillingAndInvoicingService. Click the radio
button Create From Existing Service business service in the Service Type section. Select the
Business Service Invoice business service as the example to create the proxy service from. Then
click Next. On the second page can we set transport configuration details, such as the protocol
through which this proxy service can be accessed (“http” in this case; other options include jca,
jms, local, sb, and ws). We can also specify the endpoint URI—the relative part of the URL at
which the proxy service can be invoked. Accept the default for now (see Figure 13-10).

FIGURe 13-8. Activating the changes in the current session through the Change Center

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 433

FIGURe 13-9. Testing the business service

FIGURe 13-10. Creating the proxy service

434 Oracle SOA Suite 11g Handbook Enterprise-Level Decoupling with Oracle Service Bus 435

FIGURe 13-11. Opening the message flow editor for the BillingAndInvoicingService proxy service

Also accept the default settings on the next three pages—HTTP Transport Configuration,
Operation Selection Configuration, and Message Content Handling. On the last (Summary) page
click Save.

We now have a business service and a proxy service—but are the two connected? Is invoking
the proxy service at this moment bound to end in tears because it has no place to go with the
request? There needs to be a message flow for the proxy service—a message flow that includes a
Routing action to the business service.

A message flow in OSB is the link between a proxy service (the interface for consumers) and
the business service (the interface invoked by OSB to have [some of] the actual work done). The
message flow determines the routing (which business service is to be invoked) and the actions to
be performed on the message (both the request on its way in from the proxy service to the
business service and the response on its way out). These actions can include validation,
transformation, and enrichment; various types of reporting; Split-Join for parallel execution; and
so on.

Open the folder ProxyServices. The Actions column for the BillingAndInvoicingService
contains an icon that can be clicked to bring up the message flow editor (see Figure 13-11).

The message flow starts with the BillingAndInvoicingService start node. It also already
contains a node of type Route connected to the business service. This is due to the fact that we
created the proxy service based on the business service. If we had created the proxy service based
on a WSDL instead of an existing business service, we would have had to create this routing node
ourselves.

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 435

Let’s add a Report action to see at least some tangible benefit from having the OSB wrap the
business service. Click the start node of the message flow and then select the option Add Pipeline
Pair in the pop-up menu (see Figure 13-12).

A pipeline pair explicitly represents both the request and the response message path in a
node. A pipeline consists of one or more stages. A stage is a container for a collection of related
actions. A pipeline can contain multiple stages that may each fulfill a specific function. There are
three types of pipelines: request pipeline, response pipeline, and error pipeline. You can add
error handlers on the stage level or at the pipeline level. If no error handler is defined, the error
will be handled by the default system error handler and results in a SOAP fault.

Click the Request Pipeline node and then select the option Add Stage in the pop-up menu.
The stage is added to the message flow, inside the request pipeline. Click the stage and select Edit
Stage from the pop-up menu. In the stage editor, click Add An Action and select the Report action
from the Reporting menu (see Figure 13-13). This type of action will publish information from
each instance of the proxy service; this information can be monitored on the dashboard. We will
report the name of the patient for whom we want the invoice to be prepared.

FIGURe 13-12. Adding a pipeline pair to the start node BillingAndInvoicingService

FIGURe 13-13. Editing the stage and adding a Report action

436 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 437

The Report editor appears. Click the link “variable” and enter $body as the expression. Note
that the dollar sign prefix in OSB indicates a variable. $body is the predefined variable that
contains the body (payload) of the message. Enter Patient Name as the name of the key. Enter the
following XPath expression to extract the value from the “body” variable:

./inv:sendInvoice/arg0/patientName

Click the Save All button to save the updated stage and message flow. Click the Activate
button in the Change Center to commit the changes.

Open the ProxyServices folder. Click the “bug icon” in the Action column for the BillingAnd
InvoicingService. The test console appears with the request message. Enter some details for a patient,
especially the name of the patient, and then click the Execute button (see Figure 13-14).

The Response message appears, along with the Invocation trace. This trace provides some
insight into what went on inside the proxy service.

One of the things that should have happened in the message flow between the entrance of
the message in the proxy service and the routing action that invokes the business service is the
Report action. The name of the patient must have been reported, and we should be able to find
that message report in the dashboard.

Open the Operations tab in the navigator in the left section and then click the Message
Reports link. A summary of message reports is displayed. The Patient Name key for the service
call we just made is reported here, as shown in Figure 13-15.

You may feel that functionality would be nice to have for SOA composite applications, too.
And, in fact, through the composite sensors (discussed in Chapter 16), we have a very similar
mechanism.

FIGURe 13-14. Testing the BillingAndInvoice proxy service

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 437

FIGURe 13-15. Inspecting the result from the report action on the dashboard

The PatientAppointmentService
and external Parties
We created the PatientAppointmentService in Chapter 6—a service that can be invoked to request
an appointment for a patient. We assumed at that point that the service would be invoked by
general practitioners (GPs) referring their patients to the hospital and other healthcare providers.

However, we have not really given any thought to the fact that it may not be such a good
idea to have external parties call into our services just like that. We would effectively open up our
back-end systems to third parties, possibly leaving them vulnerable to misuse and attacks such as
DoS (denial of service). The first figure in this chapter suggested that a real enterprise service bus
be used as gateway between our service domain and the rest of the enterprise as well as the
world at large to shield our primary systems.

So this interaction with the world outside of St. Matthews—family doctors calling into the
PatientAppointmentService—should be mediated by our enterprise service bus implementation:
the OSB (see Figure 13-16).

Apart from the increased security we gain, this also adds decoupling between the composite
application and its consumers, the GPs. This insulation layer can help to shield the consumers
from changes in the underlying service. The service can easily be exposed by the OSB in
alternative ways—for example, through e-mail—that make it even more useful than the current
composite-based service already is.

Adding a Virtualization Layer
The Oracle Service Bus is used to add a virtualization layer on top of the existing Patient
Appointment Service composite application. This layer can render a number of services,
including security enforcement, throttling of peak loads, message enrichment, endpoint

438 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 439

virtualization, validation, and logging. At this point, we are primarily interested in decoupling
the general practitioners from the internal services domain—some of these other services are
added later on.

Assuming that the SOA Suite is running, with the PatientAppointmentService application
deployed and enabled, we will create the proxy service that exposes the RequestAppointmentFor
Patient service to general practitioners. In the same vein as the previous section on the
InvoiceService, we create a business service that is associated with the process operation on the
PatientAppointmentService. We then prepare a WSDL and XSD for the proxy service as a variation
on the definitions for the PatientAppointmentService, making life a little bit easier for the external
consumers. We create a proxy service called RequestAppointmentForPatient, using the WSDL and
XSD that were just prepared. Then we define the message flow for the proxy service, with a
transformation step to construct the request message to be sent to the SOA composite application,
a reporting step to help trace the incoming requests, and a routing step to invoke the business
service configured for the PatientAppointmentService.

When these changes have been activated from the Service Bus Console’s Change Center, we
can test the proxy service. A call to the proxy service should result in a response, of course, a new
instance of the composite application PatientAppointmentService in the SOA Suite, and a report
message in the dashboard in the console.

FIGURe 13-16. OSB virtualizes PatientAppointmentService, decoupling it from external
consumers.

SOA Suite 11g

OSB

General
practitioners

Business
service

Proxy
service

Message
flow

Request appointment
for patient

PatientAppointmentService
business service

PatientAppointmentService

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 439

Configuring the Business Service
Create a new project in the OSB Console and create a new session in the Change Center. Then click
the Projects node in the Project Explorer and enter the name for the new project: PatientAppointments.
Create the folders Resources, BusinessServices, and ProxyServices for this project.

Select the folder Resources and create a new resource as “Resources from URL”—just like we
did in the previous section. Enter the URL for the WSDL for the PatientAppointmentService
(which you can retrieve from the FMW Control). Specify the name for the resource,
PatientAppointmentService_WSDL, and select WSDL as the resource type. Click Next. The Load
Resources Wizard shows the selected WSDL document, along with two more WSDLs and three
XSD documents; these are the (nested) dependencies for the WSDL of the
PatientAppointmentService. We will accept the fact that we need all these resources. Click
Import. When the Import operation is completed successfully, activate the current change session
in the Change Center.

Finally, navigate to the folder Business Services. Create a new resource of type Business
Service. Enter PatientAppointmentService Business Service as the name and provide a
description. Select the radio button WSDL Web Service and select the WSDL resource we just
created. Select the (only) port in the WSDL. Then click the Last button and click Save in the
Summary page. Activate the changes in the Change Center.

Using SOA-DIReCT Transport to Access SOA Composite Application
Any Web Service can be accessed from a business service in OSB in the way described
earlier. However, services exposed by SOA composite applications can be accessed in a
much more direct way: The SOA-DIRECT transport provides native connectivity between
Oracle Service Bus and Oracle SOA Suite service components. This native connectivity
offers many advantages over using the normal, formal, SOAP-based Web Service transport.
Among these are performance—the SOA-DIRECT transport is more direct, RMI-based, with
less XML serialization and communication abstraction. This transport supports WS-
Addressing, including optional auto-generation of ReplyTo properties for asynchronous
callbacks. It also does identity and transaction propagation—and eventually propagation of
the ECID conversation ID that will allow the FMW Enterprise Manager console to present a
true end-to-end message flow trace. SOA-DIRECT can handle attachments and supports
connection and application retries on errors.

In order for the PatientAppointmentService business service to be able to use the
SOA-DIRECT transport, the SOA composite application PatientAppointmentService needs
to expose a Direct Binding Service interface—in addition to or instead of the SOAP Web
Service binding that it currently exposes. To do this, open the Composite Editor. Drag a
direct binding from the list of service adapters and drop it in the Service lane. Specify
Direct_PatientAppointmentService as the name and select the existing PatientAppointment
Service.wsdl as the WSDL. Wire this service binding to the BPEL component (see Figure 13-17).

Back in OSB, we need to create a WSDL resource based on the WSDL of this new
Direct Binding Service interface. To get hold of this WSDL, open the URL http://
localhost:8001/soa-infra/ in a browser (replace “localhost” with the host that runs your SOA
Suite environment). The page that appears lists all services and WSDLs exposed by the
soa-infra application, including the one for Direct_PatientAppointmentService.

(Continued)

440 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 441

FIGURe 13-17. Creating the Direct Binding interface for the PatientAppointmentService

Next, create a new business service. Call the service Direct PatientAppointmentService.
Select WSDL Web Service as the service type. Select the WSDL resource you created based
on the corresponding Oracle SOA Direct Binding Service WSDL, and choose the appropriate
port or binding. The protocol setting on the Transport Configuration page already defaults to
soa-direct based on the selected binding in the WSDL and accesses the Direct Patient
AppointmentService over the native WLS T3 protocol rather than SOAP/HTTP.

This business service can, of course, be called from the RequestAppointmentForPatient
proxy service in exactly the same way as the not-so-direct PatientAppointment business
service; it is totally transparent to proxy services how the business service they invoke does
its stuff.

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 441

Defining the Proxy Service RequestAppointmentForPatient
The service that we will expose to general practitioners will be somewhat friendlier and more to
the point than the current internal one. The WSDL specifies a proper operation name—
RequestAppointment—instead of the meaningless process that accidentally slipped in as the
default operation exposed by any BPEL process. Additionally, the schema definition for the
request message has been redesigned—not complicating the message with multiple sets of
contact details, for example.

This short paragraph is actually not trivial. It states the fact that St. Matthews will be
decoupling the service consumer from the technical and application (BPEL) specific
implementation details. This is a fine example of decoupling that directly leads to increased
agility in the future.

Create a new session in the OSB Console. Navigate to the Resources folder in the Patient
Appointments project and create a new resource of type Interface/WSDL. Enter the name for the
resource—RequestAppointmentForPatient_WSDL—and select the file RequestAppointment
ForPatient.wsdl. Finally, click the Save button.

The file is uploaded and the resource created, although with a validation error because of the
missing XSD document on which the resource has a dependency. Create another new resource,
of type XML Schema Definition, and upload RequestAppointmentForPatient.xsd as
RequestAppointmentForPatient_XSD. Next, go to the RequestAppointmentForPatient_WSDL
resource and edit its references: Select the XSD resource as its dependencies. With the validation
error resolved, activate the session in the Change Center.

Next, we need to create the proxy service. Create a new session, go to the ProxyServices
folder in the Patient Appointments project, and create a new proxy service. Specify the name—
RequestAppointmentForPatient—and provide some description. Click the radio button WSDL
Web Service and select the WSDL resource that was just uploaded. Select the
PatientAppointmentServiceBinding—the only binding available in the WSDL document—and
click the Last button. Then click Save in the Summary page and activate the session.

Defining the Message Flow for the Proxy Service
We have set up the business service—wired to the service exposed by the SOA composite
application running in the SOA Suite—and the proxy service with its own public and friendly
WSDL and XSD. The two are entirely unrelated at this point. Time, therefore, to add a message
flow to the proxy service—a message flow that this time will have to do more than just route to
the business service, although that is still an essential part of its job.

We will have to transform between the request message that is received by the proxy service
and the message that must be sent to the business service. Transformations in OSB can be done
using XSLT, XQuery, or a combination of the two. We will use a combination—primarily just to
demonstrate how that is done. The XSLT part of the transformation is prepared outside of OSB,
using the Mapping editor in either JDeveloper or Workshop (or in vi or Notepad if you are feeling
brave). This file must now be loaded from the file system to the OSB, just like previous resources
were loaded, such as WSDL and XSD. Create resource RequestAppointmentForPatient_to_
PatientAppointmentService_XSLT in the Resources folder of the Patient Appointments project,
based on the file PatientAppointmentRequest_to_AppointmentServiceRequest.xsl.

Go to the ProxyServices folder. Click the message flow icon in the Actions column for the
RequestAppointmentForPatient proxy service. Click the start node (RequestAppointmentForPatient) to
add a Route node. Call this node InvokePatientAppointmentService. Click the node to edit it. Add

442 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 443

an action of type Routing/Route. Then, select the process operation on the PatientAppointmentService
business service as the target for the Route node (see Figure 13-18).

Click the start node (RequestAppointmentForPatient) again to add a pipeline pair. Click the
Request Pipeline node to add a stage. Call this new stage Prepare Request Message for Business
Service. Click the stage to start editing in order to add actions, and then click Add Action and
select the Message Processing/Assign action (see Figure 13-19).

We will first configure the main transformation in the message flow using this Assign action
and a subsequent Replace operation. To configure the Assign, click the expression link. Click
XSLT Resources in the XQuery/XSLT Expression Editor. Click the Browse button and select
RequestAppointmentForPatient_to_PatientAppointmentService_XSLT. Type the XPath expression
$body/*[1]. This refers to the first element in the body variable. Click the Save button to confirm
these settings.

FIGURe 13-18. Configuring the Route node in the message flow for the proxy service

FIGURe 13-19. Adding a pipeline pair, stage, and the first Assign action to the message flow for
the proxy service

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 443

Next, click the Assign action to create a new action of type Message Processing/Replace. The
name of the variable in which something is replaced is body. The entire contents of the body
variable are replaced with the result of the XQuery expression $transformedAppointmentRequest:
the current contents of variable transformedAppointmentRequest (see Figure 13-20).

There are two more things to do: The Gender element is set to either male or female in the
incoming request, yet the business service expects M or F. A similar situation exists with the
PriorityCode: The public service asks consumers to use strings such as lower, normal, and very
high to specify the priority, even though the SOA composite expects an integer value in the range
0 to 4. We need to rectify these two.

Because we can create variables in the message flow, extending the transformation with
additional steps to manipulate the message that is on its way to the business service is pretty
simple—much easier than it would be in the Mediator. Even better, of course, would be to use
a Domain Value Map (DVM), as is supported in Mediators. OSB 11g initially does not support
DVM out of the box, although a later release will.

Updating the Message with the Proper Value for Gender Using a temporary variable, it
becomes quite easy to set the correct value for gender: Create an Assign action—as the first action
in the message flow—and set the expression to the following:

fn:substring(fn:upper-case($body/app:PatientAppointmentRequest/...
 ...app:patientDetails/app:gender/text()),1,1)

The value should be assigned to a variable called Gender that is to be instantiated by this
action. A simple Replace action is then used—after the body has been updated with the
transformation result—to update the body with this derived value for Gender. Create a Replace
action and set the expression to $Gender. The variable to be manipulated is body, and the XPath
expression that selects the element that is to be updated is as follows:

 ./app1:AppointmentServiceProcessRequest/app1:patientDetails/app1:gender

Finally, select the radio button Replace Node Contents.

FIGURe 13-20. Configuring the Assign and Replace actions that initialize a variable with the
transformed request body and replace the body contents with that variable

444 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 445

enrichment of the Message with the Priority Code The last thing we need to put right is the
priority code. The XSLT transformation does not produce a Priority Code element in the body. So
instead of replacing (the contents of) an existing node, we have to create a new one, using an
Insert action. Create an Insert action as the last action in the stage and set the expression to the
following:

<app1:priorityCode>{$PriorityCode}</app1:priorityCode>

This means that a new element called priorityCode in the namespace indicated with app1 is
to be inserted into the document. Its value is set to the value of the XQuery variable PriorityCode.

This new element is to be inserted into the variable body as the first child of the element
selected by the following XPath:

./app1:AppointmentServiceProcessRequest/app1:appointmentRequestHeader

Now you may—or really should—wonder where this variable PriorityCode comes from. Of
course, that variable needs to be created in another Assign action to be added as the first action
in the stage. This action assigns a value to the (new) variable PriorityCode, using the following
expression:

fn:replace(fn:replace(fn:replace(fn:replace(
 fn:replace($body/app:PatientAppointmentRequest/app:Priority, 'lower', '1')
,'low','0'),'normal','2'),'very high','4'), 'high', '3')

This expression replaces the strings low, lower, normal, high, and very high with the
numerical equivalents expected in the business service. It’s not pretty and definitely an example
of where a Domain Value Map would be preferable. The online chapter complement explains
how this could be done with a DVM and some manual steps.

Click Save All to close the stage and the message flow. Click Activate in the Change Center to
commit the session and all its changes.

Testing the Proxy Service
Go to the folder ProxyService and click the Test Console icon in the actions column for the
RequestAppointmentForPatient proxy service. A prepopulated request message appears that you
can refine. Click the Execute button to send the message to the proxy service (see Figure 13-21).

After a few seconds, you should receive the response message from the proxy service with the
appointment identifier. Notice anything strange? Look closely: Is this the correct message you get?
It is not! We have forgotten to process the response from the business service in the message
flow—so we are passing the response that arrived from the SOA Suite through to the consumer of
the public service. That is not good! Therefore, we need to add another message-processing
action in a stage in the response pipeline.

Go to the message flow for the proxy service. Click the Response Pipeline node and add a
stage. Call the stage Create Response Message based on BusinessService result. Edit the stage.
Create an Assign action that sets the variable AppointmentIdentifier with the following value:

 $body/ap:AppointmentServiceProcessResponse/ap:appointmentIdentifier/text()

Before closing the XQuery/XSLT Expression editor with this expression, we first need to create
a user-defined namespace by clicking the Add Namespace link. Type ap as the prefix and http://
stmatthews.hospital.com/patient/AppointmentProcess as the URI for this namespace.

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 445

Create an Assign action that sets the variable AppointmentIdentifierResponse from the
following expression:

<PatientAppointmentResponse xmlns="com.stmatthews.hospital/public/appointments">
 <IdentifierForAppointment>{$AppointmentIdentifier}</IdentifierForAppointment>
</PatientAppointmentResponse>

Finally, add a Replace action that replaces the contents of the body variable with
$AppointmentIdentifierResponse (see Figure 13-22).

The request pipeline accesses the business service that makes the call to the currently
configured endpoint. It invokes the SOA composite application PatientAppointmentService,
which will instantiate a new instance for this appointment request. Note that this instance will
continue to be around after the response was sent and long after the OSB service instance has
ceased to exist. We will access that same instance later on, using the appointment identifier, to
learn about the status of an appointment.

exporting the Project and Its Resources
The resources that comprise the Patient Appointments project—WSDLs, XSDs, business service,
proxy service with message flow—can be exported to a single archive file (a JAR file). This file

FIGURe 13-21. The call to the public RequestAppointmentForPatient proxy service receives a
response with the appointment identifier.

446 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 447

can serve as the backup and is also the vehicle for transporting the project to other environments.
You also can use it to export projects developed in Eclipse to the run time using the console.

To export the project, you need to go to System Administration in the navigation pane on the
left of the OSB Console and click Export Resources. A list of the projects appears—that is, when
the radio button Export Projects is selected. Mark the check boxes for the projects that you want
to export and then click the Export button. A JAR file with the selected projects is downloaded to
your local file system.

Requesting the Appointment Status via e-mail
We have exposed the PatientAppointmentService to third parties as a proxy service on the Oracle
Service Bus, firmly decoupled from our internal service domain, with a slightly modified service
interface, more aptly named operation, and somewhat improved schema design. The service is
still a synchronous SOAP-based Web Service.

St. Matthews has received requests from general practitioners as well as patients who wanted
to be able to retrieve the status of an appointment—not by invoking a SOAP Web Service, but
simply by sending an e-mail and receiving the information as a reply mail message. This is what
we will implement next.

Inbound and Outbound e-mail Transport in OSB
SOAP-based Web Services are fine for computers—but not so much for people when they need to
use them directly. The Patient Appointment Service SOA composite application exposes a service
from which the status of an appointment can be requested using the appointment identifier as
the key. The functionality is valuable and is used by the Patient Portal application, published by

FIGURe 13-22. Configuration of the response pipeline to produce the proper response message
format and content

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 447

St. Matthews on its website. However, for direct consumption by general practitioners, it is less
than ideal as they are not very much SOAP-enabled.

An alternative mode of communication supported by Oracle Service Bus is e-mail transport.
OSB can receive e-mails into a proxy service as well as send e-mails from a business service. We
will leverage this capability to implement the following scenario: A general practitioner sends an
e-mail to a special e-mail address at St. Matthews. The subject of the e-mail ends with a colon
followed by the appointment identifier. The GP will receive a reply message, typically after a few
seconds, with the schedule details for the appointment. Figure 13-23 shows an e-mail from Frank
that is sent to appointmentmanager@stmatthews.com to enquire after the status of appointment
130009; the reply produced by the Oracle Service Bus provides the appointment details.

The implementation of this functionality requires a number of steps: An e-mail server must be
up and running. A so-called “service account” must be created in Oracle Service Bus that
identifies the incoming e-mail server. A proxy service of type messaging with transport e-mail is
configured to listen to this service account for e-mails and process them. The message flow for
this service extracts the subject and the sender of the e-mail from the transport headers of the
incoming e-mail. It then invokes a business service that is created for retrieving the appointment
status from the PatientDataService SOA composite application.

The response pipeline for the proxy service composes the body for an e-mail message from
the response from the business service—and indirectly the BPEL process in the SOA Suite—and
makes a service call out to a generic e-mail proxy service and send e-mails to a given address
with a given content. This proxy service calls the EmailBusinessService to do the actual work; this
business service is a messaging service based on the e-mail protocol and is configured to use a
preconfigured SMTP server that was set up in the System Administration section of OSB. Although
such a configuration has a static endpoint URI—all e-mails are to be sent to the same e-mail
address—we achieve dynamic destination e-mail address selection through manipulation of the
transport headers in the generic e-mail proxy service (see Figure 13-24).

FIGURe 13-23. A sample e-mail to appointmentmanager@stmatthews.com enquiring after the
status of appointment 130009

448 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 449

NOTe
We assume that by now you are accustomed to working with change
sessions that need to be created and activated in OSB Console, so
these are not explicitly mentioned in the steps described next.

Preparation for e-mail-based Services
In order to send and receive e-mails, we need access to a mail server—as in Chapters 6 and 10.
On the mail server, we need to have multiple accounts—at least one to send the appointment
status requests from and one to act as the endpoint for service requests arriving by e-mail
(appointmentmanager@stmatthews.com). The wiki provides configuration details for setting up
a local e-mail server with these domains and accounts based on the JavaEmail project.

In order to use an e-mail account as a receiving endpoint for a proxy service, we need to
create a new resource in OSB of type Service Account. Go to the Resource folder for the Patient
Appointments project and create a new resource of type Service Account. Enter StMatthewsemail

FIGURe 13-24. Asynchronous request-response through e-mail in OSB

SOA Suite 11g

OSB

General practitioners

GetStatus
BS

Proxy
service

PatientAppointmentService

E-mail server
appointmentmanager@stmatthews.com

@

Email
service

E-mail
business
service

@

Service callout
to e-mail service

Extract From &
Subject from headers
replace body contents

Set To & Subject via
transport headers

Message
flow

Message
flow

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 449

as the name and choose Static as the type. The username should correspond with the e-mail
account (that is, appointmentmanager@stmatthews.com, with the corresponding password).

To be able to also send e-mails, we need to configure an SMTP server. Click System
Administration in the navigator on the left side. Click SMTP Servers and then click Add to
create a new SMTP server definition. Enter the name (LocalJavaMailServer), the server URL
(localhost), and the SMTP port number (typically 25). Depending on the server configuration,
you may have to provide a username and password.

Creating the Generic e-mail Service
Sending an e-mail is a fairly generic operation and one that every organization should probably
have an enterprise-level service for—a service that takes the e-mail content, subject, and
destination as input and sends it on its merry way. Such a generic service is created next. This
approach is based on several resources listed on the wiki.

To begin, create a new project called EmailSender and then create an XSD resource called
EmailRequest_XSD that describes the input to the generic e-mail service. The source for this XSD
should be like this:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.org/EmailRequest"
xmlns:tns="http://www.example.org/EmailRequest"
elementFormDefault=”qualified">
 <element name="Email" type="tns:EmailType"></element>
 <complexType name="EmailType">
 <sequence>
 <element name="to" type="string"></element>
 <element name="subject" type="string"></element>
 <element name="content" type="string"></element>
 </sequence>
 </complexType>
</schema>

Creating the e-mail Business Service Create a business service called emailBusinessService.
The service type is Messaging, the request message type is Text, and the response type is None.
The transport protocol is e-mail, and we need to provide an endpoint URI even though we will
dynamically determine the “endpoint” or real destination e-mail address. Enter mailto:dummy@
mail.com as the value.

Select the SMTP server you created previously. Specify the From address—the e-mail account
from which the e-mails will be sent: appointmentmanager@stmatthews.com. You may specify
the From name, Reply To name, and address as the finishing touch. Accept the defaults for other
fields and save the changes. If you now activate the change session, you can test the business
service to verify whether an e-mail is sent.

This business service will always send the e-mail to the same destination—the endpoint URI
we just configured. To send a mail message to a different address, we would have to create a new
business service. Alternatively, a much more attractive option is to manipulate the transport
headers that are propagated to the business service. We will now create a proxy service that will
do precisely that.

450 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 451

Creating the Proxy Service emailService Create a new proxy service called emailService and
select Messaging as the service type. In step 2, select the XML radio button and the Email element
in the EmailRequest_XSD resource for the request message type. Even though this service will not
provide a meaningful response, we need to configure some response message type; otherwise, we
will not be able to invoke this service in a service callout. Therefore, select XML and any type of
element as the response message type. Click the Last button to accept all other default values and
then click Save to create the proxy service.

We need to configure the message flow for the proxy service. Click the start node and select
Add Route from the pop-up menu. Call the routing node HaveBusinessServiceSendemail and edit
the route. Select EmailBusinessService as the target for the routing node. Add a Request action of
type Communication/Transport Headers. Select the outbound request as the one to add headers
to. Set the Subject header to the expression $body/ema:email/ema:subject/text(), and set the To
header to $body/ema:email/ema:to/text(). This last action will override the static endpoint URI
and make the business service send the e-mail to the address thus copied. Then add a Message
Processing/Replace action that replaces the XPath expression in the variable body with the
expression $body/ema:email/ema:content/text(). Finally, select the radio button Replace Node
Contents.

This completes the creation of the proxy service. Activate the changes. Now you can test the
proxy service—see whether you can send an e-mail to another recipient.

Implementing the RequestAppointmentStatusPeremail
Proxy Service
We will now create a service that is triggered by the reception of an e-mail, calls the Patient
AppointmentService SOA composite, and then invokes the generic e-mail service we created in
the previous section.

Creating the Retrieve Appointment Status Business Service
Go to the Business Services folder in the Patient Appointments project. Create a new business
service called Retrieve Appointment Status Business Service. The service type is WSDL. Select
the same PatientAppointmentsService_WSDL we used before and then select the port in this
WSDL. Click the Last button and save the service definition.

Creating the Proxy Service RequestAppointmentStatusPeremail
Create the proxy service RequestAppointmentStatusPerEmail in the Proxy Services folder of the
project. Select Messaging Service as the service type and then select Text as the request message
type and None for the response message type. On the Transport Configuration page, select
e-mail as the protocol and set the endpoint URI to mailfrom:localhost:110. Click Next to go to
the eMAIL Transport Configuration page. Select the StMatthewsEmail service account that was
created in the preparation section. Note that this service account is specifically linked to the
appointmentmanager@stmatthews.com account—the account that this proxy service will be
listening to. Accept the default POP3 e-mail protocol setting as well as the other default settings
on this page. Click the Last button and then the Save button to create the proxy service.

Open the message flow for the proxy service and click the start node RequestAppointmentStatus
PerEmail. Add a Routing node, call it Invoke_RetrieveAppointmentStatus, and open the node for
editing. Route to the getAppointmentStatus on the business service. Add an Assign action in the

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 451

Request Actions section and then assign the following expression to a new variable called
requestMessage:

<app:AppointmentStatusRequest
xmlns:app="http://stmatthews.hospital.com/patient/AppointmentProcess">
 <app:appointmentIdentifier>{$appointmentIdentifier}</
app:appointmentIdentifier>
</app:AppointmentStatusRequest>

This variable, $appointmentIdentifier, will be initialized in the pipeline pair that we will add to
the message flow.

Add another Replace action—replacing the node contents—that switches the XPath expression
(that is a period character) in the variable “body” with the expression $requestMessage.

Next, add a pipeline pair to the start node. Create a stage in the request pipeline called
Prepare Request Message for Business Service and then create three Assign activities for the
variables from, subject, and appointmentIdentifier, with the following expressions:

$inbound/ctx:transport/ctx:request/tp:headers/email:From
$inbound/ctx:transport/ctx:request/tp:headers/email:Subject
fn:substring-after($subject, ':')

The first two expressions extract information from the incoming e-mail’s transport headers. The
last expression retrieves the appointment identifier from the e-mail subject based on the assumption
that this identifier is formed by everything after a colon.

This completes the request pipeline. Let’s turn our attention to the response pipeline. This
pipeline is executed when we have first derived the three variables in the request pipeline and
then invoked the Patient Appointment Service to retrieve the status of an appointment based on
the identifier. The body variable is populated with the status information, and we are ready to
invoke the EmailService that will send the e-mail to the original requestor (see Figure 13-25).

FIGURe 13-25. Configuring the message flow for the proxy service with the service callout to
the EmailService

452 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 453

Add a stage to the response pipeline. Edit the stage and add a Communication/Service Callout
action that invokes the EmailService proxy service. Note that the service browser will only display a
proxy service if it has a response type that is not set to None. Specify emailInput and emailOutput
as the names for the Request and Response Document variables, respectively.

Create two Assign actions in the Request Actions section. The first one is used to set the value
of a new variable called emailBody:

concat('Appointment will take place on '
,$body/app:AppointmentStatusResponse/app:plannedSchedule/...
 ...sched:AppointmentDateTime
,' in room ',$body/app:AppointmentStatusResponse/app:plannedSchedule/sched:Room
,'. The medical consultant will be '
, $body/app:AppointmentStatusResponse/app:plannedSchedule/sched:Doctor
,'. Remarks:'
,$body/app:AppointmentStatusResponse/app:plannedSchedule/sched:Description)

The second one sets the value of the emailInput variable:

<ema:Email xmlns:ema="http://com.stmatthews.hospital/EmailRequest">
 <ema:to>{$from/text()}</ema:to>
 <ema:subject>With regards to: {$subject/text()}</ema:subject>
 <ema:content>{$emailBody}</ema:content>
</ema:Email>

Here, we also make use of the variables $from and $subject that were set in the request
pipeline. This completes the proxy service.

Testing the e-mail Service Interface for the Proxy Service
RequestAppointmentStatusPeremail
We have implemented what we set out to do: Create a service interface that returns the status of
an appointment in the form of an e-mail and that can be invoked itself through an e-mail. By
sending an e-mail that has the appointment identifier included in the subject (everything behind
the colon) to appointmentmanager@stmatthews.com, the service consumer will activate the
proxy service that invokes the Retrieve Appointment Status business service—based on the SOA
composite application Patient Appointment Service—and then performs a service callout to the
EmailService to send an e-mail to the e-mail address from which the initial message was received.

Testing this service is simple: Send an e-mail with an actual appointment identifier to the
configured e-mail address and wait for a response message that informs you about the appointment
details. Refer back to Figure 13-23 to see the results.

Service Result Caching for the Retrieve
Appointment Status Business Service
The status of an appointment consists primarily of the scheduling details: date and time, location,
and doctor. When those details have been determined, they rarely change. The service that
returns the status of an appointment is a candidate to have its results cached—especially when
many calls are made for the same appointment. The steps to enable result caching are fairly
straightforward: First, we have to make sure that service result caching is enabled for the OSB

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 453

instance through a global setting. Then we need to enable result caching for the business service
and specify the expression to derive the key from an incoming request message and specify the
Time To Live for results in the cache. Let’s go through these steps in detail and then see the cache
in action.

enabling Result Caching Through Global Settings
Before we can enable service result caching for any business service, this feature needs to be
switched on for our OSB 11g instance. In the console, go to the Operations panel and select the
Global Settings link. Make sure that the check box for Result Caching is checked.

Configuring Service Result Caching for the
RetrieveAppointmentStatus Business Service
Any business service can be configured for result caching. This configuration has a few aspects:
Enable result caching for the service, indicate the Time To Live for cached results, and specify the
key that identifies the results.

The configuration of result caching for a business service requires us to indicate for how long
the results can be considered fresh (and when they should be flushed). The Time To Live can be
indefinite or zero (always cache or never cache), a fixed period, or a duration that is somehow
calculated from the request or the response message in an XQuery expression.

Every result in the cache is identified by a key. The value of this key is derived from the
incoming request message. All messages that produce the same value of this key will get the same
value from the cache. When the key for an incoming message does not yet exist in the cache,
the business service will execute normally, store the result in the cache, and return the result to
the caller. Every subsequent caller with the same key in its request message will get the result
from the cache, for as long as it is valid.

Locate business service RetrieveAppointmentStatus in the Business Services folder in the
PatientAppointments project. Click the service to bring up its configuration. Click the edit icon for
the Message Handling Configuration section to open the edit page for this section (see Figure 13-26).
Check the Supported box for Result Caching. Also, specify the expiration time (set it at 30 minutes in
this case).

Next, we need to specify the cache token expression. This is an XQuery expression that
evaluates to the key that identifies each cache entry. The expression is evaluated against the
request message. It should return a string that is unique for every set of input data that should
result in a specific response message.

In our case, every status request for the same appointment identifier should result in the same
response from the business service. Therefore, the cache token expression should evaluate to the
value of appointmentIdentifier:

$body/app:AppointmentStatusRequest/app:appointmentIdentifier

Requesting the Appointment Status via ReST
We have exposed the PatientAppointmentService to third parties as a proxy service on the Oracle
Service Bus, firmly decoupled from our internal service domain, with a slightly modified service
interface, and now as a standardized synchronous SOAP-based Web Service and with a more
human friendly e-mail interface. However, there is call for more: both from internal development
teams who are working on web applications that need to expose appointment-related functionality

454 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 455

FIGURe 13-26. Configuring service result caching for the RetrieveAppointmentStatus business service

Alternative Service Interactions
The preceding approach opens up several avenues for direct interaction between end
users—and even non-SOAP and XML-oriented applications—and services exposed by the
OSB. When the same e-mail account is to be used for different types of requests—for
example, cancellations of appointments in addition to status requests—it is good to know
that we can use a Conditional Branch node instead of a regular Route node. We can create
a message flow that enters one of several branches, depending on the evaluation of
conditions that depend on the contents of request messages and the values of header
variables. The conditional branch is similar to the Pick activity in BPEL.

Similar effects—but even more dynamic—can be achieved with the Dynamic Routing
action, which allows us to specify the service and operation to invoke at run time through
XQuery variables. The Routing Table action is another condition-based routing mechanism.
Finally, there is the option of an If. Then action, which enables us to specify one or more
actions that should only be executed when an expression evaluates to true.

The Service Callout action—and its counterpart, the Java callout—can play an important
role, as we have seen, in engaging additional services. This can be used for special
communication or reporting needs. However, these actions derive their value primarily from
enrichment cases. For example, the incoming message needs to be extended with data that is to
be looked up from a service before the business service can be invoked, or the response
message from the business service needs to be complemented by data that needs to be retrieved
from a service or database. Java callout actions can also provide special transformation
capabilities—for example, to turn the JSON format returned by the business service into proper
XML. The book’s wiki has references to examples of implementing these enrichment scenarios.

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 455

as well as from external partners who want to embed “appointment portlets” into their own portal.
These teams want a programmatic interface, but feel that full-blown SOAP is too complex for their
needs (which may include calling a service in Ajax calls from JavaScript running in a browser).
They have asked for a REST-style service to invoke with a simple HTTP GET request that will pass
parameters in the URL.

ReSTifying OSB Services
Oracle Service Bus will help us expose the Retrieve Appointment Status Business Service (which
we created in the previous section and exposed through an e-mail-based proxy service) with a
REST-style proxy service.

Inside the message flow, we have access to the (relative) URL used to access the service
through the inbound transport headers. This helps us unravel the REST-style resource paths used
in the URLs for accessing services.

The steps for exposing a RESTful service interface are relatively straightforward: Create a proxy
service called ReSTAppointmentsService and retrieve the relative URI from the incoming HTTP
request in the message flow. We will make RESTful service calls with URLs constructed like this:

http://localhost:8011/REST/Appointments/appointmentIdentifier=531001

The last part (/appointmentIdentifier=531001) is where the request information is passed into
the proxy service.

The relative URI is parsed to get hold of the parameters that may be used for invoking a business
service. The online chapter complement describes the detailed steps and demonstrates them in many
screenshots. Figure 13-27 shows an invocation of the RESTful service RESTAppointmentsService to
retrieve the status of an appointment; this simple HTTP GET request engages OSB and SOA Suite.

Workshop: The eclipse-based IDe for Oracle Service Bus
In this chapter we do all editing of OSB resources through the web-based console. This is a
multiuser, centrally hosted, zero-install (at least on the client) development environment.
The console is perfect to quickly get going with OSB.

However, there is an alternative to the console in the form of an IDE: the Oracle Service
Bus plug-ins for Workshop WebLogic. This plug-in offers a richer development environment
that allows for more interactive, right-click–enabled development activities. The Eclipse
environment synchronizes with OSB and the resources worked on in the console through
export and import operations. Integration with automated build operations and version
control using, for example, Subversion can be done on the file-based resources in
Workshop.

Some actions are only available in the Eclipse IDE and not in the console. Examples of
these are the creation and manipulation of MFL resources—the Message Format Language
used to describe the structure of non-XML resources—and the development of Split-Joins.
Additionally, OSB services can be debugged from the Workshop IDE.

Workshop is installed as part of the OSB 11g installation. In the near future it will be
complemented with an IDE for OSB that is integrated into JDeveloper. This will make it
much easier to use the JCA technology adapters and features such as the Domain Value
Map with OSB as well as with SOA composite applications.

456 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 457

Parallel Processing of Appointment
Requests Using Split-Join
External parties can upload files with multiple patient appointment requests, instead of invoking
the PatientAppointmentService for every individual request. We showed in Chapter 7 how a File
Adapter Service together with a Mediator component took care of these files and every single
request in it. The composite application developed in that chapter did not return the list of
appointment identifiers to the sender of the file—one of its shortcomings.

Therefore, Margaret and her team have decided to expose a Web Service that allows a number
of appointment request messages to be sent in one batch, rather than requiring individual calls for
every appointment that is requested. Eventually it may be possible to send a file with the details for
all requests as an attachment, either to an e-mail or to a Web Service call, or even as part of an HTTP
POST request sent to a REST-style service. However, for now we’ll focus on the Web Service call.

We will make use of OSB to expose that multi-appointment request service and enlist its
Split-Join capability to still have all or at least a substantial number of appointment requests
processed simultaneously. All appointment identifiers that are the result of processing the requests
are combined into a single response message.

Parallel and Batch-wise Processing in OSB
Message flows occasionally have several actions that could be executed simultaneously given the
logic to be performed: If these actions are, for example, lookups for or calculations on all elements
in a collection, with no interdependencies between these operations, there is no logical reason for
having these actions performed sequentially. In these situations we can use the Split-Join feature of
OSB, which allows us to send message requests to multiple services concurrently and speed up the
service’s execution.

The Split-Join is a component that can only be called from a business service. It is based on a
specific operation in a WSDL resource. Typically, a Split-Join contains a Parallel (static) or For Each
(dynamic) node in which the concurrent actions are configured. The last action in these nodes
typically is an update of a variable that collects the output for the response message through an Insert
action. One thread is created for each path in a Split-Join, allowing for true parallel processing.

Note that a Split-Join must be created in the Workshop IDE and subsequently imported into
the OSB console—the console does not support the creation of the Split-Join. The book’s wiki has
a detailed example of using the Split-Join for processing a batch of appointment requests.

FIGURe 13-27. Invoking the RESTful service RESTAppointmentsService to retrieve the status of
an appointment

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 457

Choosing Between OSB and SCA
Composites (and Mediators)
Chapters 4 through 12 described SOA composite applications, built from components such as
Mediator and BPEL. This chapter introduced the Oracle Service Bus. There is considerable overlap
between the functionality of these two technologies; both can be used to implement similar
services. This chapter has suggested a certain use case for OSB—primarily targeting it at mediating
between business domains and between the enterprise and external parties. However, OSB can also
be used for creating composite services (but not long-running, stateful orchestration!) as well as
mediating between various technology stacks, message exchange patterns, and transport protocols.
Besides, it has throttling capability, the cache for service results, and the Split-Join feature, which
have no immediate equivalent in composite applications.

Sometimes the question will be, Do I use Oracle Service Bus or is it more appropriate to use
an SOA composite application with BPEL and/or Mediator components? For a number of cases,
the choice is easy to make. For example, if a long-running process is involved, where
compensation and business rules are needed, you use BPEL. For large numbers of messages that
require minimal response times, OSB seems more appropriate, provided these messages do not
initiate business processes, need to invoke business rules, or involve human tasks. In many other
circumstances, the choice is not as clear cut and it may well be that a mix of OSB and Composite
application is optimal. The next section discusses some guidelines for making this choice.

Rules of Thumb for Choosing Between
OSB and SCA Composite
Within the hospital, Mary—the enterprise architect—has heated debates with project developers,
project managers, and system administrators about whether to use OSB or SOA Suite with BPEL and
Mediator. For project managers and SCA developers, it is easier to use the Mediator (in composite
applications) all the time, for all problems. For system administrators, services on the OSB may
seem easier to manage because the console supports close monitoring, online redefinition of
services, and a wide range of transports, all closely integrated with WLS. The OSB developers think
it is easiest to develop everything in OSB.

Mary decides to create some general principles and guidelines for the use of the different
tools, based on the goals of the hospital and the practical situation. She has so far come up with
the following principles and guidelines:

Guideline 1 Enterprise services are exposed on and called from OSB.

Rationale St. Matthews wants to standardize communication with external organizations.
St. Matthews wants to minimize costs by reusing mechanisms and such. This
approach also helps to hide the internal deployment architecture of St. Matthews
from the service consumer, which gives the service consumers a single enterprise
API for accessing services. It also frees up the St. Matthews operations folks,
allowing them to move machines and scale-up service platforms without
affecting any of the service consumers. Finally, it gives a central place to apply
policies to all externally exposed and invoked services.

458 Oracle SOA Suite 11g Handbook Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 459

Consequences Services that are called by other organizations need to be exposed on OSB
using a proxy service (for example, the appointment service in this chapter that’s
exposed to general practitioners).
A department that needs access to an external service has to expose it on the
OSB, if it is not already there.

St. Matthews wants to avoid, for example, paying twice for a ZIP code service. In the past,
every department that needed a ZIP code subscribed to a commercial service. Every department
had logic to read in the data and merge it with the address data from patients, suppliers, and so
on. Now St. Matthews only pays once for the service and maintains one OSB service to update
the ZIP codes in systems that keep their own address book, and one ZIP code service that returns
ZIP codes based on addresses and returns street names based on ZIP codes. Besides, in the future
it may switch to another (cheaper, more reliable) provider of that service or implement a home-
grown alternative. Such changes should be transparent to service consumers.

Guideline 2 Business services and elementary services that are used across domains are
exposed on the OSB.

Rationale Flexibility: It is easier to change a service provider if the consumers call the
service from one place (the proxy service).
efficiency: It is cheaper to create a proxy once, instead of repeating the process
in every Mediator component.
Quality: We can communicate using the canonical data model on the bus. The
consumer can optimize the model to its own specific process or business logic.

Consequences A service consumer needs a service from another domain and needs to connect
to a proxy service on the bus—not to the service directly.
Services that are reusable in other domains need to be exposed using a proxy
service.
SCA composites that call other composites do so using OSB.

Services that are being used across business domains are exposed on OSB using a proxy
service. If an SCA component wants to use this service, it calls the proxy service on the OSB.
A typical example is the invoice service we built in this chapter. This service can be called from
all the other domains, such as patient communication, patient care, human resources, and so on.

Guideline 3 Specific process logic stays within a composite.

Rationale If you don’t want other consumers to use the service, SCA can make sure these
services are not visible.

Consequences A service that is only relevant for the specific application should be called using
a Mediator component.
Process logic and business rules that are specific to the process and/or the
business domain are built using SCA components.

Chapter 13: Enterprise-Level Decoupling with Oracle Service Bus 459

An example is the appointment service. The service that provides the instructions to a patient
for preparation for an appointment is very specific to the appointment-making process, and we do
not want other consumers outside the business domain to call this service. Therefore, it is not
exposed on the OSB.

Summary
The Oracle Service Bus adds functionality to the Oracle SOA stack that is not readily available
through other means. This includes support for peak load throttling as well as support for transports
such as e-mail, Tuxedo, and JEJB, the Service Result Cache, and several security protocol mappings.
However, the importance of the OSB lies more in the fact that it fulfills the Enterprise Service Bus
role that was first discussed in Chapter 2. The OSB provides the central decoupling point between
the world outside the enterprise and the applications inside the enterprise, as well as between
various business domains within the enterprise.

With its native integration from and into the SOA Suite’s SCA container and the composite
applications running on it, the OSB can mediate between external consumers—either outside the
business domain or even outside the enterprise—and the SOA composite or legacy application
exposing or implementing the service, and vice versa.

Note that OSB can be used on its own, without the SCA container running SOA composite
applications—and the reverse is also true, as we have seen in the previous chapters. The two can
complement each other, though, with OSB focusing on a larger scope with multiple parties and
the SOA Suite primarily providing interapplication communication within the business domain.

There are no clear-cut, black-and-white rules about the respective roles of the OSB and SOA
composite applications in general and the Mediator and BPEL components in specific. That is to
some extent for each organization to discover and determine. It is important, though, that every
developer realizes that in addition to the service engines already discussed for the SOA Suite,
another service implementation option is available through OSB.

The integration of OSB and the SOA Suite SCA container has progressed a lot, but is not yet
complete at the time of this writing. Some of the important pieces still missing are the integrated
design time that allows developers to create OSB services in JDeveloper and the end-to-end
message flow trace presented in a single, unified administration console used for managing OSB
as well as SOA Suite components. The integration of JCA adapters and the use of Domain Value
Maps in OSB, at the present, leave some room for improvement.

The online complement for this chapter has more details on the implementation of the
services discussed. It also shows how to use the Workshop IDE plug-in for Eclipse. Additional
topics in this online chapter include Split-Join, EJB and JEJB transport, the Service Result Cache,
and the use of JCA adapters with OSB 11g.

This page intentionally left blank

Chapter
14

Service Components and
Composite Applications

According to SCA

461

462 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 463

ven though the SCA standard may not have been the first thing on our minds in the
previous chapters, it has been the foundation for all applications we created in
Chapters 5 through 12. Service Component Architecture is the specification that
describes how service-oriented composite applications are assembled from smaller
service components. SCA provides the guiding principle under the Oracle SOA

Suite service fabric onto which the applications are deployed and executed. Thanks to SCA, the
introduction of new service components (such as OSB and BPMN) is relatively straightforward, at
least for administrators and developers, because these components are additional pieces of the
composite puzzle that are similar in use, composition, and administration. Additionally, SCA
makes life much easier for vendors such as Oracle that want to put together a service fabric that
can run components on various service engines.

Even though SCA is a widely accepted industry standard, it does not provide portability of
composite applications between SCA containers. An SCA application that has been developed for
the Oracle SOA Suite will not run on Apache Tuscany or IBM WebSphere. Applications running
on those platforms will have a similar structure, using the same SCA artifacts, but leveraging
platform-specific service engines and bindings. The portability of developers and administrators
across different vendors’ SCA containers is much enhanced, though.

This chapter will look at some SCA artifacts to give you an overview of the files generated by
JDeveloper during the development of composite applications. It introduces the SCA specification
from a technical, bottom-up perspective that will help you understand the purpose of the files and
their contents, how you can interpret them, and perhaps manually troubleshoot and edit them.

The second part of the chapter is more on the architecture and the design of composite
applications. It will revisit some of the key SOA themes, such as reuse, decoupling, and
encapsulation. It will also discuss the question of composite application granularity: How big
or small should a composite application be?

Artifacts According to the SCA Specification
SCA is an industry standard that prescribes a structured approach for composing applications
from service components. Service components are pieces of (potentially fairly coarse-grained)
business logic that are used as building blocks when composite applications are assembled. The
composite applications are the reusable functional units that provide meaningful business
functionality. We will first look at the building blocks—the service components—and
subsequently at the composites. Note, however, that in real life, frequently a top-down approach
is adopted, starting from business-oriented functional requirements and drilling down into the
actual implementation through various specialized components running in their dedicated
engine.

The components, their assembly into composite applications, and their mutual dependencies
and interaction within the composites are described in the SCA standard and defined by a series
of XML files, created at design time and interpreted by the SCA container at run time. The
composite.xml file is the file that describes the composite application as a whole. It is from this
file that all other files are directly or indirectly referenced, and it is still this file that the SCA
container will interpret first at deployment time.

E

Chapter 14: Service Components and Composite Applications According to SCA 463

Service Components
Each service component is described in a document with the .componentType extension. This file
specifies the service(s) exposed by the component—through references to portTypes in WSDL
documents or alternatively with references to Java interfaces.

However, a service component not only explains what it can do for the world; it also indicates
what it needs the world to do in return. Every service component can specify one or more
references. A reference is a dependency from within the component that needs to be satisfied.
It is similar to the power plug that comes with electrical devices: The device promises to deliver
a service, but only when you provide it with an electricity service. For Java developers, this
mechanism of advertising a dependency and relying on it to be fulfilled in order to properly
function is well known as “dependency injection,” as performed by the Spring Bean Container or
the JSF managed bean framework, for example.

References are, like services, usually described in terms of a portType defined in WSDLs or a
Java interface: The service component describes the interface it needs for an injected service to
implement in order to utilize it.

Additionally, a component can advertise the fact that it has properties that can be set by
anyone who is including the component in a composite application or doing deployment, or
even administering the composite at run time. Note that these various procedures are described
in Chapter 17. A property has a name, type, and possibly a (default) value. Typically, the value of
a property governs part of the behavior of the component.

Here’s an example of a componentType definition, including a service, reference, and
property:

<componentType xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">

 <property name="preference.birthdateFormat" type="xs:string"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">dd-mm-yyyy</property>
 <service name="PatientDataService" ui:wsdlLocation="PatientDataService.wsdl">

 <interface.wsdl
 interface="http://stmatthews.hospital.com/patient/PatientDataService...
 ...#wsdl.interface(PatientDataService)"/>

 </service>
 <reference name="PatientRecordProvider.PatientRecordProvider">

 <interface.wsdl
 interface="http://stmatthews.hospital.com/patient/PatientDataService...
 ...#wsdl.interface(PatientDataServices_ptt)"/>
 </reference>
</componentType>

Note that a service component initially is largely an interface definition that contains two
types of interfaces: the services provided and the services required (the references that describe
the dependencies or injection needs). So far we have not discussed how the service component

464 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 465

intends to actually implement the services it promises to provide. The .componentType file does
not describe this implementation or even an association with a specific service engine.

A second description of each service component is to be included in the composite.xml file
whenever the service component is included in a service composite:

 <component name="PatientDataService">
 <implementation.bpel src="PatientDataService.bpel"/>
 <property name="bpel.bpel.preference.birthdateFormat">mm/dd/yyyy</property>
 </component>

This component element specifies a name that corresponds with the <name>.componentType
document as well as an implementation. The implementation indicates the service engine that is
used to run the service component—for example, BPEL, Workflow (for human tasks), Decision
(for business rules), Mediator, Spring, or BPMN—and the source file that contains the actual
implementation. Services, references, and properties that are defined in the componentType file
are inherited by this component entry. Properties that have been defined in the componentType
file can be overridden in the component entry in the composite.xml file.

Service Composites
Components cannot exist on their own—or at least not in the SCA run-time environment. They
need to be part of a service composite (application) because that is the unit of deployment and
execution. Usually a composite will contain more than just a single component, but it does not
have to.

Composites are described through the composite.xml file as per the SCA standard, which is
rendered in JDeveloper in the Visual Composite Editor. This composite.xml file includes entries
for service components and the wires between these components.

Composite Services
A composite application usually exposes at least one service—a public interface for consumers of
the composite. Note that a composite application could have as its only “interface” a component
that consumes an event from the EDN. In that case, there is no explicit public service interface.

Multiple services containing multiple operations can be published by a single composite
application. A public service exposed by a service composite application is a service published
by one of the service components inside the composite that has been promoted to the composite
level.

Adapter services are the special case in the Oracle SOA Suite—they provide entrance points
into SOA composite applications, but frequently in a slightly indirect way that does not allow for
direct invocation. Examples are the file system and database adapters that poll for new files or
records and in response initiate a new composite instance with the new or modified data acting
as the implicit request message. The JMS and AQ adapter do something similar with messages
arriving on a queue or topic.

Composite References
Components declare their dependencies on external resources through references. Some of these
references are satisfied by other components within the composite. These references can therefore
remain private, hidden from public view—an example of encapsulation. Compare this with a
desktop computer that has a motherboard inside with a dependency on electricity—a fact that is

Chapter 14: Service Components and Composite Applications According to SCA 465

not advertised externally because it can be satisfied internally with a wire (quite literally in this
case) to the internal power adapter that itself is published as a reference through the power cord
that we connect to the power socket.

References that cannot be resolved using other components are exposed by the composite on
behalf of those components that are still wanting. These references are promoted—just like
services—to the composite level and need to be satisfied when the composite is deployed. At that
time, it should be indicated in the composite.xml how those references are to be resolved.
Component-level references have to be wired to their provider—which is either another internal
component or a composite-level reference that gets bound to an implementation.

Whether or not another component or another composite fulfills the service is mostly
determined by aspects such as reuse, encapsulation, and ownership. These design and
architectural issues will be discussed in the second part of this chapter.

The next code fragment shows an abridged composite application definition that exposes a
service (PatientDataService) and a reference (RetrievePatientRecord). The latter is provided through
a database adapter reference and accessed via a JCA binding. A second reference is provided by
an EJB (MedicalHistoryEJB) based on a Java interface, rather than a WSDL file. Figure 14-1 shows
a visual representation. Note that some of the component-level references are defined in the
componentType files rather than explicitly in composite.xml.

<composite name="PatientServices">

 <service name="PatientRecordService" >

 <interface.wsdl

 interface="...PatientDataService#wsdl.interface(PatientDataService)"/>

 <binding.ws port="..."/>

 </service>

 <component name="PatientDataService">

 <implementation.bpel src="PatientDataService.bpel"/>

 <property name="bpel.bpel.preference.birthdateFormat">mm/dd/yyyy</property>

 </component>

 <component name="PatientRecordProvider">

 <implementation.mediator src="PatientRecordProvider.mplan"/>

 </component>

 <reference name="RetrievePatientRecord">

 <interface.wsdl interface="...RetrieveRecord/#wsdl.interface(

 RetrievePatientRecord_ptt)"/>

 <binding.jca config="RetrievePatientRecord_db.jca"/>

 </reference>

 <reference name="MedicalHistoryService">

 <interface.java interface="com.stmatthews.hospital.MedicalHistory"/>

 <binding.ejb uri="MedicalHistoryEJB"

 javaInterface="com.stmatthews.hospital.MedicalHistoryProvider"

 ejb-version="EJB3"/>

 </reference>

 <wire> <!-- promote PatientDataService from component to composite -->

 <source.uri>PatientRecordService</source.uri>

 <target.uri>PatientDataService/PatientRecordService</target.uri>

 </wire>

466 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 467

 <wire> <!-- satisfy reference RetrievePatientRecord in Mediator

 PatientRecordProvider with composite reference RetrievePatientRecord -->

 <source.uri>PatientRecordProvider/RetrievePatientRecord</source.uri>

 <target.uri>RetrievePatientRecord</target.uri>

 </wire>

 <wire> <!-- satisfy reference in Component PatientDataService with wire to

 Mediator PatientRecordProvider's service called PatientRecordProvider -->

 <source.uri>PatientDataService/PatientRecordProvider.PatientRecordProvider

 </source.uri>

 <target.uri>PatientRecordProvider/PatientRecordProvider</target.uri>

 </wire>

</composite>

The wires in the composite.xml file specify how references are satisfied by components or by
composite references. The last wire, for example, defines how the dependency on a provider
called PatientRecordProvider.PatientRecordProvider—which is specified in the componentType
file we saw earlier for the PatientDataService—is satisfied by the service PatientRecordProvider,
exposed by the PatientRecordProvider Mediator component (specified in the Mediator’s
componentType file, which is not shown here).

Wires also indicate the promotion from services exposed by components to the level of the
composite. The first wire configures the composite-level service PatientRecordService to be based
on the PatientDataService exposed by the (BPEL) component also called PatientDataService.
It is only too convenient that we work through the visual editors most of the time, to handle
the contents of the composite.xml file and its associates; for example, the structure view
shown in Figure 14-2. Note that these files were designed in the SCA specification very much
with development tools in mind, and not with the objective to have us manually edit every last
byte of these configuration files.

FIGURE 14-1. Visual rendition of the composite.xml file

Chapter 14: Service Components and Composite Applications According to SCA 467

Business Events
Business events were originally not part of the SCA specification. They are currently under discussion
for subsequent inclusion. Advancing on that discussion, Oracle has defined its own approach for
defining business events in which a component can act as a consumer or a producer (or both) of a
business event. Note that the namespace used by Oracle for the SCA-based composite.xml file is
http://xmlns.oracle.com/sca/1.0 and not the generic http://www.osoa.org/xmlns/sca/1.0; this is, in
part, to cater to the business event notation currently used by the Oracle SOA Suite.

Business event consumption or production is not declared in the componentType files, only
in the composite.xml document. That makes sense because business events can be seen as entry
or exit points for the composite itself. The following snippet (taken from a composite.xml file)
shows an example of a Mediator component that consumes the PatientDataRequestEvent and
publishes the PatientDataResponseEvent:

<component name="ListenToPatientDataRequestEvent">

 <implementation.mediator src="ListenToPatientDataRequestEvent.mplan"/>

 <business-events>

 <subscribe xmlns:sub1= "http://schemas.oracle.com/events/edl/PatientDataEvents"

 name="sub1:PatientDataRequestEvent"

 consistency="oneAndOnlyOne"

 runAsRoles="$publisher"/>

 <publishes xmlns:pub1= "http://schemas.oracle.com/events/edl/PatientDataEvents"

 name="pub1:PatientDataResponseEvent"/>

 </business-events>

</component>

This component exposes neither a reference nor a service, so the only mode of communication
for this component is through events. Note that, usually, components that consume an event do
not also publish one, and vice versa.

FIGURE 14-2. Composite Editor showing the structure of the composite in a tree view

468 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 469

The SCA Way of Designing
and Developing Applications
The SCA specification promotes a service-oriented software engineering process—aimed at reuse
and flexibility—that consists of a number of steps and tasks:

 Create (a collection of reusable) service components. ■

 Assemble composite applications from components—and nested composites that are ■
acting as components—that are wired together. Determine which services and references
to promote to the composite level.

 Just prior to deployment, set or override values for properties and provide the binding for ■
the composite-level public references. (Note that most SCA containers support run-time
management of these values.)

Oracle has implemented SCA in a way that does not entirely agree with this suggested way of
working according to SCA, because it does not support the notion of nested composites.

The preceding approach is bottom-up. However, typically we will set out to provide a
solution to a business challenge and we are likely to start at the other end, adopting a top-down
way of designing the application. We would start with the (reusable) functionality required from
the composite application, by defining its services and references (WSDL and canonical data
structures) and then drilling down into the individual service components that each implement a
piece of the functional puzzle addressed by the composite.

Reuse of Service Components and Composites
Service components are not developed as stand-alone units in JDeveloper. You always create
service components in the context of a composite application. At the same time, service
components are not available as reusable, stand-alone building blocks that can easily be
assembled in various composite applications. A service component in the world of JDeveloper
is not readily reused. The level of reuse is the composite. We can now discern the following
approaches for reusing an individual service component:

 Expose the service(s) offered by the component at the composite level. A service ■
component that is embedded inside a service composite cannot be reused outside of that
composite (internally, it can typically be used by various consumers). However, reuse by
external parties can be achieved by exposing the service(s) offered by the component at
the composite level.

 Note that the context in which the component performs its duty—in terms of the values
of properties and the providers used for satisfying the references—is beyond the control
of external consumers of the component because they are determined within the
composite that exposes the component. Optionally, the component can expose some of
its properties or binding characteristics in the service interface, allowing consumers to
influence such settings in service calls.

 Create a service composite that contains a single service component and exposes the ■
service(s) exposed by the component. This new composite containing the reusable
component can be invoked (or reused) from multiple composites; however, as just
mentioned, this means we cannot set properties or bind references specific to the usage
of the service component in a certain composite.

Chapter 14: Service Components and Composite Applications According to SCA 469

 Create a service component, as just described, and copy (yikes!) the component ■
resources into each composite application in which you want to reuse the component.
Needless to say, this is not ideal, because maintenance becomes quite nightmarish
when a change to the component needs to be distributed to all instances of that service
component, in possibly many different composite applications. Reuse should not be
about duplicating components. Therefore, this third option is really not an option after all
(just so you know).

The second option is really the only one if you want to properly organize reuse. The first
option, which has one composite application expose multiple independent services, will give
us problems when these services turn out to have disparate security requirements and release
schedules, versioning needs, SLAs, and so on. In general, an identified reusable piece of
functional logic warrants its own composite application. You may need to intellectually
“promote” the service component to become a full-fledged service and thus a stand-alone
composite.

Nested Service Composites
The Service Component Architecture specification describes the notion of nested composites.
This means that a service component in one composite application can have another composite
as its implementation, at least according to the SCA specification. Oracle has chosen not to
implement this particular aspect of SCA—and is even trying to have the specification altered and
have this multilevel nesting removed. Two arguments Oracle has used for justifying this course of
action are that the mechanism of nesting service composites is too complex for developers and
application assemblers, and that nesting may produce infinite loops. It also argues that nesting is
not necessary because service composites can be reused by simply invoking the service(s) they
publish.

It is true, of course, that service composites can be reused through the services they publish.
However, there is an essential distinction between nesting and invoking:

When a composite is nested—embedded in a higher-level composite as the implementation
of a service component—its properties and references can be configured for that particular usage
of the nested composite. Figure 14-3 demonstrates this principle: The composite application
includes a component, C, that satisfies a reference from BPEL component A. Component C is
implemented by service composite X, rather than a Mediator or BPEL component. This composite
has two references that become references for component C upon embedding. The references for
component C inside the higher-level composite can be satisfied either by other service
components in that composite or by promoting these references to the composite level.

When the composite is merely invoked through the services it exposes, rather than embedded
in the composites, its references and properties cannot be adapted to the context in which the
composite is consumed (Figure 14-4). With true embedding, we can have the internal service
component B provide the first reference of the nested composite. When composite X can only be
reused by invoking its public services, we cannot wire the reference from X to component B.

You may argue that if you really insist on having component B as the provider for the first
reference of composite X that you promote the service offered by X to the composite level and
wire the reference from X to that service. This is true, but it has two disadvantages: We have to
make public the service offered by B even though that was not the intention, and composite X
will always be wired to use B as its reference satisfier, not just when X is called from the higher-
level composite discussed here, but permanently.

470 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 471

FIGURE 14-3. Higher-level composite contains a service component that has another lower-level
composite as its implementation

Component D
impl mediator

Component B
impl mediator

Component A
impl BPEL

Component C
impl composite X

Composite X

FIGURE 14-4. The situation with the SOA Suite: Nested composites are not supported; composite X
can only be leveraged by calling its public service(s).

Component D
impl mediator

Component B
impl mediator

Component A
impl BPEL

Composite X

Chapter 14: Service Components and Composite Applications According to SCA 471

There is a third, easy-to-overlook distinction with the embedded case: With composite X
embedded, a call to component B would be within the same instance of the higher-level composite.
The situation depicted in Figure 14-5 shows how composite X can be wired to component B.
However, a call from composite X to B results in a new instance of the higher-level composite; it
would not be handled by the same instance in which component A initiated the call to X.

This gives an example of a composite with two, relatively independent publicly exposed
services—from component A and component B. It would seem that because component B is
reusable in its own right, it should be placed inside its own composite B. This composite is then
invoked by other composites. That way, component B remains hidden (encapsulated).

Granularity of Service Composites
When designing and developing service composites (aka SOA composite applications), we have
to decide on the granularity of those composites. How much functionality should be assembled
into a single composite application? When should we break up a composite or merge multiple
composites together?

These questions are very similar to the ones we discussed in Chapter 2 with regard to service
granularity. And just like in that discussion, there are no one-size-fits-all answers. “It depends” is
really all you can say, in general.

Well, there is a little bit more that we should realize about service composites—considerations
that help decide on how to organize the service composites. Two things are of primary importance:

 Reusability ■ If a service component is to be (offered as) reusable, it should be in a
separate composite—which you might want to use from a non-SCA context. When it
is not, it should be put inside the composite to which it belongs. This is also the most

FIGURE 14-5. Wiring a service composite that cannot be embedded to publicly expose a service
component

Component D
impl mediator

Component B
impl mediator

Component A
impl BPEL

Composite X

472 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 473

important thing (from a functional point of view) when migrating from 10g to 11g (that is,
deciding on the composition of the composites).

 Flexibility (or the required frequency of changes) ■ When a piece of functionality will
see lots of changes and we don’t want to impact other components, that, too, warrants a
new composite.

Service Composites Are the Unit Of…
Composites are the level that make sense to consumers and business analysts—they don’t even
care about a more fine-grained level because that is encapsulated away from them.

As we have seen, composites are the level of reuse. Only at the composite level can services
be exposed as reusable units, based on encapsulated components, because the composite is also
the level of encapsulation. In addition to the services exposed at the composite level—which
provide the reusability—a composite will also publicly expose those references from its internal
components that cannot be satisfied internally. This could be seen as somewhat breaking the
strict encapsulation requirements.

The service composite (application) is the level at which developers work in JDeveloper.
There is nothing smaller than the composite—developers can work on service components like
BPEL processes and Business Rule components, but always in the context of a composite.

The composite is also the level of deployment—composites are deployed in their entirety.
You cannot redeploy part of a composite. Multiple composites can be deployed together, but
they are not grouped together in the eyes of the SCA container. The only type of grouping
available in the SOA Suite is the partition, a logical clustering of composites, with no functional
consequences. Composites can be migrated between environments and shipped to remote teams
or external parties—not individual service components.

Governance and Lifecycle Management
In addition to the unit of deployment, the composite is (unavoidably) also the unit of versioning.
We can create and discern the version of composites—not versions of something smaller (such as
individual components) or something larger (such as a collection of composites). Versioning is a
means to enable the modification/evolution of composites that are reused by more than one
consumer. Consumers can gradually move to the new version and are not forced to use the new
version as soon as it is introduced. Multiple versions of the same composite will be available at
run time.

It seems likely that from a governance perspective, we will look at individual artifacts that
stretch beyond the boundaries of composites (such as event definitions, XSDs, and WSDLs) on the
one hand, and service composites on the other. Talking about lifecycle management, ownership,
availability, performance and the Service Level Agreement only seems to be meaningful with
respect to a composite, not to individual service components, given the way these are represented
in the tooling, both at run time and at design time. When it is important that governance be done,
for example, on individual human tasks or business rules, these should live inside their own
composite rather than being embedded in complex composites as internal components.

Security policies—discussed in detail in Chapter 15—are applied mainly at the composite
level (some simple policies can be attached to individual components) and not across
components.

Chapter 14: Service Components and Composite Applications According to SCA 473

Testing
Testing, as we shall see in Chapter 18, is supported by an out-of-the-box unit testing framework in
Oracle SOA Suite, next to a plethora of external, standard black-box Web Service test tools such
as soapUI. All external tests work at the composite level, interacting with the publicly exposed
service. The shipped unit-testing framework supports unit testing of service components, even
those that are not publicly exposed.

We can add test suites with test cases to a composite application. The test cases consist of
assertions—conditions on the contents of messages—and are associated with wires inside
composite applications. Testing applies to interactions at the component level, including
components that are not exposed at the composite level. The scope of test cases is at the level of
such an interaction.

Test suites that bundle test cases are associated with service composites. Test suites are the
unit of running tests; therefore, the service composite is indirectly the unit of testing, too. The
structure of the composites, however, is not relevant when it comes to determining exactly what
you can have unit tested.

Tracing Composite Instances and Messages
Composite sensors—defined at the entrance points of composites (services) as well as the exit
points (references), and discussed in Chapter 16—can be used to monitor the values of important
variables. The results from these sensors can be used to locate composite instances. Monitoring
and the management of instances, including purging of instances, are done at the composite
level.

However, message flow traces go across composites: When we inspect the route of a message
from the moment it enters the SCA domain until the time that the response is returned, the flow
trace is reported across composite applications. It is not at all intuitive to find out from the
message flow trace which composites participated in it. Usually it is not entirely relevant, either,
until the time of an error that you want to be able to pin down a specific composite (or version of
a composite).

Even more importantly, communication within a service composite is usually equally
expensive as communication between composites running in the same SCA container. The
container will leverage native bindings for such intra container interactions between different
composites with the same minimal overhead that is achieved for communication between
components in the same composite. The exception to this situation is when local optimization
between composites is disabled for security reasons—to have policies enforced in the interaction
between composites (see Chapter 15). Note that most security policies are applied on entrance to
and exit from composites and not on the interaction between components within a composite.

Exception Handling
Error or exception handling in SOA composite applications can be configured at different levels,
each with a different purpose. BPEL components can have exception handling inside, as we have
seen in Chapter 6, to be used for handling business faults.

The fault policy infrastructure in SOA Suite can be instructed to activate certain fault policies
when faults occur in a specific component or when faults occur anywhere in the composite. This
is useful for technical (or unexpected) fault handling.

Faults can be handled per component or per composite. We cannot define fault policy
bindings for multiple composites at the same time. Recovery from faulted instances is at the

474 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 475

composite level. Note that transactions may very well involve (instances of) multiple composites
and/or components if that is how the message flows.

Splitting or Merging Service Composites
Does it matter very much how we design the service composites? Are early decisions irreversible?
Is it very hard to break up or combine composite applications later on? Fortunately, although the
answer is, of course, “yes” to the first question, it is a resounding “no” to the other two. We have
to be aware of what we can and cannot do with composites—and we have to get going in some
direction. However, it is fairly easy to change directions and design the composites differently
later on.

We will briefly discuss the steps we have to go through when we want to break up a
composite application or combine several into one.

Splitting Up a Service Composite
We may have started out with a single composite application that contains all the service
components, interacts with many references (adapters and external Web Services), and exposes
a substantial number of services.

Then, at some moment, we may come to the conclusion that certain parts of the composite
should branch out—for example, because they need to be modified quickly to meet a new
business requirement, are subject to a different security scheme than the rest of the composite,
or should be shipped offsite to be deployed somewhere else. Whatever the reason, the procedure
for creating two composites from one is straightforward. First, we have to copy the existing
composite application in its entirety, so we get a “Part One” and “Part Two” that are exactly the
same at this point. Open Part One (one of the two clones of the composite) and then follow these
steps:

 1. Drag services to the composite level that are currently provided to components that will
be in Part Two (if they are not already publicly exposed), as is shown in Figure 14-6.

 2. Drag the references currently satisfied by Part Two components to the composite-level
references swimlane.

 3. Replace wires to Part Two components with wires to the new composite-level
references—primarily in Mediator and BPEL components.

 4. Remove the Part Two components from the composite.

 5. You may need to change the name of the composite (at least either of the two must be
renamed, but for clarity’s sake it is probably best if both are given new names).

 6. Remove all resources that were only referenced by the Part Two components that have
now been removed from the composite.

Now open Part Two. Perform the reverse of the operations just executed for Part One on the
components in Part Two, as shown in Figure 14-7.

For example, drag services to the composite level that are currently provided to Part One
components (if they are not already publicly exposed), and expose as public any reference that is
provided by a Part One component. The final result of breaking up the composite into two
smaller composite applications is shown in Figure 14-8.

Chapter 14: Service Components and Composite Applications According to SCA 475

Note that in this case, we would deploy Part Two first and subsequently bind the reference
PatientRecordRetrievalService in Part One to the end point of Part Two, or use deployment plans
(see Chapter 17) and/or local references to WSDLs to remove dependencies at design time. Also
note that sometimes instead of copying an entire application and subsequently removing and
renaming components and other artifacts, it may be better to create a new application from
scratch and only copy individual artifacts such as XSD and XSLT documents.

Merging Service Composites Together
The reverse procedure from breaking composites into multiple smaller parts is quite straightforward
as well. Constructing a composite application by merging together components from multiple
composites can be useful when composites have been created on a too-fine-grained level. We
may conclude that reuse will only occur for one out of a related collection of composites or that
versioning and deployment will always concern a combination of composites.

The steps for the merge procedure are roughly as follows:

 1. Pick one of the composites (usually the one with the largest number of components) as
the merge target.

FIGURE 14-6. Breaking up the PatientDataService composite. Part One will lose the
PatientRecordProvider Mediator; the reference that the Mediator currently satisfies needs to be exposed
at the composite level.

476 Oracle SOA Suite 11g Handbook Chapter 14: Service Components and Composite Applications According to SCA 477

FIGURE 14-7. Editing PatientDataService Part Two

Chapter 14: Service Components and Composite Applications According to SCA 477

 2. Iterate through the other composites. Identify the components that must be merged
into the target. All resources associated with a component must be copied to the target
application via the file system (JDeveloper does not support such operations). A service
component will have, at the very least, a componentType file and an implementation file
(.bpel, .mplan, .bpmn, .decs, or java). It will have associations with a WSDL and XSD,
and it may use XSLT files. These resources are ideally stored in the MDS and do not need
to be copied between JDeveloper applications. (More on MDS in Part III of this book.)

 3. The component entry in the source composite.xml file needs to be copied to the target
composite.xml.

 4. References based on technology adapters can also be copied: The reference entry
should be transferred to the target composite.xml file, and the .jca file that contains the
configuration for the technology adapter must be copied to the target application. The
associated XSD and WSDL may be referenced in the MDS, or should be copied along
with the .jca file.

 5. The dependencies from the components thus copied to the destination composite need
to be satisfied: Wires need to be created from these components to the providers of the
required services in their new “composite environment.” Some of these dependencies
may result in references at the composite level. Note that it may also be the case that
the original components in the composite have promoted references that can now be
satisfied within the composite itself by the components merged into the composite.

 6. When the components that have been added to the combined composite provide
services that we want to have publicly exposed, we should also create wires from these
components to the composite level.

FIGURE 14-8. The end result of breaking up the PatientDataService composite: Two stand-alone
composites that can be independently managed, developed, and deployed

478 Oracle SOA Suite 11g Handbook

Summary
Although we have been creating composite applications since Chapter 5, this chapter is the first
to take a closer look at the nature of these applications. The Service Component Architecture
(SCA) specification describes the construction of composite applications from service components
and the wires that connect them. It also specifies the mechanism through which composite
applications expose services to external consumers as well as references that during deployment
of a composite must be satisfied through injection of external providers.

The SCA standard is extended with a specification regarding business events, as an alternative
public interface for composites. Instead of accepting an incoming service request through its
publicly exposed interface, a composite can trigger itself by the consumption of a business event.
And likewise, instead of invoking a reference, a composite can produce its outcome in the form
of an event it publishes.

Business functionality as designed by analysts is projected on composite applications.
Composites are reusable units, with a well-defined public interface, that encapsulate their internal
implementation. Thus, they help achieve the SOA objectives of reuse, decoupling, and agility. As
developers and administrators, we need to learn how to design and implement composites; how
to test and deploy them; how to secure them; how to monitor, trace, and troubleshoot them; how
to do governance on them; and also how to break them up or merge them. Chapters 15–18
discuss these activities.

Part
III

Administration, Security,
and Governance

This page intentionally left blank

ChaPter
15

For Your Eyes Only

481

482 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 483

T security has become more and more important over the last decades. Although
at first security was frequently treated as a necessary evil, nowadays it has matured
into a separate area of expertise. Recent drivers for applying security are changing
government regulations, avoiding fraud, ensuring privacy, adhering to (stricter)
auditing and compliancy rules, and providing more integration of both internal
and external IT components using, for example, SOA and cloud computing.

For St. Matthews—and hospitals in general—security is a priority and an area of concern.
Hospitals gather, store, and share sensitive personal information about patients. Medical records
are strictly confidential and protected by government regulations. St. Matthews needs to be sure
that information cannot be accessed by persons or organizations that are not authorized. Suppliers
of medical equipment are allowed access to supplier services, not to services providing patient
information and their medical history. Even more important, the hospital needs to rely on the
quality of information and needs assurance that information is not unrightfully altered. Think about
information on upcoming medical procedures (do we need to operate on the left or right leg?) and
prescribed medication in combination with a patient’s condition (is the patient allergic to a
particular antibiotic?). When the integrity of information is violated, St. Matthews needs to know
immediately. Although security measures can greatly reduce these risks, they can never be avoided
altogether. In case something goes wrong, St. Matthews needs audit trails to be able to know what
went wrong when, where, and why.

A complicating factor is an organization’s increasing need to interact and share information
with several stakeholders. In the case of St. Matthews, these include suppliers of medical
equipment and drugs, other hospitals, emergency services, insurance companies, patients and
their families, employees (medical staff, managers, IT department, and so on), physiotherapists,
general practitioners (GPs), government agencies, and so on. This is a common “area of conflict”:
the increasing need and drive to share more information versus the need and drive for strict(er)
security demands and measures. Patients, their relatives, insurance companies, and so on expect
more information in a more timely manner while at the same time they expect their information
to be treated strictly confidentially. Good risk assessment is the key to balancing these (sometimes)
conflicting requirements.

This chapter consists of the following sections:

 We begin with a brief discussion of IT security in general. Then we’ll discuss if and ■
why security is different for service orientation as compared to “traditional” system
development.

 Then we will move on to security within Oracle Fusion Middleware 11 ■ g. Oracle Fusion
Middleware uses a policy-based model to manage Web Services. The chapter will zoom
in on Oracle Web Services Manager, which is used to secure SOA composites.

 Next is a step-by-step demonstration in which you will secure an SOA composite using ■
various policies, including a custom-defined policy.

 We will end with a short summary. ■

The Case for Security
Both St. Matthews and healthcare insurance companies want to automate the claim-handling process
to increase effectiveness, decrease administrative efforts, reduce errors, and thereby lower costs. In
this process, insurance companies handle customer claims and decide upon reimbursement. The

I

Chapter 15: For Your Eyes Only 483

insurance companies need information about provided healthcare and treatments from healthcare
providers such as St. Matthews to be able to decide whether clients are reimbursed.

This process used to be a sequence of human (labor-intensive) activities involving phone calls
to the hospital, verifying paper hospital records received by mail, and so on. Automating this
process will save money, reduce the number of errors, and speed up the process—both for
hospitals as well as healthcare insurance companies.

Following the service-orientation paradigm, St. Matthews decides to provide a service to the
insurance companies it has an agreement with. These insurance companies can retrieve patient
information—including treatment history—in an automated fashion by invoking this service.

But wait a second: Does a patient want his or her medical records to be available to just any
invoker of this service? For example, banks providing mortgages and loans, life insurance
companies, or (future) employers? Of course not. This information is highly confidential and
personal! St. Matthews needs to apply security so this service can only be used by the healthcare
insurance companies it trusts. St. Matthews also needs to make sure the client invoking this
service is who it claims to be. The hospital finally needs to make sure that the inbound and
outbound information of this service cannot be seen or tampered with by third parties that
possibly want to take this information and misuse it.

The remainder of this chapter investigates how to apply security to SOA composites in order
to achieve the stated objectives for the externally available insurance service.

IT Security
This section introduces IT security and investigates if and how security is different for service-
oriented environments. It continues by providing some “best practices” for applying IT security.
The section concludes by diving into some important aspects for IT security in a SOA
environment, such as transport versus message security and the agent and gateway pattern.

Security and SOA
When compared to traditional software development, the important question is not whether
security in a service-oriented environment is important, but if it is any different and should
therefore be designed and implemented differently. The answer to both questions is yes.

To understand why security should be handled differently, we first need to understand the
characteristics of SOA that are key to IT security, compared to those of traditional software
development:

 There is more machine/machine interaction (versus human/machine interaction) in a ■
service-oriented landscape. This means there is a greater need for automating security
mechanisms for the purposes of authentication, authorization, encryption, and so on. In
addition to this, security traditionally revolved around human actors who were assigned
identities in the computer systems they interacted with. These identities are associated
with roles and privileges. In a service-oriented environment, it is also services that
interact with various systems, just like the human actors do. These services are also
assigned identities—with associated roles and privileges.

 An SOA-environment generally contains more intermediary stations such as ESBs and ■
other middleware components. As messages are flowing around the system, passing
various stations, there are more opportunities for users and administrators to view

484 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 485

possibly confidential message contents such as credit card information or medical
details. In this case, transport security alone is not enough; message security is required.
As will be explained later on, transport security only secures information that is in
transmission, whereas message security secures the information itself, regardless of
whether it’s in transport or stored in some intermediary component.

 Service are to be invoked in a loosely coupled manner, without tight links between ■
consumer and service. This loose coupling, however, should not make it possible for just
any application to invoke services that should enforce a minimum security clearance
level for its clients. For example, not every client can be allowed to invoke a medical-
records service or insurance service.

 SOA results in more straight-through processing (STP), meaning processes are more ■
frequently executed in an entirely automated fashion without human interference.
Appropriate security enforcement is important because consequences of possible security
breaches could be detected in a later stage than is the case when human activity is
involved. Also, the consequences of security breaches in an STP environment can be
graver due to the possible large amount of messages that are rapidly processed.

 Service orientation aims for reuse. Reuse of a service requires trust from the clients that ■
are using or will be using the service. Trust is based on Quality of Service (QoS) aspects
of a service, including the security level guaranteed and enforced by a service. That
security level is generally determined by the service owner. In case of external services,
security will be largely determined and enforced outside your own span of control.
Possible consumers want to know what happens with their data if a service is not
secured. Can they trust a service’s result? If you want your services to be used, you need
to make sure that it has appropriate Quality of Service, including appropriate security.
Conversely, if you want to use external services, you need to make sure the right amount
of security is applied by the service provider.

Various aspects, such as the (type of) service consumer, the location from which a service is
invoked, and the information flowing to and from a service, impact the type of security and
security measures that are needed. For example, a service provider might enforce message
encryption when services are invoked by employees working from their home location as
opposed to employees working from a company building with a secured network.

These characteristics and differences clearly impact the way IT security should be designed
and implemented within an SOA environment. It furthermore warrants the need for an integrated
and holistic approach to security beyond the boundaries of your own organization.

So What Exactly Is IT Security in a World of Services?
Although we touched upon the implications of service orientation on IT security, we have not
yet discussed what we actually mean by “IT security.” Does it include Identity and Access
Management (IAM)? Is it also about securing buildings and using metal detectors? There can be
a lot of confusion about what encompasses IT security and Identity and Access Management.
When discussing these topics, we first need to agree upon the scope before delving into it.

Identity Management
Identity management is the administration of identities and relevant information (name, job title,
password). It provides services for the retrieval and administration of identity information. Identities
can represent both human actors, such as employees, patients, suppliers, and applications, as well

Chapter 15: For Your Eyes Only 485

as virtual entities, such as (internal and external) services and applications. Different rules,
responsibilities, and administration may apply to each of these categories.

Identity management includes identity propagation: the mechanism to “pass” identity
information within a chain of IT components invoking each other. For example, a client might
invoke an order service that in turn invokes a payment service. Usually you want a service
provider to authenticate the original consumer: the person (or service) that started the chain of
service calls, and not some intermediary component such as an ESB. The initial service consumer
is allowed (or denied) access to your services and information, not intermediary infrastructure
components (middleware) that can never act on their own accord. In this example, the payment
service needs to authenticate and authorize the client, not the order service or ESB. This implies
that intermediary components between service consumer and provider need to be able to
transport identity information such as certificates and possibly transform these from one format or
protocol into another (for example, from SSO token into a username/password combination, or
from HTTP Basic Authentication to a WS-Security username token). Figure 15-1 shows another
example of identity propagation.

Note that besides authentication and authorization by the payment service, the client also
needs to be authenticated and authorized by the Portal application.

Every identity in the identity store usually maps to a specific person or IT component. These
identities can be members of a larger organization structure such as a department of the company.
This results in a hierarchy of identities. In case of external organizations that are allowed access to
your services, you should consider the tradeoff between using specific identities (employee “Doe” of
organization “Acme”) versus more general identities (organization “Acme” as a whole). Specific

FIGURE 15-1. Identity propagation

Portal

Nurse “Doe”

PatientService

ESB

The PatientService provides functionality to request and
modify personal information of a patient and his or her
medical history. The identity of the initial service
consumer (nurse “Doe”) is propagated and authenticated
and authorized by the PatientService. The
PatientService will not authenticate and authorize the
“Portal” or “ESB.”

486 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 487

identities result in better traceability and can provide for more fine-grained access control, whereas
more “coarse-grained” identities result in less administrative burden. You might want to avoid generic
identities such as “consultant” and “trainee” altogether due to lack of traceability.

Provisioning is the process of synchronizing identity-related information between various
identity management systems (in an automated fashion). One of these systems is usually the
“source” identity store that provisions (sends) changes to other identity management solutions.
For example, when St. Matthews hires a new employee, her identity information (such as e-mail
address and password) might be stored in Oracle Internet Directory. Using Oracle Identity
Manager, this information is provisioned to Microsoft Active Directory, which is used as the
identity store for Windows workstations and Outlook.

When identity propagation and administration span more than one organization (crossing an
organization’s boundary), we speak of “identity federation.”

A best practice is to use as little centralized identity stores as possible. This avoids duplicate
or inconsistent identities and decreases user management efforts. Be careful in allowing externally
hosted services and other organizations direct access to your identity management solution.
Consider provisioning to an external organization’s IAM solution as an alternative in such cases
to minimize security risks.

Authentication
Authentication (or identification) is the process of verifying that an identity is who he, she, or it
claims to be. Authentication mechanisms are usually based on something an identity knows
(username/password combination), something an identity possesses (key, telephone, private key),
a unique property of an identity (fingerprint or iris pattern), or a combination of all these.

Best practice is to define a limited set of authentication levels based on the mechanisms
described here. For example, “basic” authentication requires knowledge (username/password),
“medium” authentication requires knowledge and possession (username/password and token),
and “high” authentication requires verification through a biometric property (iris scan).

Authentication also includes Single Sign-On (SSO), a mechanism in which an identity only
needs to authenticate once while getting access to several IT components. SSO improves user
friendliness and results in a better user experience. For example, a user logs on to a Windows
workstation and because of SSO does not need to log in to Outlook and intranet applications.
SSO is all about trust: A service needs to verify and trust the SSO component to which it delegates
authentication. It also needs to trust the identity-related information received by the SSO
component. SSO infrastructure can be used for identity propagation using, for example, Security
Assertion Markup Language (SAML) tokens. Identity propagation can be seen as a way to achieve
SSO. Single Sign-Off is the opposite of Single Sign-On.

A best practice for SSO is to grant access to IT components based on authentication level; if
you successfully authenticated using “medium” authentication, SSO may only grant you access to
IT components requiring the same or a lower authentication level, not to IT components requiring
“high” authentication. Consider if you want to apply SSO for your most classified services. SSO
can provide (unauthorized) access to a multitude of IT components due to a security breach in
only one of the IT assets. This is called the “keys to the castle” principle.

SSO is often associated with one-time authentication for users accessing various web applications.
How about SSO for application-to-application integration? Automated authentication (possibly using
SSO) is a prerequisite for service automation in which a user interaction or an event results in a chain of
services being invoked in an automated fashion. We do not want to reauthenticate the initial user every
time a new service is invoked. With standards such as SAML, WS-Federation, WS-Security, and
WS-Trust identity propagation, federation and SSO become possible in a service-oriented environment.

Chapter 15: For Your Eyes Only 487

Authorization
Authorization involves the administration, establishment, and enforcement of access rights for
authenticated identities within a given context. Authorization should be based on the function
someone or some organization needs to do and know; no more, no less. A best practice is to
avoid “super users”; that is, staff (usually management and IT administrators) who over time have
gathered more privileges than they are entitled to.

A very common authorization model is Role-Based Access Control (RBAC). In this model,
identities belong to one or more groups. Access rights to IT components are granted to groups
instead of being directly coupled to identities (no “lock-in” on specific employees). This greatly
reduces the cost and effort to administer authorizations and keep them up to date. Groups are
often based on attributes that do not frequently change over time, such as organizational units
(finance, IT, marketing) and functions (senior controller, database administrator, nurse), even
when the identities belonging to those roles do change. RBAC can furthermore simplify
“separation of concerns” so that different roles (and thus different persons) need to be involved in
decision making within a single process. We used RBAC in Chapter 10 when discussing the
assignment of human tasks. This prevents a single user from executing a process entirely on his
own. For example, the same employee cannot be allowed to order a laptop, approve the order,
and approve payment of the laptop supplier’s invoice.

A frequently used term is “anonymous” to indicate an unauthenticated identity as well as a
special authorization role that usually indicates that everyone has the right to access certain
information or services, including unauthenticated identities.

“Hard” IT Security
This type of security includes confidentiality and integrity of data and more technical security,
including the protection of networks and infrastructure using firewalls, (reverse) proxies, intrusion
detection systems (IDS), intrusion prevention systems (IPS), virus scanners, and so on.

Confidentiality (or exclusivity) of information is about restricting access to data and messages
to those identities that are allowed to view (and possibly modify) this data. Integrity (or reliability)
of information is about ensuring data and messages to be complete, valid, and unaltered by
(possibly malicious) unauthorized identities. Encryption using Public Key Infrastructure (PKI) is a
common implementation to ensure confidentiality and detection of integrity violations. See the
“WS-Security (WSS)” section for more information on the use of encryption for message
confidentiality and integrity.

Together with confidentiality and integrity, availability forms the so-called “CIA triad.”
Availability of information, availability threats (denial-of-service attacks, single points of failure),
and measures to ensure availability (clustering, failover) are out of scope for this book.

“Hard” IT security is often divided into various layers such as network security, platform and
operating system security, application security, integrity and confidentiality, content security, and
mobile security. For each layer, specific measures can be applied to increase overall security.
Examples of such measures include dividing networks in segments and specifying fixed network
routes (network security), having a central list of allowed and non allowed file extensions for
inbound and outbound traffic (content security), and the use of hardening (platform and
application security). Hardening refers to the process of securing a system (operating system,
application, and so on) by means of ridding it of all unnecessary features (for example, removing
unnecessary OS services).

“Soft” security, such as security education and awareness (employees Twittering sensitive
information), as well as “physical” security, including fire alarms, metal detectors, and bodyguards,
are out of scope for this chapter and this book.

488 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 489

Logging, Monitoring, and Auditing
Logging, monitoring, and auditing encompass the following activities within the scope of
authentication, authorization, and security:

 Storing and accessing relevant events and related information such as the time and ■
location of (failed) authentication attempts.

 Notifying stakeholders (such as administrators) in case of certain (usually suspicious) ■
behavior. For example, warning an administrator by sending a text message in case an
identity accesses a secured service from different geographical locations within a few
minutes.

Functionality and processes in an SOA are spread over different loosely coupled components.
Some logging and monitoring needs to be executed on a higher level—composite service or
process level—than on the level of an elementary service. This gives rise to the need for a central
logging and monitoring component that is able to combine and correlate decentralized logs and
enable monitoring on the process level. The “Wire Tap” pattern can be used to publish logs,
notifications and monitoring events, and other types of messages from services and middleware
components to a centralized monitoring component. Notifications can be implemented and
managed separate from the logging itself. Notifications can be published by the central monitoring
component. Note that this requires the synchronization of the system clocks of all managed
components to enable correct correlation.

You need to determine for every service if it is allowed to continue operation in case the
central monitoring component fails. Is it allowed, for example, from a security point of view to
switch to local logging and monitoring in case the central monitoring component is down?

Note that monitoring for Oracle SOA Suite in general will be covered in the following chapter.
This chapter introduces some security-specific logging capabilities of Oracle SOA Suite.

Overview of IT Security
The previous sections discussed different aspects of IT security. Identity management, authentication,
and authorization together are named Identity and Access Management (IAM). IAM is important for
both functional usage of services (clients need access to services and data) as well as administration
of services (administrators need access to service repositories, rule configurations, ESB and BPM
consoles, and the platforms on which the services run).

The definition of IT security as provided here is not an “absolute truth.” Other definitions of
IT security can also be perfectly valid. The key thing is to mutually agree on a definition for IT
security before discussing it further with stakeholders.

Best Practices for Applying IT Security
This section discusses the best practices for applying IT security in general.

Externalize Security
For a number of reasons it is a good design principle to externalize (or decouple) security from
service and process implementation. There may be different security requirements for the same
service based on the type of service consumer and related aspects, such as the location and
network used to invoke the service. Implementing security as an integral part of a service can
result in inflexible and under- or over secured services.

Chapter 15: For Your Eyes Only 489

Besides, IT security is designed and implemented by different persons with different skills and
expertise than those responsible for implementing processes and services. The lifecycle, release
management, and administration of IT security also differs from those of processes and services.
These are additional reasons for separating IT security from the design and implementation
activities.

Security-related information such as the use of SSL/TLS and WS-Security is normally not
advertised in a Web Service’s WSDL document. This further promotes the separation of concerns.
Standards such as WS-Policy can be used to define a Web Service’s constraints and requirements
separately.

An SOA environment frequently consists of heterogeneous infrastructure components, each
possibly having its own IAM and security design and implementation (for instance, security that
is embedded in an ESB product or application server). These different products will most likely
support different versions and implementations of security standards and protocols. The
application server might support WS-Security 1.0, whereas the ESB product supports WS-Security
1.1. This is worsened if the external infrastructure supports yet another subset of standards and
protocols. This can cause poor interoperability and result in more security customizations and a
higher risk of security breaches.

Best practice regarding these issues is to use a separate and specialized component aimed at
IT security. This means “doing things in the right place” and promotes reuse of security artifacts
and separation of concerns through decoupling. Just like business rules are used to externalize
business decisions from processes, you can use a specialized component to externalize security
from services and processes. The agent and gateway pattern, which is introduced later on in this
chapter, is very well suited to externalize security from services.

Apply Defense-in-Depth
Does Great Britain rely on 007 alone to defend the country? You can ask the same question for IT
security. Are your processes, services, and information secure when you only use a firewall? No!
It is like Shrek said in the movie: “Onions have layers. Ogres have layers.” IT security should also
be layered, involving measures on multiple levels (awareness, logical access control, network
security, and so on). Trying to implement security on one (and only one) level, such as an ESB, is
not enough. Using a layered approach on various levels to secure an organization against a wide
variety of security threats is called “defense-in-depth.”

Classify Your Services
In traditional system development, IT components and information are often categorized into
subsets for which the same security regime applies. Such a categorization can be based on the
CIA triad (confidentially, integrity, and availability) with classification levels ranging from
“public” to “highly confidential,” for example. For each classification level, a set of minimum
security measures is defined; for example, a system that is classified as “confidential” should
enforce authentication and role-based authorization and apply message encryption. Using a
security classification results in just the right amount of security to be applied while saving money
by striving for the lowest possible (and allowed) classification levels without endangering security.

Just as in traditional system development, you can use a security classification system in
service-oriented environments, as shown in Figure 15-2. Here, services and their operations are
categorized to determine the required security measures. For example, St. Matthews classifies its
“patient service” that allows retrieval and modification of personal information as “highly
confidential” and “highly available.” This, among others, implies that the service may only be
invoked from within St. Matthews and its private and secured network.

490 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 491

Best practice is to define a limited set of security classifications and corresponding measures.
For each new service and its operations, determine the classification levels; this is usually the
responsibility of the service owner. A classification per service as a whole is preferable over a
classification level for every operation, although sometimes this granularity may be required (for
example, when the remove operation of a DocumentService is accessible to fewer people than
the read operation of the same service). The classification information should be part of your
service repository and incorporated into governance processes. This results in transparent security
regulations, provides better insight in the current and future security of your environment, results
in better reuse of existing security policies, and prevents reinventing the wheel.

Standardize
This may appear trivial but I’ll keep on stressing the importance of using standards to achieve
interoperability. This also includes the usage of security standards such as LDAP, SSL/TLS, SAML,
X.509, and WS-Security (WSS). The use of standards results in secured services being more
reusable by consumers that may have heterogeneous infrastructures. Next to that, standardization
also results in more manageable IT systems, which is important when operating at scale. Note
that SSL/TLS and WS-Security will be covered in more detail later on in this chapter.

FIGURE 15-2. Categorizing services according to a security classification

Service

Operation

Operation

Service

Operation

Operation

Security
classification

Security
measures

Security
classification

Security
measures

Security
classification

Security
measures

Chapter 15: For Your Eyes Only 491

The mission of the open-industry organization Web Services Interoperability (WS-I) is to
promote interoperability of Web Services that are implemented using various technologies and
platforms. One of WS-I’s publicly available resources is the so-called “Profiles,” implementation
guidelines that state how related Web Service specifications should be used for best interoperability.
WS-I has finalized the Basic Profile, Attachment Profile and Simple SOAP Binding Profile, and a
Basic Security Profile is currently underway. Such a profile can—among other things—be used to
test security compliance of Web Services. See www.ws-i.org for more information.

Transport Versus Message Security
There are roughly two main security mechanisms for exchanging messages: transport security and
message security.

Transport security secures a message only during transport between service consumer and
service provider by using a secured transport layer—for example, using HTTP over SSL/TLS
(HTTPS). That means messages are not protected in intermediary components such as an ESB and
are equally unprotected directly after being received by the service endpoint. This implies that
even though the message was secure during transport, after its delivery to an SOA composite, the
message contents are directly visible to the components within the composite and are also
readable to administrators who can view the message flow within composites in a console such
as Enterprise Manager. This might not be acceptable for very sensitive information such as credit
card data or patients’ medical records.

Message security secures the message itself, often through encryption of the payload using,
for example, Public Key Infrastructure (PKI) and WS-Security (WSS). Because message security
can provide security in the scope you want and need—and also in intermediaries and after the
message has been received—it is generally preferable over transport security in implementing
stricter security requirements. The difference is shown in Figure 15-3. The top part of the figure
displays message security, and the lower part displays transport security.

Both transport and message security can be used for authentication purposes and to guarantee
message integrity and confidentiality. The following sections dive into the most common
implementations in Oracle SOA Suite for transport security using SSL/TLS and message security
using WS-Security, as well as how authentication, integrity, and confidentiality can be achieved.

FIGURE 15-3. Transport security (bottom) versus message security (top)

Client

Service
consumer

Intermediary

Component

Message secured

Message unsecured Message unsecured Message unsecuredTransport secured Transport secured

Server

Service
providerHTTPSHTTPS

492 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 493

Secure Sockets Layer (SSL) or Transport Layer Security (TLS)
A frequent interaction pattern in a service-oriented landscape is invocation of Web Services using
SOAP (or REST) over HTTP. The HTTP transport layer can be secured using TLS (Transport Layer
Security). TLS is an encryption protocol and IETF standard for securing network communications
such as over the Internet. Secure Sockets Layer (SSL) is the predecessor of TLS. TLS can be used in
combination with other protocols such as HTTP, FTP, SMTP, and LDAP. TLS is a possible
implementation to realize a virtual private network (VPN). Current versions are TLS 1.2 and SSL 3.

This section won’t go into the nitty-gritty details of the protocol but rather outlines its
mechanism. TLS can be applied one way (or unilaterally), meaning that the server authenticates
to the client using a signature. Server authentication is required, for example, for online banking.
A client wants to know that he is really using the bank’s online banking application and not some
look-a-like website used by a hacker to retrieve his banking data (known as “website spoofing”).

Authentication in SSL/TLS is achieved by means of a signature that’s generated by the server
using its private key. The private key used for authentication should only be known to the server.
The client validates the signature using the corresponding public key by means of a trusted digital
certificate that is issued by a certificate authority (CA). If validation succeeds, the client knows
that the server is who it claims to be (server authentication). This ends the “handshake” between
server and client. Two-way TLS (mutual authentication) is also possible. This means that the client
also sends a signature using its private key to the server so the server can verify the client’s
identity.

The public and private key pair and a mutually agreed random number are then used to
encrypt, hash, and decrypt the information that is sent from client to server, and vice versa, thus
ensuring integrity and confidentiality.

SSL/TLS support—enabling HTTPS communication—is realized through Oracle WebLogic
Server on which Oracle SOA Suite, Oracle Service Bus (OSB), and Oracle Web Services Manager
(OWSM) run. The step-by-step tutorial later on in this chapter demonstrates how to enable secure
message transport by invoking a service over HTTPS.

WS-Security (WSS)
WS-Security is the most important Web Service standard to achieve message security. The WS-
Security standard is supported by the policy-based security framework of Oracle Service Bus and
Oracle Web Services Manager that can be used to secure SCA composites. WSS is an OASIS
standard that uses SOAP messaging to secure messages independent of the transport layer that is
used. WSS provides end-to-end security, from service consumer to service provider, through all
intermediate components as compared to the point-to-point security provided by SSL/TLS. OASIS
released WSS version 1.0 in 2004 and version 1.1 in 2006. WS-Security supports authentication,
confidentiality, and integrity:

 Authentication ■ WSS adds authentication data—which identifies the service
consumer—to a SOAP message using one of the different token types: UserNameToken
Profile (username with clear text or digest password combination), X.509 Certificate
Token Profile, SAML Token Profile, or Kerberos Token Profile.

 Confidentiality ■ The identity that sends a message uses the public key of the identity
that should receive the message (for example, the service provider) to encrypt the
message contents using an encryption algorithm such as RSA. Only the owner of the
corresponding private key (again, the service provider) is able to decrypt the message
contents.

Chapter 15: For Your Eyes Only 493

 Integrity ■ The identity that sends a message uses its private key to generate a signature.
The signature contains a “digest” of the message contents; this is called “hashing.” You
cannot re-create a message from its digest. Any change in the message can be detected
because the digest in the signature no longer corresponds to the altered contents of the
message. The identity that receives the message uses the sender’s public key to decrypt
the signature. If the signature is decrypted successfully, it knows the sender is authentic
because only the holder of the private key could have created a signature that can
be decrypted using the public key. The receiver can then use the digest to verify the
message contents have not been altered during transport. The XML Digital Signature
(XML-DSig) standard is often used as XML syntax for digital signatures.

Figure 15-4 shows what it looks like when all these WS-Security aspects are applied to a
SOAP message (header and body).

Consider the following unsecured SOAP message. This is a sample request message for the
Acme Web Service that exposes the operation “echoMe”:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:acme="http://acmewebservice/">
 <soapenv:Header/>

FIGURE 15-4. Secured SOAP message with WS-Security

WSS—Authentication (security token)

WSS—Encrypted signature

WSS—Used certificates

SOAP header

SOAP body

Secured SOAP message (envelope)

WSS—Encrypted message

Message contents

494 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 495

 <soapenv:Body>
 <acme:echoMe>Hello World!</acme:echoMe>
 </soapenv:Body>
</soapenv:Envelope>

We now use the WS-Security standard to apply security to the Web Service request message
enforcing authentication, integrity, and encryption. When trying to invoke the Web Service
without adding the corresponding WS-Security information, we might get the following fault
message:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <!-- Fault message -->
 <env:Fault xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <faultcode>wsse:InvalidSecurity</faultcode>
 <faultstring>Missing <wsse:Security> in SOAP Header</faultstring>
 <faultactor/>
 </env:Fault>
 </env:Body>
</env:Envelope>

With the required WS-Security information applied, the header of the resulting secured
message may look like this (depending on the selected encryption algorithms, key identifier type,
and so on):

<soapenv:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-wssecurity-secext-1.0.xsd">
<!-- X.509 certificate used for encryption -->
 <wsse:BinarySecurityToken ValueType="wsse:X509v3">
 MIICUTCCAbqgA…awxekHKkTWS2az
 </wsse:BinarySecurityToken>
 <!-- X.509 certificate used for signature -->
 <wsse:BinarySecurityToken ValueType="wsse: X509v3">
 MIICRzCCAbCgA…9ssBsDFmgT2AS0=
 </wsse:BinarySecurityToken>
 <Signature>
 <SignedInfo>
 <!-- message hash (digest) -->
 <DigestValue>odVp0oTtu7BRBJhAxgxSMQssRdI=</DigestValue>
 <!-- signature -->
 <SignatureValue>H7MoXu2JdPx2…HOVdTqrylXDAg=</SignatureValue>
 </SignedInfo>
 </Signature>
 <!-- clear text authentication -->
 <wsse:UsernameToken>

Chapter 15: For Your Eyes Only 495

 <wsse:Username>acme</wsse:Username>
 <wsse:Password>mypassword</wsse:Password>
 </wsse:UsernameToken>
 <!-- timestamp -->
 <Timestamp>
 <Created>2010-04-16T21:10:09Z</Created>
 <Expires>2010-04-17T05:10:09Z</Expires>
 </Timestamp>
 </wsse:Security>
</Header>

The following snippet shows a SOAP message body containing the encrypted request data:

<soapenv:Body>

 <!-- header indicating the message body contains encrypted data -->

 <xenc:EncryptedData

 Id="_Dff7ySASsISfb2H31osV8A22"

 Type="http://www.w3.org/2001/04/xmlenc#Content">

 <!-- encryption algorithm -->

 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/...

 ...xmlenc#aes128-cbc"/>

 <!-- encrypted message data -->

 <xenc:CipherData>

 <xenc:CipherValue>LljX08Z3ujA3lsA1+p0E...TaG3WiWm7qA==</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

Note that applying security such as WS-Security introduces additional challenges. Messages
are encrypted and additional information is scarce (because elaborate error messages containing
implementation details may pose an additional security risk). The very reason to shield
unauthorized people also results in the administrator’s job becoming more difficult.

We’ll continue with a frequently used pattern for securing services: agents and gateways.

Agents and Gateways Pattern
As discussed earlier, it is a good principle to externalize security from service providers and
consumers. One way to achieve this is through agents and gateways. In this pattern, agents
contain a service-specific security configuration (also called “policies”), while gateways contain
more generic security configurations that should be enforced for more (or all) services. Both
agents and gateways can consist of one or more policies that are applied sequentially. Some
middleware component is usually responsible for intercepting inbound and outbound messages
and enforcing these policies. When all policies are successfully enforced, the message may
proceed.

An example is shown in Figure 15-5. Services A and B are secured using a gateway. The
gateway might enforce authentication using the WS-Security UsernameToken profile. Services C,
D, and E are secured using agents. In this case each service has its own security requirements that
are fulfilled by its corresponding agent. For example, service C might require transport security

496 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 497

requiring two-way SSL/TLS; service D might require authentication, authorization and message
integrity, and confidentiality; whereas service E might require that it only be invoked with
requests originating from a specific IP address.

A best practice is to use a mix of gateways and agents. Use gateways to apply common
security policies and agents for more service-specific security policies. A gateway can introduce a
possible “single point of failure” or performance bottleneck, because messages for all secured
services have to flow through the gateway. Investigate the impact of gateways and agents on the
high availability of secured services.

Security in Oracle Fusion Middleware 11g
This section provides an overview of the security capabilities in Oracle Fusion Middleware 11g.
Next, we will dive into Oracle Web Services Manager, which can be used to secure SOA
composite applications.

FIGURE 15-5. Agents and gateways

Consumer

Agent Agent Agent

Service A Service B Gateway

Middleware

Securing services using
a centralized gateway

Securing services using
decentralized agents

Service C Service D Service E

Chapter 15: For Your Eyes Only 497

Security Overview
Developers and security architects can leverage the following security services and products in
Oracle Fusion Middleware:

 Identity- and access-management products ■ Oracle Fusion Middleware provides a
comprehensive stack of products for identity administration (including provisioning
and federation), authentication (including SSO), and authorization. These products
include Oracle Internet Directory (OID), Oracle Virtual Directory (OVD), Oracle Access
Manager (OAS), and Oracle Identity Manager (OIM). The IAM capabilities that these
products provide can often be leveraged by applications and services running on Oracle
WebLogic Server through the integration of these products with the application server.
Oracle WebLogic Server, for example, virtualizes the underlying identity store, username
and password authentication, and role-based authorization through its “Authenticator”
mechanism. The underlying provider can be WebLogic’s file-based default store, but
also OID or third-party identity management offerings. This is transparent to applications
and services that delegate identity management, authentication, and authorization to
WebLogic Server.

 Java security ■ Oracle WebLogic Server is a Java EE–compliant application server and,
as such, implements Java and Java EE security standards such as Java Authentication
and Authorization Service (JAAS) and Java Authorization Contract for Containers
(JACC). Applications and services running on Oracle WebLogic Server can use these
implementations to provide security through standards.

 Oracle Platform Security Services (OPSS) ■ OPSS is WebLogic’s abstraction layer on
top of security functionality and tooling. OPSS provides a set of APIs that can be used
by Java and Java EE applications to realize security. These APIs cover authentication,
authorization, SSO, auditing, policy management, user and role management, and so on.
OPSS supports the SAML, XACML, JACC, and JAAS standards. OPSS is used by Oracle’s
own components running on WebLogic Server, including Oracle SOA Suite, Oracle
Web Center, OWSM, Oracle Entitlements Server, and ADF Security as well as Oracle
WebLogic Server itself.

 Transport security ■ Oracle Fusion Middleware components run on Oracle WebLogic
Server, which supports SSL/TLS using PKI and keystores to achieve transport security.

 Oracle Fusion Middleware Audit Framework ■ A central auditing facility that can be
used by Oracle components running on Oracle WebLogic Server.

 Policy frameworks for Web Services ■ Policies describe the (security) requirements and
capabilities for services. Policies are used by service clients to apply security to outbound
messages (for example, WS-Security headers) or service providers to enforce inbound
security. Policies are often applied using agents and gateways. The following section will
dive into Oracle Fusion Middleware’s policy frameworks, which can be leveraged to
secure Web Services.

The wiki for this book provides links to relevant documents that provide more in-depth
information on the security offerings of Oracle Fusion Middleware.

498 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 499

Web Services and Policy Frameworks in Oracle Fusion Middleware
With respect to (security) policies, Oracle categorizes Web Services as follows:

 “Plain” Java Web Services ■ Java and Java EE components that are exposed as Web
Services using the JAX-RPC or JAX-WS standard and run on Oracle WebLogic Server.
Oracle calls these “WebLogic (Java EE) Web Services.”

 Fusion Middleware–related Web Services ■ These include SOA Suite, ADF, and
WebCenter services. SOA composites can be exposed as Web Services. These
composites can also reference other Web Services. ADF components such as ADF
Business Components (ADF BC) can be exposed as Web Services. ADF uses Web Service
Data Controls and Web Service Proxies to reference other Web Services. WebCenter
provides Web Services and REST APIs to expose portlets and Web 2.0 technologies such
as wikis, RSS, and blogs. Web Center can consume other Web Services. Oracle terms
these “Oracle Infrastructure Web Services.”

Security in Oracle SOA Suite is largely externalized in separate security products or
frameworks and is therefore loosely (de)coupled with the actual implementation of services
themselves. The security frameworks are mostly policy based. These policies are based on
standards such as WS-Security. Policies can be applied and configured using management
consoles or IDEs and reused by processes and services. Policy violations such as unsuccessful
authentication attempts can be monitored using management consoles.

There are three policy frameworks in Oracle Fusion Middleware 11g to secure Web Services:

 OWSM policies ■ OWSM’s policy framework is leveraged to secure Oracle Infrastructure
Web Services. Only OWSM security policies (and not other types of policies, such as
management policies) can be applied to JAX-WS Web Services.

 WebLogic Server policies ■ WebLogic Server policies can be used to secure both JAX-
RPC and JAX-WS Web Services.

 Oracle Service Bus policies ■ Oracle Service Bus uses its own policy framework to
secure business and proxy services. As stated in OSB’s Statement of Direction: “The
ability to attach, detach, author and monitor policies in a central fashion will be
extended to the Oracle Service Bus (as it is has been extended to all other components in
the SOA Suite 11g).” See the next section “OWSM and OSB” for more details.

You cannot secure the same Web Service using a combination of OWSM and WebLogic Web
Service policies. Oracle recommends using OWSM policies over WebLogic Server policies where
possible.

OWSM and OSB
Oracle SOA Suite Patch Set 2 (11.1.1.3) introduced an OWSM agent for Oracle Service Bus. This
means you can secure OSB business and proxy services of types “WSDL” and “Any SOAP” using
OWSM. The support is not yet complete, but will probably be enhanced in future releases of
Oracle SOA Suite. Because OWSM will gradually replace OSB’s own policy framework based on
WebLogic Server policies, it is recommended to use OWSM for securing new OSB projects. Note
that there are limits to the degree in which you can mix OWSM and WLS policies for OSB
projects.

Chapter 15: For Your Eyes Only 499

You will need to perform some additional configuration steps, such as enabling the OSB
domain for OWSM. These steps are explained in detail in the Oracle Service Bus guides on
Oracle Technology Network (OTN).

Oracle Web Services Manager (OWSM)
OWSM is used to secure JAX-WS Web Services, Oracle Infrastructure Web Services such as SOA
composites, and from Oracle SOA Suite Patch Set 2 (11.1.1.3) onwards OSB business and proxy
services. This section provides an overview of OWSM’s architecture and briefly discusses all
relevant concepts of OWSM, such as policies, assertions, policy store, and policy administration.

OWSM 11g is tightly integrated with Oracle WebLogic Server. It can only secure Oracle
WebLogic services and does not provide agents for third-party application servers as OWSM 10g
did. Note that with the acquisition of AmberPoint, Oracle has acquired tooling that provides
security enforcement for multiple application servers, such as IBM WebSphere, Apache Tomcat,
and Microsoft IIS.

Architecture of OWSM
OWSM’s policy framework is based on the WS-Policy standard. A policy is a concrete, bounded,
and specific piece of security functionality—for example, an authentication policy that verifies a
given username/password using an LDAP server or a management policy that logs request and
response messages. One or more policies can be applied to a service to provide both inbound
and outbound security, thereby fulfilling its security requirements. A policy is reusable, meaning
that the same policy can be applied to more than one service. Policies often need to be
configured for the specific service they are applied to—for example, when providing a username/
password combination for an authentication policy.

Figure 15-6 depicts the various components of the OWSM framework.

FIGURE 15-6. Overview of OWSM

OWSM policy interceptors

Reliable
messaging

OWSM policy
manager

MDS can also be
file based instead
of RDBMS based.

OPSS

WebLogic
authenticator

Administration

JDeveloper

Enterprise
manager

Management Addressing Security MTOM

MDS

500 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 501

The actual enforcement of policies that are applied to services is achieved using policy
interceptors. These make sure that inbound and outbound messages are intercepted and the
policies are also executed.

For some policies, the actual security implementation is delegated to Oracle WebLogic Server
using the Oracle Platform Security Services (OPSS) APIs—for example, authentication and
authorization policies that leverage WebLogic’s LDAP-based authentication and authorization
provider.

Policy definitions are stored in the Metadata Store (MDS). The MDS can either be file based
or RDBMS based. For the production environment, it is recommended to have a database store.
Access to the policy definitions in the MDS is achieved through OWSM Policy Manager. This
means that policies are centrally managed (MDS, Policy Manager, and Enterprise Manager) and
enforced at run time per service.

You can use Enterprise Manager to define, apply, configure, manage, and monitor policies.
JDeveloper can only be used to apply policies to services.

Policies and Policy Assertions
Policy assertions are the smallest building blocks when it comes to security (see Figure 15-7).
Assertions provide a basic security capability such as a logging capability, encryption capability,
or authentication capability. Policies are created by combining one or more assertions in a
sequence (a “pipeline”) to provide a larger reusable piece of security functionality—for example,
a policy that contains an assertion to log an inbound encrypted message, followed by an assertion
to decrypt that message, and finally another logging assertion to log the decrypted message.
Another example is a policy containing an authentication and subsequent authorization assertion.

OWSM provides a set of out-of-the-box policies and assertion templates on which concrete
assertions are based. Next to that, OWSM provides a mechanism to create your own policies and
assertions.

OWSM differentiates assertions and policies into the following categories:

 Security ■ Policies for identity propagation, authentication, authorization, confidentiality,
and integrity. These policies, among others, implement the WS-Security 1.0 and 1.1
standards. This is the only OWSM policy type that can be applied to JAX-WS Web
Services.

 WS-Addressing ■ Policies that support the WS-Addressing standard for including
transport information in messages.

 Message Transmission Optimization Mechanism (MTOM) Attachments ■ Policies that
support the transmission of binary content (attachments) between services. MTOM is
applied to reduce message size.

FIGURE 15-7. Policies are composed of assertions.

Policy Composite

Assertion
(e.g., logging)

Assertion
(e.g., authentication)

Component

Chapter 15: For Your Eyes Only 501

 Reliable Messaging ■ Policies that support the WS-Reliable Messaging standard. This
standard is used for guaranteed (one-time) delivery of messages and to guarantee the
order in which messages are delivered.

 Management ■ Policies that provide logging capabilities for messages (request, response,
and fault messages).

Applying Policies
Policies can be applied to service consumers as well as service providers. Suppose message
confidentially is required between a service and its clients and message security is used to realize
this. In this case, the service consumer—for example, a reference binding in a composite—can
apply a policy to encrypt an outbound message, whereas the service provider uses a policy to
decrypt the inbound message.

Looking specifically at SOA composites, policies can be applied to the following:

 Service bindings ■ Securing exposed services for inbound messages.

 Reference bindings ■ Applying security to outbound messages.

 Components ■ A subset of management (logging) and security (authorization) policies
can be applied to components within a composite.

Policies can be associated with services using Enterprise Manager or JDeveloper. Policy
definition, configuration, and management can only be done through Enterprise Manager.

Policy Enforcement
Policies are enforced using so-called “interceptors.” Policies are executed in a specific order
based on their type, as shown in Figure 15-8.

FIGURE 15-8. Policies are executed in a specific order.

Composite Policy
pipeline

Policy
pipeline

Component

Transport
Composite

Component

“Policy pipeline” for messages

Reliable
messaging

Management Addressing Security MTOM

502 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 503

Policies are “two-way” by default, meaning that they are enforced on inbound and outbound
communication channels, but in reverse order. For example, if you attach a policy that enforces
encryption through WS-Security to an exposed synchronous two-way service (request/reply), you
will enforce encryption on the incoming payload (request) as well as the outbound payload
(response). This is only the case for applicable policies; for example, applying authorization to a
request message will not result in outbound authorization for the response message that is sent
back to the client.

Local Optimization
Oracle SOA Suite uses various protocols and bindings based on its run-time environment and
configuration. In case composites run in the same Oracle WebLogic Server or Oracle WebLogic
Server cluster, local optimization is applied for invocations from one composite to the other,
where possible. This means native Java calls are used instead of the SOAP protocol. In this case,
some OWSM policies will not be enforced. If you want to make sure policies are enforced, you
can use one or both of the following options:

 Disable local optimization between composites. This will result in OWSM policies ■
being enforced but also introduces a slight performance penalty. You can turn off local
optimization by adding a property to a reference in the composite.xml file of the client
composite. The composite will invoke another composite using SOAP/XML via HTTP
rather than the optimized native binary binding.

<reference name="MyExternalService" ui:wsdlLocation="MyReference.wsdl">

 <property name = "oracle.webservices.local.optimization">false</property>

</reference>

 Set the “local optimization control” property of a policy in Enterprise Manager. You ■
can indicate per policy if local optimization is used. See the “Configuring Local
Optimization” section in Oracle Fusion Middleware Security and Administrator’s Guide
for Web Services 11g for more information and the default settings for local optimization
per policy.

Policy Administration and Monitoring
Oracle provides the following tools for the administration of policies:

 Enterprise Manager Fusion Middleware Console ■ Enterprise Manager is the most
comprehensive tool available for policy administration and monitoring. During the
remainder of this chapter, you will explore some of its security-related capabilities. These
include applying policies to composites, configuring policies and assertions that are
applied to composites, viewing the available policies and assertions, run-time monitoring
of policies, assertions and possible security violations, and configuring new policies.

 JDeveloper ■ JDeveloper can (only) be used to apply policies to composites. This chapter
shows an example of how to do this.

 WLST (WebLogic Scripting Tool) ■ WLST provides OWSM-specific scripts for policy
administration, such as importing and exporting policies. WLST is outside the scope of
this chapter.

Chapter 15: For Your Eyes Only 503

Let’s inspect the policies and assertions that are available “out of the box.” Log in to
Enterprise Manager. In the overview panel, open the WebLogic Domain node, right-click the
SOA Suite domain, and select Web Services | Policies (see Figure 15-9).

This will open the Web Services Policies overview. Here, you can filter on category (MTOM,
security, and so on), view policy descriptions, and more. Click the Web Services Assertion
Templates link to view the available assertion templates. The out-of-the-box policy and assertion
template names have a specific format. It is a best practice to follow these naming conventions
when we create our own policies and assertions later on.

Custom Policy Assertions
You can create custom policy assertions if you need security features above and beyond those
provided by the default set of out-of-the-box policy assertions. A custom policy assertion needs to
be implemented in Java. An overview of the steps involved and use of a custom policy assertion
is out of scope for this chapter. See Oracle Fusion Middleware Security and Administrator’s Guide
for Web Services and Java API Reference for Oracle Web Services Manager for more information.

Gateway
The attentive reader might have noticed that the previous sections were all about support for the
agent pattern and did not include gateways. Currently, OWSM 11g does not offer a gateway. A
gateway is, however, part of OWSM’s roadmap for the future. Deployment and use of the OWSM
10g Release 3 gateway is an option if you need gateway functionality.

Interoperability
As mentioned before, Oracle Service Bus and Oracle SOA Suite have different default security
frameworks: OSB’s own security framework and OWSM 11g. Both are based on policies. Security

FIGURE 15-9. Using Enterprise Manager to view the available policies

504 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 505

interoperability is a main concern when implementing services that span (and include) both OSB
and SOA composites. An example is an OSB business service that invokes an SOA composite that
is secured using OWSM. The interoperability between OSB’s security policies and OWSM’s
policies is described in Oracle Fusion Middleware Interoperability Guide for Oracle Web Services
Manager. Starting with Oracle SOA Suite Patch Set 2 (11.1.1.3.0), OWSM can be used to secure
both SOA composites and OSB projects.

Case: Securing SOA Composites
It is time to get down to business and apply some security. St. Matthews recognizes all too well
that several of its services expose sensitive information. St. Matthews cannot afford such
information to be accessed and misused by unauthorized identities. This would seriously harm
the patients’ trust, which is vital to the hospital and its ambitions.

We will use the case that was introduced at the beginning of this chapter and secure the
service that automates the claim-handling process. The case consists of the following main steps,
which will be explained in detail in the following sections. During these steps various management
and monitoring features of OWSM will be demonstrated.

 Inspect, deploy, and test the SOA composite that the hospital exposes for insurance ■
companies to retrieve patient information.

 Add identities that represent the insurance companies to WebLogic’s default identity ■
store.

We will continue by using Enterprise Manager to do the following:

 Enforce authentication from service clients (insurance companies) using WS-Security. ■

 Enforce authorization. Not every insurance company may use this service—only ■
insurance companies that have a specific contract with St. Matthews. To achieve this, we
will create a new authorization policy based on an existing policy.

 Enforce transport security using SSL/TLS to guarantee message integrity and ■
confidentiality during transport.

 Log access to a BPEL component that is part of the composite. ■

We will finish by using JDeveloper to add a policy reference to the composite.
This section uses soapUI as a client to test invocation of secured SOA composites. The soapUI

tool provides functionality to add security information to Web Service invocations. Alternatively,
you can use any other Web Service test tool that supports WS-Security and SSL/TLS. We will use
versioning of composites so that the same SOA composite can be used simultaneously, with every
version having different security measures applied.

The detailed step-by-step instructions as well as the screenshots for all intermediate stages can
be found in the online chapter complement.

Inspecting the SOA Composite
The initial SOA composite used to demonstrate the security features of OWSM is a simplified
composite named InsuranceComposite. The composite exposes a Web Service for insurance

Chapter 15: For Your Eyes Only 505

companies to retrieve patient details and their treatments. Insurance companies use this information
in their claim-handling process. Note that at a later stage, this service will be exposed via the
enterprise service bus—implemented using Oracle Service Bus 11g.

The input of the composite consists of a patient’s Social Security number and a start and end
date. The output consists of relevant patient details and the hospital records containing treatments
for that particular patient between the start and end date. As you can imagine, this information is
highly confidential and should be well protected. The input and output are described in the
insuranceMessages.xsd document that is shown in Figure 15-10.

The SOA composite contains a single synchronous BPEL component that receives the request
message and creates a response message that always contains two hospital records for the patient
“John Doe.”

Deploy this composite to your Oracle SOA Suite installation as version “1.0.” Use Enterprise
Manager to inspect the deployed SOA composite and to discover the WSDL location of the
exposed Web Service. Test the composite using soapUI, as described in the online chapter
complement. In the next sections, we will be using soapUI to also add security-related headers to
the Web Service calls.

When everything works, we will continue by applying security to this composite.

Identity Administration
As you can imagine, not everyone is allowed to invoke the SOA composite. The first step toward
sufficient security is to add authentication—making sure only insurance companies that
St. Matthews knows and trusts can access this service and get hold of the sensitive information
it returns.

To achieve this, authentication details need to be transmitted between service consumer and
service provider using either the transport or message level. SSL/TLS is the most common approach
for the transport level. At the message level, WS-Security profiles are a common implementation.

FIGURE 15-10. Invoking the InsuranceComposite from soapUI

506 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 507

For our composite we will be using the WS-Security UserNameToken Profile in which a
name/password combination is added to the request message. You might think this is pretty
insecure because the message itself can be intercepted and the sensitive authentication
information (including the password) can be captured. And right you are. We will address this
issue in the remainder of this case.

By default, Oracle WebLogic Server uses a file-based store. Note that you can use Oracle
Internet Directory (OID) or any other third-party LDAP-compliant solution, such as Microsoft
Active Directory (AD), instead. It is recommended to use the file-based solution only for
development and test purposes and use a dedicated IAM solution, such as OID, for production
environments.

We add the identities of insurance companies using the Oracle WebLogic Administration
Console. Log in to the console and browse to the “users and groups” section in the “security
realm,” as explained in Chapter 10. The console should at least list the “weblogic” user.

Add the following identities and their respective usernames and passwords to the default
authenticator of Oracle WebLogic Server, as shown in Figure 15-11:

 Platinum Insurance ■ Username: platinumInsurance. Password: platinumInsurance1.

 Acme Insurance ■ Username: acmeInsurance. Password acmeInsurance1.

 Insurance for All ■ Username: insuranceForAll. Password: insuranceForAll1.

FIGURE 15-11. Adding Platinum Insurance as an identity

Chapter 15: For Your Eyes Only 507

Authentication Using WS-Security
So where do we check the authentication details that are sent as part of the request message? In
other words, where and how is authentication enforced and how is this information delegated to
our identity and access management solution?

We will use an OWSM policy to enforce authentication of service clients using WS-Security.
When we add this policy to the composite, OWSM will intercept the inbound request message
and enforce authentication. This is achieved by extracting the username and password from the
request message and delegating authentication to Oracle WebLogic Server’s default authenticator,
which in turn will validate the username and password.

Deploy InsuranceComposite as Version 1.1
Deploy the original SOA composite again, but this time as version 1.1. The composite is
unchanged—and will remain unchanged. The difference with version 1.0 is that the 1.1 version
will have a security policy applied to it. Note the separation of concerns: Security stays outside
the composite.

Apply the Authentication Policy
We will use Enterprise Manager to apply the authentication policy to the SOA composite. Log in
to Enterprise Manager, expand the SOA node, and browse to version 1.1 of InsuranceComposite.
Right-click the composite and select Policies.

Click Attach To/Detach From in the Policies view and select the RetrievePatientTreatmentsService
service, as shown in Figure 15-12. This opens the Attach/Detach Policies dialog. In this dialog, filter
on policies that are in the Security category and select the policy named oracle/wss_username_token_
service_policy.

This policy will accept a WS-Security UserNameToken as the authentication mechanism—
both plain text as well as digest. Click OK to apply the policy to the SOA composite. The policy is
enabled by default. You can enable and disable policies per SOA composite using Enterprise
Manager, as illustrated in Figure 15-13.

IdentityService
Oracle SOA Suite ships with several APIs and Web Services that provide access to its
functionality and can be used for building custom clients. Examples of these Web Services
are the TaskService, the TaskQueryService, and the IdentityService. See Appendix D for
more information.

The IdentityService can be used to search for users and groups, retrieve permissions for
users, authenticate users, retrieve the manager of a user, retrieve a property of a specific
user or group (such as an e-mail address or telephone number), and so on. The default
endpoint for the IdentityService is http://server:port/integration/services/IdentityService/
identity.

Next to the Web Service interface, you can access the IdentityService using the out-of-the-
box XPath functions. These functions can be integrated in transformations and assignments
within composites.

508 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 509

Put the Authentication Policy to the Test
Create a new soapUI project named “InsuranceComposite 1.1” to test the new version of our
insurance service. Enter a Social Security number and start and end date in the default request
message, and then invoke the service. The response message will not contain John Doe’s medical
treatments, but instead a fault message with the following description (see Figure 15-14):

InvalidSecurity : error in processing the WS-Security security header

Return to Enterprise Manager and refresh the Policies view. You will see that there is one
security violation. Note that the violation is not listed in the Authentication column; only the
number of incorrect authentication attempts will be listed there, as shown in Figure 15-15. In this
case, the security headers (and authentication details) were missing altogether.

FIGURE 15-12. Attaching oracle/wss_username_token_service_policy to the InsuranceComposite

FIGURE 15-13. The policy overview after a policy has been added to the SOA composite

Chapter 15: For Your Eyes Only 509

Return to soapUI to add the required WS-Security authentication headers. Select the Request
1 message in the Navigator view. In the Request Properties view, add the following properties:
acmeInsurance as the username and acmeInsurance1 as the password. Right-click in the Request
1 message and select Add WSS Username Token. A new dialog opens. Select PasswordText as
the password type and click OK.

This will add a WS-Security UserNameToken to the request message. Note that this OWSM
policy does not require WS-Security Timestamp information to be included in the message.

The request message now looks like the following:

<soapenv:Envelope xmlns:tre="com.stmatthews.hospital/treatments"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-1"
 xmlns:wsu="http://docs.oasis-open.org/wss/...
 ...2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>platinumInsurance</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-username-token-profile-1.0#PasswordText">
 platinumInsurance</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/...
 ...01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">
 5oXaNox3LMvKnDBB/oGeXg==</wsse:Nonce>
 <wsu:Created>2010-01-02T21:18:53.957Z</wsu:Created>

FIGURE 15-14. Fault message after invoking a secured SOA composite

FIGURE 15-15. Security violation after the secured SOA composite has been invoked

510 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 511

 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
...

Invoke the service again. This time, a valid response is returned.
Edit the request message in soapUI and enter an invalid password for the acmeInsurance

identity. The response after the service has been invoked now returns the following fault message:

... <env:Fault xmlns:ns0="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <faultcode>ns0:FailedAuthentication</faultcode>
 <faultstring>FailedAuthentication : The security token cannot be
 authenticated or authorized.</faultstring>
 <faultactor/>
 </env:Fault>

Return to Enterprise Manager and refresh the Policies view for the InsuranceComposite
service. The overview will list a new authentication violation.

You can more closely inspect a security violation in the “Faults and Rejected Messages”
region of Enterprise Manager. To do so, expand the soa-infra node in the navigator and select a
composite. Click the Faults And Rejected Messages tab in the composite overview. In the new
view, you can search and filter on faulted and rejected messages, including messages that have
caused policy violations. Filter on the fault type and select OWSM Policy Faults Only. The table
will now list all OWSM security violations with their corresponding fault time, fault location (such
as the component), and a link to the corresponding log file. Click the error message to open a
summary dialog in which you can view the payload of the rejected message. As you can see in
Figure 15-16, no authentication details are included in the request message.

We have now added authentication enforcement to the composite. As you might have
guessed, every identity that is in the identity store is a valid user—as long as the correct username
and password are provided.

FIGURE 15-16. Inspecting OWSM policy faults

Chapter 15: For Your Eyes Only 511

Authorization Using WS-Security
Not every identity in our identity store should be allowed to access the insurance composite—not
even after successful authentication (for example, administrators who are using the “weblogic”
identity or insurance companies that do business with St. Matthews but do not have a specific
contract for automated retrieval of patient records). That is where authorization comes into play.
We need to make sure that the authenticated identity actually has rights to access the service. We
will apply a second policy to the service for this purpose.

Create a Role in the Identity Store and Assign the Role to Users
To begin, create the role TrustedInsuranceCompanies in the identity store. All members of this
role will be allowed (authorized) to invoke the InsuranceComposite service. Next, add the
selected insurance companies—Insurance for All and Platinum Insurance—to this role. Do not
add Acme Insurance because the hospital does not have a contract with Acme Insurance for this
specific service.

Apply an Authorization Policy to the InsuranceComposite
Now we add a policy to the SOA composite to make sure that only identities belonging to the
TrustedInsuranceCompanies group may access the service. Deploy the SOA composite as version
1.2 and first apply the authentication policy from the previous step to ensure authentication is
enforced. After all, an identity needs to be authenticated before it can be authorized.

OWSM provides some out-of-the-box authorization policies—for example, oracle/binding_
authorization_denyall_policy, which denies all roles access, and oracle/binding_authorization_
permitall_policy, which permits all roles access to a service. We will need to create our own policy
based on such an out-of-the-box policy so that only members of the group TrustedInsurance
Companies can access the composite.

Log in to Enterprise Manager. In the overview panel, open the WebLogic Domain node,
right-click the SOA Suite domain, and select Web Services | Policies. Inspect the policies oracle/
binding_authorization_denyall_policy and oracle/binding_authorization_permitall_policy by
selecting them and clicking View. Next, we create a new policy that is based on these authorization
policies. Select either one of the two authorization policies and click Create Like, as shown in
Figure 15-17.

FIGURE 15-17. Creating a new OWSM policy based on an existing policy

512 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 513

In the Create Policy view, enter soasuite11gbook/binding_authorization_permit_trusted_
insurance_companies_policy as the policy name, as shown in Figure 15-18. In the Roles region,
click the radio button Selected Roles as the Authorization Setting. Add TrustedInsuranceCompanies
as an authorized role.

Use Enterprise Manager to add this newly created policy to version 1.2 of the InsuranceComposite
service (see Figure 15-19).

Trying Out the Authorization Policy
It is time to test the authorization capabilities of the service. Create a new test project in soapUI
for version 1.2 of the InsuranceComposite. Add a valid WS-Security UserNameToken to the
request message, as explained before. Use acmeInsurance as the username—an identity that is
not a member of the TrustedInsuranceCompanies group and that should therefore not be able to
access the service. Invoke the service.

FIGURE 15-18. Configuring the new custom OWSM policy

Chapter 15: For Your Eyes Only 513

The response message will include the following authorization fault:

... <env:Fault xmlns:ns0="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <faultcode>ns0:FailedAuthorization</faultcode>
 <faultstring>FailedAuthorization :
 failure in authorization</faultstring>
 <faultactor/>
 </env:Fault>

Return to Enterprise Manager and browse to the Policies view for the InsuranceComposite
service. The overview will list an authorization violation.

In soapUI, replace the credentials in the request message with those for the Insurance for All
insurance company and then invoke the service again (see Figure 15-20).

This time you should see a valid response message containing John Doe’s medical history.

FIGURE 15-19. The InsuranceComposite service after the policies have been attached to it

FIGURE 15-20. Setting credentials on the Web Service call for an authorized insurance company

514 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 515

Authorization at the Record Level
Note that authorization on the data level is out of scope for this chapter. We will not check that
an insurance company can only request patient information from its own clients. You could, for
example, expand the composite to check for this or apply Oracle Virtual Private Database (VPD)
and identity propagation from the composite to the database to enforce authorization on the data
(database row) level.

Ensuring Integrity and Confidentiality
Using Transport Security
Although we have enforced authentication and authorization for this service, it is far from secure.
Third parties that intercept request and response messages to this service are able to see the
message contents containing an overview of patient’s medical treatments and the username and
password used by insurance companies to invoke the service. Furthermore, St. Matthews is at this
point still unable to guarantee messages have not been altered during transport or even tell
whether that has happened. In other words, we need to add message integrity and confidentiality
capabilities to the service.

For this we can either use WS-Security or SSL/TLS. As explained in the section “Transport
Versus Message Security,” both WS-Security and SSL/TLS apply data encryption so that intercepted
messages remain confidential (unreadable) and add a checksum (or hash) so that data integrity can
be verified.

Both WS-Security and SSL/TLS (can) use Public Key Infrastructure (PKI) as the underlying
encryption mechanism to enable integrity and confidentiality. OWSM provides policies to ensure
data integrity and confidentiality. These policies are either based on WS-Security for message
security or ensure that SSL/TLS is used in the transport layer. The keys used for WS-Security
policies can be managed using Enterprise Manager. Because transport layer security is managed
by the underlying Oracle WebLogic Server, the key management for SSL/TLS is provided by
Oracle WebLogic Console and not Enterprise Manager.

The Keystores for WS-Security and SSL/TLS
Different keystores are used by Enterprise Manager for applying WS-Security and WebLogic
Console for applying SSL/TLS. Oracle WebLogic Server’s default format for storing and managing
certificates and keys is Java Keystore (JKS). The JKS format is defined by Sun Microsystems. Sun
provides the key tool command-line utility to interact with a keystore; this is used, for example,
for adding certificates, creating keys, listing the keystore contents, and issuing certificate requests
for certificate authorities (CAs).

Oracle WebLogic Server ships with two demo JKS keystores: an identity store and a trust
store. The trust store contains the certificates of third parties that are trusted by Oracle WebLogic
Server and are therefore allowed to create SSL/TLS connections with our server. The identity store
contains our own certificates and keys (including private keys) that are used to identify ourselves
to third parties with whom we want to create SSL/TLS connections. Both keystores should be well
protected, although the identity store is the most critical. This keystore contains our private key(s).
Trust keystores are usually spread over multiple servers within an organization or stored in a
central location and accessed by several servers. The organization as a whole will trust the same
third parties; this usually does not differ per server.

By default, Oracle WebLogic Server is configured to use these demo keystores, as can be seen
and modified in the WebLogic Console. The Keystores property is initially set to “Demo Identity

Chapter 15: For Your Eyes Only 515

and Demo Trust.” These keystores are located at [Oracle Home]/wlserver_10.3/server/lib/
DemoIdentity.jks and [Oracle Home]/wlserver_10.3/server/lib/DemoTrust.jks. The keystores’
passwords are DemoIdentityKeyStorePassPhrase and DemoTrustKeyStorePassPhrase, respectively.
You can use the command-line utility keytool to list the contents of these keystores—see the
online chapter complement for instructions.

The demo keystores and the demo certificates can be used for development and testing
purposes. However, for production environments it is recommended to use “real” keystores
containing actual certificates that are signed by trusted certificate authorities. For now, we will
use the default demo keystores and certificates.

Configure SSL/TLS in WebLogic Console
We are going to enable integrity and confidentiality based on transport security; therefore, we’ll
make use of SSL/TLS. We will be using one-way SSL/TLS. We need to configure SSL/TLS for
Oracle WebLogic Server and apply an authentication policy to the InsuranceComposite that uses
SSL/TLS.

In the WebLogic Console, select the SSL tab and inspect the SSL settings. You can, among
other things, configure whether you want to use one-way or two-way SSL. In two-way SSL, the
client also needs to send a certificate that needs to be accepted by the server. Two-way SSL can
be used for mutual authentication. In our case, however, client authentication is achieved
through WS-Security. Therefore, we do not require two-way SSL. For now, we will accept the
default values—and thus one-way SSL.

Select the General tab and make sure that the check box SSL Listen Port Enabled is checked
so that incoming SSL/TLS connections are supported.

Add Transport Security to the InsuranceComposite
We will now add transport security to our SOA composite. Deploy the SOA composite as version
1.3. Instead of adding the authentication policy oracle/wss_username_token_service_policy that
we used in the previous versions, we will now use the oracle/wss_username_token_over_ssl_
service_policy. This policy ensures that the message is sent over SSL/TLS rather than using a
nonsecured protocol. We also apply our own authorization policy to it.

Secured Transport in Action
Create a new test project in soapUI for InsuranceComposite version 1.3. Add a valid WS-Security
UserNameToken to the request message. Use either the identity Insurance for All or Platinum
Insurance.

Bulk Attachment of Policies
Using Enterprise Manager, you can attach one or more policies to more than one service in
a single operation. This is known as “bulk attachment.”

The steps for bulk policy attachment are as follows: Expand the SOA Domain node in
Enterprise Manager, right-click the SOA server node, and select Web Services. In the Web
Services overview, select the SOA tab and click the Attach Policies link. This opens a
wizard in which you can select all services, references, and/or components to which you
want to apply policies, the policies you want to apply to them, and a summary page to
confirm this bulk attachment.

516 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 517

The policy oracle/wss_username_token_over_ssl_service_policy also requires request
messages to include a WS-Timestamp header containing the creation and expiration time of the
message. The WS-Timestamp header can be placed either before or after the WS-Security
UserNameToken header. The order of these elements is not specified by the WS-Security
standard. Right-click the request message and select Add WS-Timestamp. Enter 3600 as the
Time-To-Live value.

NOTE
When using headers containing timestamps, you may need to
regenerate these headers in soapUI because they can become
outdated after a while and will be rejected by OWSM.

Invoke the service. The following fault message is returned:

... <env:Fault xmlns:ns0="http://docs.oasis-open.org/wss/2004/01/...
 ...oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <faultcode>ns0:FailedCheck</faultcode>
 <faultstring>FailedCheck : failure in security check</faultstring>
 <faultactor/>
 </env:Fault>

This error is returned because InsuranceComposite 1.3 can only be accessed over HTTPS due
to the policy we have applied to it. Our attempt to call it on unsecured HTTP was rejected. We
will try again, this time using HTTPS.

Create a new test project in soapUI, for the same version 1.3 of the composite. Add the
WS-Security UserNameToken and WS-Security Timestamp headers.

Add a new endpoint for the request; this time, use the endpoint derived from the WSDL, but
replace “http” with “https” and replace the port number (default is 8001) with the SSL port
number, as configured in the Oracle WebLogic Server Console (the default SSL port is 8002). This
is shown in Figure 15-21.

Now invoke the service, calling the new endpoint. This time, the correct response message
will be returned by the SOA composite. Click the “SSL Info (1 certs)” tab in the response window
to see the certificate returned by Oracle WebLogic Server (see Figure 15-22).

Monitoring Access to the BPEL Component
OWSM policies do not all apply at the composite level. Some policies can be applied to individual
components within composites. We will add logging capabilities to the BPEL component in the

FIGURE 15-21. Configuring a new, HTTPS-enabled endpoint in soapUI

Chapter 15: For Your Eyes Only 517

InsuranceComposite, using a OWSM policy. The logging assertion that is used will log messages to
the following file: [Oracle Home]/user_projects/domains/[SOA domain]/servers/[SOA server]/logs/
owsm/msglogging/diagnostic.log.

Deploy the InsuranceComposite as version 1.4 and add the previously introduced OWSM
policies (authentication over SSL/TLS and authorization) to it in the Enterprise Manager console.
Now continue by adding the policy oracle/log_policy to the BPEL component. As you can see in
Figure 15-23, we add this policy to a component, although it can also be applied to a service or
reference.

FIGURE 15-22. Inspecting the certificate used to set up the SSL/TLS connection

FIGURE 15-23. InsuranceComposite version 1.4 with the logging policy applied

518 Oracle SOA Suite 11g Handbook Chapter 15: For Your Eyes Only 519

Create a new test project in soapUI for InsuranceComposite version 1.4. Remember to
provide valid credentials. After successful invocation of the service, the diagnostic.log file should
contain an entry that holds the payload and metadata of the message that is sent to and from the
BPEL component.

Several out-of-the-box policies also include the logging assertion. However, most of these
assertions are disabled by default—not advertised or enforced. Enforcing these assertions will
cause the messages to be logged to the diagnostic.log file after successful authentication.
Advertisement is about exposing the policies in the Web Service’s WSDL using WS-Policy.

If, for example, you want to log incoming messages before and after processing of WS-
Security headers, you can enforce (and advertise) these logging assertions. See the online chapter
complement for instructions and screenshots.

Applying Security Using JDeveloper
As shown in the previous examples, Enterprise Manager can be used to apply, configure, monitor,
and manage OWSM policies for SOA composites. This section demonstrates how to add OWSM
policies at design time in JDeveloper. When deployed, these policies will be visible in Enterprise
Manager.

You cannot use JDeveloper to configure, monitor, or manage policies and assertions or
create your own custom policies. This makes sense because security configuration is often an
administration task rather than a development task.

To illustrate JDeveloper’s policy capabilities, we will return to one of the first scenarios in
which we enforced authentication. Open the InsuranceComposite project in JDeveloper and
open the SOA composite by double-clicking the composite.xml file. This displays a graphical
overview of the composite. Right-click the exposed RetrievePatientTreatmentsService service
binding and select Configure WS Policies...., as illustrated by Figure 15-24.

FIGURE 15-24. Adding policies to a SOA composite using JDeveloper

Chapter 15: For Your Eyes Only 519

JDeveloper will now load the available policies from its internal policy repository that is
located in the [Middleware Home]/jdeveloper/jdev/bin/owsm directory. The repository contains
assertion templates and policies. This means that JDeveloper will not display the custom policies
you have defined in Enterprise Manager. You will need to copy these to the local repository in
order to apply them using JDeveloper.

Just as in Enterprise Manager, JDeveloper categorizes policies into different categories:
MTOM, Reliability, Addressing, Security, and Management. Click the green plus sign icon next to
security. This will open a dialog that displays the available security policies. Select the policy
oracle/wss_username_token_service_policy and click OK. This is the same policy that we
previously added using Enterprise Manager.

Back in the Configure SOA WS Policies dialog, you will notice that the policy is added to the
RetrievePatientTreatmentsService service binding. You can select (or deselect) the check box next
to policies to enable (or disable) them. This setting is included when the SOA composite is
deployed to the run time and can be changed using Enterprise Manager.

In the SOA Composite Editor, notice the yellow lock symbol in the top-right corner of the
exposed service. When you switch to the Source view of the composite.xml file, you will see that
a policy reference is added to the service binding and its status is set to enabled:

 <service name="RetrievePatientTreatmentsService">
 <interface.wsdl ... />
 <binding.ws port="...">
 <wsp:PolicyReference URI="oracle/wss_username_token_service_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 </binding.ws>
 </service>

When we deploy the composite as version 1.5, we would find in Enterprise Manager that this
authentication policy is already in place—and does not need to be added after deployment. However,
any further configuration, monitoring, and managing need to be done through Enterprise Manager.

Summary
IT security has become increasingly important over the last decades. This is even more true for
businesses and organizations dealing with sensitive information, including hospitals. This chapter
introduced general security concepts such as identity and access management, encryption,
transport versus message security, and agents and gateways. It discussed the implications of the
service-orientation paradigm for security.

Oracle SOA Suite and WebLogic Server on which it runs provide numerous security
capabilities. One of these is Oracle Web Services Manager (OWSM), which can be used to
secure Web Services. This chapter described the main features and workings of OWSM and
provided a step-by-step case on how to use OWSM to secure your SOA composites and protect
valuable and sensitive data.

Security needs a holistic approach. Securing SOA composites alone is not enough. You also
need to consider securing Oracle WebLogic Server itself (for example, access to the various
consoles and the file system on which it runs). Also remember to secure access to the human
tasks that are created and managed by Oracle SOA Suite.

Finally, Oracle’s acquisition of AmberPoint will probably impact the future security offerings
and functionality of Oracle SOA Suite and the OWSM roadmap.

This page intentionally left blank

Chapter
16

What Is Going On:
Monitoring SOA

Composite Applications

521

522 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 523

t is sometimes easy to forget that for a developer, his or her work is only the tip of
the iceberg. When the applications are developed, it may feel as if everyone can lean
back and relax because the most important part of the job is done. Okay, a little
testing and, of course, deployment to a production environment (see Chapter 17),
but that’s it. Job done.

Of course, we all know that it is only after deployment that applications can start to add value
to the organization. Production usage is the only reason for being when it comes to applications—
and ultimately developers. At that time, we know longer only care about composites but also about
instances. Every instance of a composite may represent a business transaction—an interaction with
a business partner, a patient or doctor, or insurance company. A transaction can be associated with
strong emotions, large amounts of money, or people’s health.

Monitoring instances of the composite applications, ensuring their timely and correct
completion, intervening when instances have faulted, and archiving and purging instances are all
extremely important operations required for successful execution of business processes.

This chapter takes a look behind the scenes of running SOA Suite containers. We will look at
facilities in SOA Suite to monitor ongoing operations and to recover from errors in running
instances. It introduces several ways to provide an administrator with all relevant details about
running and completed instances. Most of what we do in this chapter will take place in the
Fusion Middleware Control Console—the run-time tool we have used ever since we deployed
our very first HelloWorld composite back in Chapter 3.

Monitoring Instances of Composite Applications
Composite instance monitoring happens at various levels. We are usually interested in performance
and throughput at an aggregate level where all instances are taken together, grouped by time slice,
for example. Individual instances and their state and content are not relevant at this level. Overall
metrics and how they compare to predefined objectives as perhaps laid down in Service Level
Agreements are what we are chiefly after.

Occasionally, we need to find and inspect a specific instance of a composite application—
usually because one of the parties involved somehow with the instance has questions about the
result or wants to know the current status. When instances have failed—that is, ended with an
exception—administrators typically need to know and possibly act on it.

Dashboard and Aggregate Metrics
By now you must have seen the Fusion Middleware Control Console dozens if not hundreds of
times. It provides a wealth of information on what’s going on in the SOA Suite, both at an aggregate
level as well as per service engine, per composite, and per composite instance. Through the
console, we can access real-time performance charts, get hold of live statistics, inspect fine-grained
log files, and analyze the message flow trace for composite instances. The console currently does
not offer SLA monitoring—although that may be available in the near future in the console itself, in
the add-on SOA Management Pack, or through products from the newly acquired AmberPoint
portfolio. The console will not alert us when performance is degrading, for example, or when an
unusual high percentage of composite instances is failing. Note that the Oracle Service Bus does
have support for such SLA alerts.

I

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 523

Dashboards at the Container, Composite, and Component Levels
The console presents a dashboard in the context of the node selected in the tree navigator on the
left. When the soa-infra node is selected, the dashboard covers the entire container with all
instances for all components. It will show the status for all deployed composites in all partitions—
for recent and running instances. It also lists recent faults in composite execution and rejected
messages (messages from adapter services that failed to reach a composite). By selecting a specific
partition node, we will get the same information for all composites in that particular partition.

When we select a node for a specific composite (or version of a composite), as in Figure 16-1,
its dashboard is shown with instances and faults for the selected composite and the metrics for its
components, services, and references: the number of instances, faults, and the average processing
time. It is possible to drill down to individual components, services, and references in the composite
by clicking them in the composite dashboard.

FIGURE 16-1. Dashboard for a BPEL component inside the PatientAppointmentService
composite

524 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 525

A detailed dashboard is shown with information about the activity—past and present—of the
selected component, service, or reference. The dashboard lists instances, faults, and throughput
(number of instances per minute). Depending on the type, different data is shown. For example,
the Human Task Component dashboard provides insight into the variation in the business
outcomes of the task and into the average time taken by the human actors for executing the task.
For BPEL components, the dashboard shows an overview of the activity time distribution, a listing
of the average time spent on each activity in the BPEL process.

Performance Monitoring
The FMW Control Console provides a real-time graphical performance dashboard with a
customizable selection of charts or listings that indicate the recent past and present of composite
processing in the SOA Suite. This dashboard is accessed from the context menu on the soa-infra
node: Right-click this node to bring up the context menu, open the Monitoring submenu, and
select Performance Summary (see Figure 16-2).

The presentation of the performance information can be configured in several ways:

 Time window ■ Using the slider, the Zoom In and Zoom Out icons, or the time entry
pop-up, we can specify the time window over which we want to review the metrics.
(Note that we cannot look farther back than the startup time of the SOA Suite and never
more than 24 hours.)

 Table view ■ We can have the metrics listed in a table layout in addition to the graphical
presentation.

 Overlay ■ Metrics from multiple SOA Suite instances can be combined in the dashboard.

 Metric selection ■ The Metric Palette, shown in Figure 16-3, can be brought up to
configure the different metrics that should be displayed on the dashboard. Brace yourself
before opening this palette, because there are over 150 different metrics you can select

FIGURE 16-2. Real-time Performance Summary

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 525

to have displayed on the dashboard; these metrics range from the number of messages
arriving at the SOA Suite and specific composites and engines, to the average processing
time of individual services and references.

 Dashboard composition ■ You can reorder these charts by simply dragging and dropping
them into the desired position.

Performance Summary is a great tool for quickly getting insight into the current state of affairs.
Multiple browser windows can be opened with focus on various aspects of the operations.

However, the tool lacks a number of functions that one may desire from it:

 It does not save the configuration of the dashboard; when you close the page, you will ■
have to reselect the metrics to display.

 It does not allow us to set goals or thresholds for the metrics that would show up in the ■
charts.

 It does not do any form of SLA monitoring, raising alerts when performance falls short of ■
the specified minimum levels.

 It does not cater for exporting metrics in any form. ■

The Business Activity Monitor product that we will discuss in Chapter 19 can be used to
address some of these requirements.

FIGURE 16-3. The Metric Palette for Performance Summary to select the metrics to visualize

526 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 527

Composite-Level Performance Summary
Performance Summary can also be accessed from the context menu for individual composite
nodes. This will present the metrics in the context of the selected composite, and the Metrics
Palette only shows relevant options for the composite.

Request Processing
The Monitoring submenu for the soa-infra node contains another option: Request Processing. This
option brings us to a fairly high-level overview of the activity by the Service Engines and Binding
components: the number of messages they have processed, the average processing time, and the
number of faults.

Instance Inspection
Occasionally we need to zoom in on individual composite instances. During development, this is
common practice to verify the behavior of the composites we have developed. When the
applications have gone live, instance inspection is not a very frequent operation. However, when
an instance has produced unexpected results, a dispute has arisen over a business transaction, or
an instance has failed to complete, it may be required to inspect what exactly happened during
the execution of the composite.

Message Flow Trace
We have seen in previous chapters that each instance of a composite application can be tracked
through the message flow trace. This trace visualizes the path a message has followed from the
moment it entered the SOA Suite, until such time all activity in the composite instance has
completed. All components that were visited appear in the flow trace, as well as other composites
that were invoked and all other bindings such as external Web Services and adapter references.
The flow trace shows the status of each component invocation and also the start time and end
time. For faulted instances, the flow trace presents details about the exception that occurred.

We can drill down from the flow trace to the detailed audit trail for the service components.
This, in turn, presents fine-grained trace information about the execution of the component. Each
BPEL activity, Human Task update, or Mediator action can be tracked in this way.

Audit-Level Settings
The validity of those last statements depends on the audit-level setting. The audit level for the
entire instance of the SOA Suite as well as for individual composites can be one of three settings:
Development, Production, or Off. Composites can also inherit the value set at the soa-infra level.
The Development setting results in the most detailed audit information—down to details about
each Assign activity in BPEL processes. With the audit level set to Off, we will not get any
information about composite instances: They will still run, but no trace of them is found in the
FMW Control Console. The audit level Production is the most common setting in—this may not
come as a surprise—production environments.

You can set the audit level for composites by clicking the Settings button for a composite and
selecting the desired audit level, as shown in Figure 16-4.

Log Files
In addition to the fairly structured message flow trace that helps us analyze individual composite
instances—provided the audit-level setting is appropriate, of course—the SOA Suite writes out
information about its activities to several log files. These files are located on the server on which

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 527

the SOA Suite runs, and can also be inspected from the FMW Control Console. You can find the
log files in the console from the context menu on the soa-infra node, picking the option View Log
Messages from the Logs submenu, as shown in Figure 16-5.

FIGURE 16-4. Setting the audit level for the PatientAppointmentService composite

FIGURE 16-5. Inspecting the SOA Suite–wide log messages

528 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 529

The Log Messages page provides access to all messages written to one of several log files.
Depending on the log file configuration (see the next section), the volume of information in the
logs can be huge. We can filter our view on the log messages by date and time range, the type of
message (from Error to Trace Detail), the contents of the message, and the composite and
component that produced the message. If we click Add Fields, we can extend the list of filter
criteria with two dozen additional details.

By clicking the button Target Log Files, we can get a list of the log files—with details about
their physical location and their size. Each log file can be opened and inspected from the console
and can also be downloaded.

Configuration of the Log Files
SOA Suite allows us to instruct it to produce customized log files, in addition to the files it will
already create by default. The menu option Log Configuration takes us to the Log Configuration page.

On the first tab of this page, we can set the diagnostic log levels for many different aspects of
and components in the SOA Suite. The log levels range from INCIDENT_ERROR to TRACE:32
(FINEST), producing very little to an enormous amount of log information. These levels can be set
independently for dozens of components—for example, Mediator transformation, BPEL entity,
and Metadata Services (MDS).

NOTE
Make changes to these settings with some care, because you can
easily and inadvertently instruct SOA Suite to produce tens of
megabytes’ worth of logging data per hour, which may not necessarily
be very helpful and is even less likely to endear you to your system-
administrating colleagues.

The second tab of this page has us configure the log files that are being written. We can add
our own specialized log file, with our special selection from the many events taking place in the
SOA Suite that can be logged.

Click the Create icon to create a new log file. In the pop-up, specify the name and the log path—a
server-side combination of directory path and filename—for the new log file. Specify the desired log
level and make a selection of all loggers that should be associated with this new log file—for example,
all loggers that have to do with the Human Workflow services. Finally, we have to indicate how these
files should be rotated, either by specifying a maximum size or a maximum lifetime.

Enriching the Composite Instance Audit Trail
We have several ways in SOA Suite to enhance the run-time information available to us concerning
the execution of composite applications. We can have information added to the log file, enrich the
(BEPL) audit trail, make composite instances easier to recognize and find in the FWM Control Console,
and even have information about the progress of BPEL processes reported via JMS or Database.

Log Policy
Chapter 15 introduced the policy-based WebServices Management framework, primarily in the
context of security. However, one of the standard WSM policies is a logging policy, as was
demonstrated in one of the last sections of that chapter when we added the oracle/log_policy to
the BPEL process in the InsuranceComposite. By applying this policy, we can extend the logging
with exact entries with the contents of the messages coming in to and flowing out of the targeted
composites and components.

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 529

For example, to log the request and response message to and from the PatientDataService—in
the console, because we only have a temporary need for this additional logging—select the node
PatientDataService in the FMW EM Console. Select the Policies tab, where policies can be
applied to and detached from composites and their components, and then open the drop-down
on Attach To/Detach From and select the BPEL component PatientDataService. The Attach/
Detach Policies pop-up opens. Select the oracle/log policy and click Attach. Click OK to close
the pop-up. The log policy is now in place, as shown in Figure 16-6.

Let’s see the log policy in action: To begin, invoke the PatientApppointmentService that in
turn calls the PatientDataService. Then go to the Instances tab for the PatientDataService. Click
the icon in the Logs column for the instance that was just created and then click the button Target
Log Files. Select the diagnostic.log file and click View Log File. The most recent two entries of
type Notification are created by the WSM logging policy that we have applied before; this, too, is

FIGURE 16-6. Applying the log policy to the PatientDataService component and seeing the
resulting log entries

530 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 531

shown in Figure 16-6. Alternatively, you can inspect the log file on the file system to verify
whether the WSM policy creates the log entries as intended.

Setting the Name of a Composite Instance
Composite instances all look the same in the console. The only way really to distinguish one from
the other is based on their start time—which is not terribly much to go on. Fortunately, there are
several ways to make it easier to discern between instances. One is by dynamically assigning a
meaningful name to an instance of a composite. For example, we can add an Embedded Java
activity to the BPEL process PatientAppointmentService—as described in Chapter 12—that sets
the name of the composite instance to the appointment identifier, as shown here:

setCompositeInstanceTitle("Appointment Id:"
 +getVariableData("processIdentifier"));

When we deploy the composite with this activity added to it, we will be able to search for
instances based on the appointment identifier as well as recognize instances from their names
because these expose the identifier (see Figure 16-7).

Mediator components can also dynamically set the name of a composite instance through an
Assign value that uses the XPath expression setCompositeInstanceTitle(title) as the source and the
property tracking.compositeInstanceTitle as the target.

FIGURE 16-7. Instances for which the name has been set are easier to identify and find.

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 531

Composite Sensors
Composite sensors make our life easier by allowing us to expose information from within composite
instances. These sensors are typically used to expose data such as the name of the patient, the
appointment identifier, or other information that represents the composite in a meaningful way. This
information can subsequently be used to find instances we may have a special interest in or to learn
something about an instance already under scrutiny. Composite sensors report values for services or
references in a composite—the internal processing in the composite is not exposed. Composite
sensors are defined in JDeveloper, in the Composite Editor.

Adding Composite Sensors to Composite PatientAppointmentService Let’s add a few
sensors to the PatientAppointmentService composite to make it easier to find instances of this
composite and also to better appreciate the composites we see listed in the console. Click the
screwdriver icon in the Composite Editor. Select the service or reference on which a sensor is to
be defined. In this case, select the PatientAppointmentService_ep service and click the green plus
icon (see Figure 16-8).

FIGURE 16-8. Creating the composite sensor PatientName for composite PatientAppointmentService

532 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 533

Enter a name for the sensor in the Create Composite Sensor pop-up—for example,
PatientName, because our first sensor will expose the name of the patient for whom an
instance of the PatientAppointmentService is created. Select the initially invoked process
operation on the service. Specify the expression for the value that this sensor should expose.
In this case, we expose the result of concatenating the first and last name of the patient.

A filter can be used to specify that the sensor should only report a value under a special
condition. The sensor’s actions need not (and cannot) currently be set, because only the DBSensor
action is supported for composite sensors. Click OK to complete the creation of the first sensor.

Continue to also create composite sensors on the patient identifier (set by the reference
PatientDataService) and the appointment identifier (set in the same process operation that we
just created the PatientName sensor for). Finally, also create a composite sensor on the
getAppointmentStatus operation in the composite’s publicly exposed service.

The composite sensors are depicted in the Composite Editor by little icons on each service or
reference that has sensors defined on it.

A new file called sensor.xml is created in the root of the project. This file contains the
detailed definitions of all composite sensors. Additionally, the file sensorAction.xml defines the
action taken for each of these sensors—which at the present can only be DBSensorAction. These
files are deployed along with the composite to the SOA Suite.

With all composite sensors created, deploy the PatientAppointmentService composite to the
SOA Suite. Note that we cannot find any metadata about the composite sensors in the FMW
Control Console, nor can we add or modify composite sensors in the console.

Making Use of the Composite Sensors in the Console To see the effect of the composite
sensors, we have to create some new instances of the PatientAppointmentService. For example,
request appointments for William Tacker and Wendy Turnip. This results in two new instances of
the composite. These show up in the console and can only be distinguished by start time and the
meaningless composite instance identifier.

When the GP for Wendy would contact St. Matthews to learn about the appointment he has
requested, we would have to wade through potentially thousands of composite instances to find
the right one. However, with the composite sensors attached, things have become much easier.

Go to the Instances tab for the PatientAppointmentService composite and click the Add Fields
button. A list is shown of all extra search fields we can use thanks to the composite sensors. Select
the Patient Name field.

A search field is added that filters instances on their value for the composite sensor Patient
Name. Enter Wendy, select Like as the search operator, and click Search. A single instance is
returned. Click the Composite Sensor icon to inspect the values of the composite sensors for
Patient Name—which should be Wendy because that is how we retrieved the instance in the first
place—and the Patient Identifier, the other sensor value that has been set for this instance (see
Figure 16-9).

Tracing BPEL Process Progress Using BPEL Sensors
The SOA Suite offers yet another mechanism for publishing trace information that provides insight
into what is going on. Fine-grained sensors can be applied to BPEL processes to track activities,
variables, and faults. The information gathered by the sensors can be processed by sensor actions
that can forward the sensor signals to the database, to local JMS queues or topics or via a JMS
adapter to a remote JMS infrastructure, or to a custom Java class. Important sensor signals can be
turned to EDN events via a JMS or custom Java action. In Chapter 19, we will discuss the BAM

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 533

sensor action, which reports BPEL sensor signals to the Business Activity Monitor server, for
example, for use in real-time operational management dashboards. We will then also learn about
the BPEL Monitor framework that provides declarative integration with BAM for reporting
counters, business indicators, and intervals that result in detailed insight into the metrics of the
BPEL process through real-time BAM dashboard reports.

Adding Sensors to the BPEL Process BPEL sensors are added and maintained in the BPEL
process editor. This editor first needs to be switched to monitor mode using the Monitor button in
the upper-right corner, as shown in Figure 16-10. In monitor mode, we can add sensors to a BPEL
scope or activity simply by right-clicking and selecting Create Sensor from the context menu.

Let’s create a sensor to monitor the RegisterPatientData scope and include the
PatientIdentifier in the sensor signal. Right-click the RegisterPatientData scope, open the Create
submenu, and select the Sensor menu item. The Edit Activity Sensor pop-up opens. Enter the
name for the sensor: RegisterPatientDataScopeSensor. Accept All as the value for the evaluation
time, which means that for normal execution we will have two sensor signals: one upon
activation and one upon completion of the scope. Specify the XPath expression to retrieve the
value of the patientId:

$Patient/payload/ns1:PatientDataServiceProcessResponse/patientId

This means that the result of this XPath expression is added as payload to the sensor signal.
Note that we can add XPath expressions to this sensor.

Let’s also create a variable sensor to monitor the value of the appointment identifier. Open
the structure window if it is not already open (from the View menu, select the Structure option or
use the default shortcut key combination ctrl-shift-s). Select the Variable node and click the green
plus icon to create a variable sensor. Call this sensor AppointmentIdentifierVariableSensor and
set target to $processIdentifier.

Associating Sensor Actions with BPEL Sensors At this point, we have done nothing yet to
send the sensor signal to even a single destination. It is time to associate at least one sensor
action—of potentially several—with the sensors we have created.

FIGURE 16-9. Retrieving the PatientAppointmentService composite instance for patient Wendy
and inspecting the composite sensor values

534 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 535

FIGURE 16-10. Switching to monitor mode and adding an activity sensor to the RegisterPatientData
scope in the PatientAppointmentService BPEL process

Click the plus icon on top of the Sensor Actions box. The Sensor Action Chooser opens—
with no sensor actions to choose from. Click the green plus icon to bring up the Create Sensor
Action. Enter GenericDBSensorAction as the name and accept the default value Database as the
publish type.

Select the AppointmentIdentifierVariableSensor and click the edit icon. Add the GenericDB
SensorAction as the sensor action for this sensor.

We can now redeploy the PatientAppointmentService with the embedded sensors to expose
additional information about the progress of the BPEL process. Deployment is done in the same
way as before, when we did have the sensors. However, this time the two files created by
JDeveloper for the sensors and sensor actions—PatientAppoinmentService_sensor.xml and
PatientAppoinmentService_sensorAction.xml—are deployed along with the application.

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 535

NOTE
See the wiki for an example of a custom sensor action—a Java class
that writes selected information to a log file in a format that can
perhaps be used for additional reporting.

Inspecting the Output from BPEL Sensors With the application deployed and sensors inside,
we can now create a new instance of the PatientAppointmentService to see what the sensors will
do for us.

It depends on the sensor actions that have been associated with the BPEL sensors where the
output from the sensors will be available—JMS queue or topic, database tables, BAM server, or
just about anywhere, including potentially Twitter when the Custom action has been used.

Output from Database sensor actions is visible in the FMW Control Console: Open the
message flow trace for the composite instance and then open the BPEL component instance.
Select the Sensor Values tab. This tab lists the sensors and the associated sensor signals and their
(variable) values. This tells us, for example, that the RegisterPatientDataScope took 145 ms to
complete (see Figure 16-11).

When the sensors are associated with the Database sensor action, we can retrieve the same
output we find in the console through a number of database views: BPEL_PROCESS_INSTANCES,
BPEL_ACTIVITY_SENSOR_VALUES, BPEL_FAULT_SENSOR_VALUES, and BPEL_VARIABLE_
SENSOR_VALUES. Here’s an example:

select s.activity_name
, s.activity_type
, v.creation_date
, s.eval_point
, s.eval_time
, v.variable_name
, case v.value_type
 when 2 then to_char(v.number_value)
 when 12 then to_char(v.varchar2_value)

FIGURE 16-11. BPEL sensor signals for the PatientAppointmentService in the FMW Control
Console

536 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 537

 else to_char(substr(v.clob_value,1,100))
 end variable_value
from bpel_activity_sensor_values s
 left outer join
 bpel_variable_sensor_values v
 on (s.instance_key = v.instance_key)
where s.instance_key = 90015

The result of this query in this case is shown in Figure 16-12.
Monitoring by sensors can easily be switched on or off, without removing any of the sensors.

The Settings drop-down in the Composite Dashboard tab in the FMW Control Console includes
this option to toggle sensor monitoring.

Additional Custom Logging
Chapter 12 demonstrated various ways of extending the default processing of the SOA Suite using
Java. We discussed the Mediator Java callouts and the Embedded Java activity in BPEL processes
as well as the Spring Java component. It should be obvious to you that we can use Java to provide
additional trace reports from our components.

Adding messages to the BPEL audit trail is pretty simple: Just add an Embedded Java activity to
a BPEL process and include a call to addAuditTrailEntry(String), as shown here:

addAuditTrailEntry("An additional piece of audit information on patient "
 + getVariableData("patientIdentifier"));

Note that in the current release of SOA Suite, logging written by Java code in the Mediator
callouts or Spring Java components is not added to the SOA Suite log files. We can, of course,
write messages to the console or send them through alternative channels such as JMS, e-mail, and
the database.

Responding to Exceptions in Composite Execution
Execution of composite applications may fail. There can be various reasons for exceptions to occur.
Bugs in the software, either the infrastructure or the custom developed code, are one option. Much
more common are system and infrastructure failures or unavailability of components such as
database, queue, or remote services that may lead to errors and full disks or tablespaces that may
prevent successful completion of composite instances. At a higher level, business exceptions may
occur that cause a composite to deviate from the happy flow. These can range from request messages
that do not contain correct information or are sent at the wrong moment, to attempts to book or buy
something that is (currently) not available.

Some exceptions are recoverable; that is, they are caused by a temporary issue that can be
resolved after which the composite could continue to run and complete successfully. This is the

FIGURE 16-12. Result of querying the sensor signal values from the database

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 537

case, for example, when the instance faulted because a remote service is unavailable. Once the
service is up again, the error condition has ceased to exist and the instance can continue
processing. Another example of a recoverable exception is a request message that does not pass
validation and that with a simple manual correction can be made to comply and be put forward
for continued processing.

Other exceptions are irrecoverable—at least within a decent amount of time. An appointment
was requested for a type of appointment that St. Matthews does not offer, or details were requested
for a nonexistent patient. When the exception is caused by a bug in the composite application, the
exception is only recoverable after the bug has been fixed and a patch has been applied. When a
service is protected by an OWSM security policy and the request did not fulfill the policy’s
requirements—due to, for example, an unknown identity, insufficient access privileges, or an
incorrectly encrypted message—it will fail in an irrecoverable way.

We need to decide how to deal with exceptions. We can probably not afford to simply ignore
them. Instead, we can choose for some exceptions to result in faults that are returned to service
consumers—preferably meaningful faults, defined in the WSDL, that do not give away information
about the internals of the service implementation, such as a proper fault message that advises the
consumer about the fact that an appointment type is not known rather than an “ORA-1403: no data
found” error. Other exceptions can be dealt with in an automated fashion—for example, through the
catch (exception) and compensation handlers in BPEL processes that were described in Chapter 6.

We will next discuss the fault policies in the SOA Suite that help administrators deal with
errors that have bubbled up from within composite instances—by properly reporting on them, by
automatically retrying them, by executing a custom action for them, or by providing the option
for manual recovery from the console with possibly payload correction and the option to restart.

All exceptions that cannot be dealt with in an automated fashion should be and are reported in
the console for administrators to act upon or at least learn about. Note that faults that are not dealt
with by explicitly configured policies are handled by the default policies embedded in the SOA
Suite. These default policies have a coarse-grained filter for discerning recoverable exceptions—for
which the faulted instance can be retried in the console—and irrecoverable faults that are reported
in the console and also lead to some form of fault being returned to the service consumer. Human
intervention is the default action for errors that do not have a fault policy defined.

Policy-based Fault-Handling Framework
SOA Suite 11g provides a policy-based system for fault handling. Policy based means that we
create a potentially wide range of policies to configure a response to a specific type of exception.
These policies are created apart from the applications and components they apply to—just like
the security policies discussed in Chapter 15. This means decoupling: The policies can easily be
reused across composites and components, and they can be centrally maintained. Policies are
defined in a file that by default is called fault-policies.xml. It is important to realize that this fault-
handling framework covers all types of components—from Human Task and Spring Context to
Business Rule and BPEL—and deals with entire composite applications.

Policies for fault handling consist of two main elements:

 The condition under which the policy is activated—we specify what type of fault(s) the ■
policy is relevant for, and we may add a finer-grained test on the payload of the fault;
through such a payload-based condition, we can very precisely associate the policy, for
example, with specific database error codes, Java exceptions, or WSDL fault metadata,
or create conditions that distinguish between Mediator faults, business and SOAP faults
(including BPEL faults), and adapter faults.

538 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 539

 The action(s) that should be performed when the condition is satisfied; note that actions ■
can be chained—for example, first retry several times and upon repeated failure, go on to
manual intervention.

The fault-handling framework provides a number of actions that can be used in fault policies:
retry, human intervention, abort, rethrow fault, and custom Java action.

Human intervention will make the composite instance available in the FMW Control Console
in a recoverable state. The administrator can manipulate the payload and then decide to retry,
replay a single BPEL scope, continue (ignore error), or abort the instance.

Fault policies by themselves do nothing. They need to be explicitly associated with composites,
components, or references. This is done in a file fault-bindings.xml (this is the default name that can
overridden). Fault bindings link the composite, specific components in the composite, or specific
references in the components on the one hand to one of the fault policies on the other. Any policy
for a specific fault at the component level overrides (that is, replaces and not complements) a policy
defined at the composite level, and a policy defined for a reference of a component will take
precedence over a component-level policy.

We will now first look at the default behavior of the SOA Suite when a composite instance
faces the problem of an unavailable external service. Then we create a fault-policies.xml with
some policies that we may want to use for our composites later on for this situation. These
policies include retry and human intervention for availability issues with calling remote services.

Once the policies and their actions are available, we will create a fault-bindings.xml to
configure how the policies should be applied to composite PatientAppointmentService.

Finally, we will create a custom Java action that sends an alert to an administrator for a fault
that requires human intervention.

Default Behavior in Case of Unavailable Remote Services
An easy way to find out what the default behavior is for the “remote service not available” case is
by turning off the PatientDataService composite from within JDeveloper—or shutting down that
composite in the FWM console—and then invoking the composite PatientAppointmentService, as
shown in Figure 16-13. This composite relies on the PatientDataService, and when it is not available,
something will go wrong.

FIGURE 16-13. Turning off the PatientDataService from JDeveloper or shutting it down from the
console

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 539

After we have shut down/turned off the PatientDataService composite, the request to the
PatientAppointmentService times out. Checking the FMW Console, we will find the faulted instance,
along with an indication of a nonrecoverable system fault, as shown in Figure 16-14. That is
somewhat unfortunate, because we could easily have retried the instance after turning on the
PatientDataService composite again. However, because the instance is marked unfit for recovery, all
is lost. We clearly need a policy that prevents PatientAppointmentService instances from completely
falling apart when one of its references is unavailable for just a little while.

Fault Policies for Retry and Human Intervention
Open the PatientAppointmentService application in JDeveloper. Create a new XML document
called fault-policies.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="1.0" id="RemoteServiceUnavailableFault">
 <Conditions>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">

FIGURE 16-14. FMW Control Console with the faulted instance of composite Patient
AppointmentService

540 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 541

 <condition>
 <action ref="retry-medium"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="retry-medium">
 <retry>
 <retryCount>7</retryCount>
 <retryInterval>4</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-human-intervention"/>
 </retry>
 </Action>
 <Action id="ora-human-intervention"><humanIntervention/></Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

The document defines a single fault policy, called RemoteServiceUnavailableFault. The
condition under which this policy will take an action is the occurrence of the BPEL remoteFault.
When that fault occurs, the action retry-medium is invoked. This action will retry the failed step
in the composite for a maximum of seven times. The first attempt is made 4 seconds after the
exception occurred, the second after 8 seconds, the third after 16 seconds, and so on. This
exponential increase of the wait time is caused by the exponentialBackOff element in the retry
action.

If after seven attempts the remote service is still not invoked successfully, the administrator-
action is invoked. This action is of type humanIntervention, which means that the failed instance
is presented in the console as recoverable.

Binding the Fault Policy to the PatientAppointmentService
With the definition of the policy in place, we can configure the binding of this policy to the
PatientAppointmentService. Create a new XML file, called fault-bindings.xml. In this case, the
contents of this file should be the following:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
</faultPolicyBindings>

This configures the fault policy ConnectionFaults, defined in the fault-policies.xml file, to be
bound to the composite [PatientAppointmentService]. We can create more fine-grained bindings
by using the <component> element with <name> child elements that contain the name of the
components to which the fault policy should be applied. Fault policies can be bound to
component references using the <reference> element.

With both fault-related files in place, we can deploy the PatientAppointmentService and see
what these policies do.

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 541

Note that we can decide to use different policies for the unavailability of the reference for
PatientDataService and the reference for the SchedulerService, because fault-policy bindings can
be as fine grained as the reference level.

Fault Policies in Action for the PatientAppointmentService
Invoke the PatientAppointmentService—with the PatientDataService turned off. When we check the
progress of the new composite instance in the console, we will find that the instance has faulted.
On inspecting the message flow trace, we find that the retry action has kicked in. Even though the
instance has the status faulted, it is still alive thanks to our fault policy. Figure 16-15 shows the flow
trace after six retry attempts have been made and failed to invoke the PatientDataService. Note how
the time between the attempts increases exponentially, up to 128 seconds between the fifth and
sixth attempt.

When we turn on the PatientDataService before the seventh and last attempt is made, we may
be able to yet have the instance continue successfully.

However, when the final retry has failed, too, because we did not react in time, the human
intervention action is invoked. This means that the instance is hospitalized: Without treatment by
the administrator, it will go nowhere from here.

When we check the Faults and Rejected Messages tab for the PatientAppointmentService
composite, we will find the faulted instance—with an indication that it is recoverable. That means
we have a number of actions that the SOA Suite allows the administrator to perform. These actions
are Retry, Abort, Continue, Rethrow, and Replay (see Figure 16-16). In this case, the administrator
needs to turn on the PatientDataService component and then retry the instance from the console.

In this case, we just retry the instance without changing its payload. Sometimes, however, we
may need to correct the input payload or set a BPEL variable with the value that should have
been provided by a remote service call that fails. When you click the link Recoverable on the

FIGURE 16-15. Message flow trace for faulted PatientAppointmentService with retry at work

542 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 543

Faults and Rejected Messages tab, a pop-up appears where the instance can be recovered. In that
pop-up, we can review and manipulate the value of all BPEL variables.

Important Facts on Fault Policies
Fault policies can be bound to Mediator components. However, they will only catch and handle
faults for parallel routing rules in Mediator components. This has to do with the transaction
context: For sequential routing rules that execute in the same thread and transaction context as the
caller, the transaction in which the exception occurs can contain many earlier actions performed
by actors earlier in the call chain than the Mediator component. The exception is returned to the
caller to handle and decide what to do with the transaction. For parallel routing rules, a new
thread and transaction context is created for which a fault policy can safely handle faults.

Another thing you should realize is that fault policies will not be triggered when a Mediator
component raises a validation error for request messages that do not comply with the XSD. Such
errors are thrown before any of the routing rules are executed. The alternative for message
validation in the Mediator—based on Schematron—can be handled by fault policies because this
type of validation occurs later in the Mediator lifecycle, for every routing rule.

Note that fault policies take precedence over BPEL catch activities. This is a good thing
because policies can be applied without impacting the BPEL components they are applied to.
However, if the BPEL catch should be executed (too), the fault policy needs to rethrow the fault to
have it bubble up to the BPEL component’s own embedded fault handling.

When you want to use different names and locations for the fault policies and fault bindings files,
you can use the properties oracle.composite.faultPolicyFile and oracle.composite.faultBindingFile in
the composite.xml to configure those custom files.

Creating and Integrating a Custom Java Action to Send an E-mail Alert
Of course it is great that the instances that are eligible for manual recovery are presented in the
console. However, only when the administrator actively goes into the console to check for such
instances will action be taken. It would be so much nicer if the administrator is alerted through
e-mail, for example, every time an instance requires human attention.

FIGURE 16-16. Human intervention on the faulted PatientAppointmentService instance

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 543

Through the custom Java action, it is quite straightforward to make this happen. When the
automatic retry has failed to successfully recover the instance, the custom Java action to send an
e-mail is executed and, when done, is chained through to the human intervention action.

Therefore, we need to create the Java class that implements the interface IFaultRecoveryJavaClass,
configure a custom Java action for it in the fault-policies.xml file, configure a properties set with e-mail
settings, and deploy the class (the easiest way is to include the class in a composite application). The
online chapter complement provides detailed instructions for creating class FaultEmailAlerter and
configuring it in a custom fault handler. The class implements interface IFaultRecoveryJavaClass,
which defines two methods: handleRetrySuccess and handleFault. Our Java class has access to the
IFaultRecoveryContext, which makes information available about the composite, the fault, and the
policy. Depending on the origin of the fault, this context may be an instance of MediatorRecovery
Context (which exposes the mediator message) or the IBPELFaultRecoveryContext (which allows us to
write messages to the BPEL audit trail, inspect the current activity, and read and update the values of
BPEL variables). The next code snippet shows how the handleFault method could be implemented:

public String handleFault(IFaultRecoveryContext iFaultRecoveryContext) {
 StringBuffer msg = new StringBuffer("Dear Administrator,\n\n");
 msg.append("Fault policy id: " + iFaultRecoveryContext.getPolicyId()+"\n");
 if (iFaultRecoveryContext instanceof IBPELFaultRecoveryContext) {
 IBPELFaultRecoveryContext ctx =
 (IBPELFaultRecoveryContext)iFaultRecoveryContext;
 msg.append("Fault: " + ctx.getFault()+"\n");
 msg.append("Activity: " + ctx.getActivityName()+"\n");
 lastName = ((XMLText)ctx.getVariableData("inputVariable", "payload"
 , "/client:AppointmentServiceProcessRequest"
 + "/client:patientDetails/client:lastName/text()")
).getData();
 msg.append("Patient: "+lastName+"\n");
 ...

Injecting the “send email alert action” in fault-policies.xml
The fault-policies.xml file needs to be modified to make sure the e-mail alerts are sent whenever
an instance has failed with a remoteFault and the retry action was not successful.

First, we change the retryFailureAction in the retry-medium action to chain to a new action
called alert-and-human-action:

<retryFailureAction ref="alert-and-human-action"/>

Then we create this new action:

<Action id="alert-and-human-action">
 <javaAction className="com.stmatthews.hospital.FaultEmailAlerter"
 defaultAction="ora-human-intervention"
 propertySet="emailSettings">
 <returnValue value="OK" ref="ora-human-intervention"/>
 </javaAction>
</Action>

When the e-mail alert has been sent by the custom Java action, the next action should always
be ora-human-intervention.

544 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 545

The attribute propertySet with the value emailSettings is a reference to a list of properties
defined in the fault-policies.xml file that are passed to the custom Java action. In this case, these
properties provide e-mail configuration settings:

<Properties>
 <propertySet name="emailSettings">
 <property name="emailServer">stmatthews.com</property>
 <property name="emailPort">25</property>
 <property name="emailToAddress">frank@stmatthews.com</property>
 <property name="emailFromAddress">appointmentmanager@stmatthews.com
 </property>
 </propertySet>
</Properties>

E-mail Alerts Sent for Failing PatientAppointmentService Instances
Invoke the PatientAppointmentService—with the PatientDataService still turned off. The fault
policy will be activated and perform the automatic retry. When the retry has run out of steam, the
custom Java action should be invoked—resulting in an e-mail being sent to the administrator (see
Figure 16-17). The audit trail of the BPEL process is also updated by the Java action. Subsequently,
the human intervention is activated and the failed instance ends up as recoverable in the console.

Java actions can, of course, be used for many more things than sending e-mails; they can
perform a lot of actions that resolve the issues that caused them to be invoked in the first place—
such as updating BPEL instance variables and changing properties and endpoints in the SOA
Suite. Writing logging information to a database and custom log file is another frequent task for
these actions.

FIGURE 16-17. E-mail advising the administrator of an instance that requires attention

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 545

Rejected Messages
There is another category of exceptions that we have not yet discussed. These exceptions do not
occur in composite applications. Instead, they happen before the service infrastructure is even
reached. Such exceptions take place, for example, in the file adapter when it reads a file for
which it expects a certain format and the translation based on the native format to a proper XML
message fails because the file is corrupt. Before the file adapter can hand the message to a newly
created composite instance, it has already rejected it.

Because the fault policies apply to service composites, components, and references, these
rejected messages do not fall under their dominion. Rejected messages are handled differently:
They and their payload are stored in the database, and we can specify the procedure for dealing
with them through so-called “rejection handlers.”

Rejection handlers are a special type of faultPolicy in the faultPolicies.xml file. They are
bound to a service or reference (to handle failures with outbound messages after they have left
the service fabric).

Implementing a Message Rejection Handler
for the DoctorAppointmentRequestsProcessor
We created the DoctorAppointmentRequestsProcessor in Chapter 7. It uses an inbound file
adapter service to read requests for patient appointments from a file. These requests are forwarded
to a Mediator and from there are processed to either external healthcare providers (dentists and
chiropractor) or to the PatientAppointmentService. Sometimes the files with appointment requests
received by St. Matthews from the general practitioners are not correct. These files should have
the agreed-upon comma-separated values format with the specified number of values per
record—but occasionally, they do not. When these corrupt files are processed, the file adapter
will throw an exception, even before an instance of the DoctorAppointmentRequestsProcessor is
created. A normal fault policy will not catch and handle the exception, because it acts on a
composite and not on a rejected message.

The fault policy for rejected messages is defined in the faulty-policies.xml file as follows:

<faultPolicy version="2.0.1" id="RejectedMessages">
 <Conditions>
 <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
 name="rjm:ReadFileDoctorsAppointmentRequests">
 <!-- name refers to the composite service -->
 <condition>
 <action ref="logInFile"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="logInFile">
 <fileAction>
 <location>c:\temp\stmatthews\logs</location>
 <fileName>AppointmentRequest_%ID%_%TIMESTAMP%.xml</fileName>
 </fileAction>
 </Action>
 </Actions>
</faultPolicy>

546 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 547

The namespace http://schemas.oracle.com/sca/rejectedmessages is used to identify the
“rejected message exception” category. The (local part of the) name of the fault must match the
name of a service or reference in the composite. Various actions are available for use in rejection
handlers: Web Service Handler, Custom Java Handler, Queue Handler, and File Handler.

In this case, every corrupt message will result in two files in the specified directory: one a
literal copy of the rejected message, the other a file that describes the exception.

The fault policy must be bound to the service or reference in the composite through the
fault-bindings.xml:

<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <service faultPolicy="RejectedMessages">
 <name>ReadFileDoctorsAppointmentRequests</name>
 </service>
</faultPolicyBindings>

If a composite does not have custom-rejected messages handlers for its services and
references, the default message rejection handler is activated upon inbound or outbound
exceptions. This handler writes the failed message to a file in the directory [FMW_HOME]\user_
projects\domains\soa_domain\rejmsgs\soa_server1\DoctorsAppointmentRequestsProcessor—
where soa_domain and soa_server1 are the names, respectively, of the WLS Domain and
Managed Server running the SOA Suite.

Rejected messages are also written to the database and can be inspected using queries against
the tables REJECTED_MESSAGE and REJECTED_MSG_NATIVE_PAYLOAD. Rejected messages are
also available in the FMW Control Console, on the tab Faults And Rejected Messages for the SOA
composite that the rejected message should have reached.

Retrying Inbound and Outbound Adapter Actions
In addition to the rejection handlers just discussed, most technology adapters can be configured
to retry failed operations. The retry configuration is done through properties on the binding.jca
element in the composite.xml file or through the FMW Control Console (see Chapter 17). The
next example instructs the inbound database adapter service to retry on failure for a maximum of
five times:

<service name="RetrieveDatabaseDoctorsAppointmentRequests">
 <interface.wsdl
 interface="DocApp/GetDBDocAppReq#wsdl.interface(RetrieveDBDocAppReq_ptt)">
 <binding.jca config="GetDBDocAppReq_db.jca">
 <property name="jca.retry.count">5</property>
 <property name="jca.retry.interval">1</property>
 <property name="jca.retry.backoff">2</property>
 </binding.jca>
</service>

Managing Composite Instances
In the previous sections we have seen several ways to learn about the instances of composite
applications that are currently executing or that have concluded—either successfully or in a failed
state. We have learned how we can implement automated and manual strategies for dealing with

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 547

the faulted instances. Now it is time to discuss the next stage in the lifecycle of composite
instances: their demise.

Composite instances can have a lot of data associated with them—depending on the audit-
level settings. Instance payload in various stages of the composite instance lifecycle can be
captured along with various types of metadata. This wealth of information can be tremendously
useful for problem resolution and for (aggregate) reporting purposes. However, when the number
of instances increases, the data volume can expand rapidly. Some form of pruning is in order;
otherwise, you run a serious risk of performance degradation and disk space shortage.

Deleting Composite Instances
The Instances tab for a specific composite application provides an overview of all instances that
are running, have faulted, have completed, or have become stale (because they were run for a
previous deployment of the composite application). We select instances and delete them.
Alternatively, we can click the Delete With Options button, which brings up a window that allows
us to specify criteria used to select the instances to delete, such as the time window in which the
instances were created (see Figure 16-18). Before the instances are actually purged, we get a last
notification of the number of instances the SOA Suite is about to delete and a last opportunity to
back out of the delete operation.

FIGURE 16-18. Deleting composite instances through the FMW Control Console can be done in
the Instances tab for a specific composite or for all composites in a specific partition.

548 Oracle SOA Suite 11g Handbook Chapter 16: What Is Going On: Monitoring SOA Composite Applications 549

The SOA Suite will happily allow us to delete some but not necessarily all instances that are
part of a message flow trace. For example, we can delete an instance of PatientAppointmentService
while not deleting the instances of PatientDataService and SchedulerService that were invoked by
the deleted instance. When we try to reconstruct the message flow trace that led to the instantiation
of the PatientDataService instance, we will not be able to. This is not necessarily a problem because
it is all in the past anyway, but it’s something you should be aware of.

Bulk Instance Purgatory
Although the console has the means to select a substantial number of composite instances for
deletion, Oracle recommends using the PL/SQL API to purge large numbers of instances (over a
thousand). This package can also be used for automatic, scheduled removal of instances—for
example, daily or weekly purging of all successfully completed instances that are at least two
days old.

The PL/SQL package FABRIC can be used by an administrator to get rid of instances of
composite applications, as shown here:

declare
 l_number_removed integer;
 l_instance_filter instance_filter := instance_filter ();
begin
 l_instance_filter.composite_name := 'PatientDataService';
 l_instance_filter.composite_revision := '1.0';
 l_instance_filter.max_created_date := sysdate - 1;
 l_number_removed:= fabric.delete_composite_instances
 (filter => l_instance_filter
 , max_instances => 1000
 , purge_partitioned_data => true
);
 dbms_output.put_line('Purged '||l_number_removed||' instances.');
end;

This same package also provides procedures to remove a single instance, purge all instances
for all composites, and delete all rejected messages.

Archive Instances
The SOA Suite either retains instances or it purges them. It does not have facilities to archive
instances—taking them offline or moving them to a set of history tables. Deleting an instance
means giving up all information associated with that instance. However, it is possible to
programmatically retrieve instance-related data through several database views as well as by
using the Java API (see Appendix D for more details) and create some form of custom archive.
There is no supported way for re-creating instances in the SOA Suite from such a custom archive.

Abort Instances
Composite instances can also be deleted when they are still running. However, all details about
such instances are deleted as well. If all you want to do is terminate a running instance, you can
also abort the instance in the Instances tab for either the composite or the soa-infra node. An
aborted instance is not purged and all its details are still available for review.

Chapter 16: What Is Going On: Monitoring SOA Composite Applications 549

Summary
For successful operation of the SOA Suite, it is important for administrators to know what is going
on inside. Especially when instances of SOA composite applications fail for unknown or
unexpected reasons, it is essential to trace the history of failed instances in order to uncover
when, where, and why the instance failed. Another reason for administrators to closely scrutinize
the current proceedings inside the SOA Suite is performance: Response times need to stay under
the levels agreed upon in the SLA, and should in general be as short as possible. This chapter
showed various ways of learning about the activity in the SOA Suite—through the instance audit
details in the console, the Performance Summary, and preconfigured and custom log files.
Additional information can be exposed in the FMW Console through sensors—both at the
composite level as well as inside BPEL processes.

When the administrators learn of failed instances through one of the monitoring channels just
listed, usually some form of action should be taken. Depending on the type of fault that has
occurred, this could be an automated action or require a manual intervention. The SOA Suite
contains a fault policy framework that allows us to specify the required action for specific types of
faults and exceptions in specific components or service/reference bindings. Among these actions
are retry, log, human intervention, abort, rethrow fault, and custom Java action. Through this
latter option, we can extend the SOA Suite to do anything we want it to upon a specific fault
occurrence.

Even for the instances that do not end in tears—the vast majority, one would expect—some
administration is required. To prevent the SOA Suite from clogging up, we must implement some
form of purging strategy. Even with the most restricted audit policy, at least some trace remains of
every instance that happened. In general, instances should be removed when they serve no
immediate purpose any longer. This can be done both through the console as well as through a
PL/SQL API.

Of course, there is much more to the administration of the SOA Suite than security (discussed
in the previous chapter) and monitoring, fault handling, and the pruning of instances. In the next
two chapters, we will discuss deployment, lifecycle management, automated testing, and
governance of composite applications.

This page intentionally left blank

Chapter
17

Lifecycle Management:
Testing and Dealing with

Environmental Change

551

552 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 553

he world is not as simple as we made it look in the previous chapters. This is certainly
true for the world at large, but it is also the case for the run-time environments into
which our SOA applications are deployed. So far we have only dealt with a
straightforward development environment to deploy the application into. However, in
reality, the application will have to run in different environments—such as integration

test, acceptance test, and production. These environments will not be identical—external services are
exposed at different endpoints, different directories are used for the file adapter, and adapter properties
such as polling intervals and JDBC settings may have different values for the various environments. In
this chapter, we will see how we can work effectively with such variations between environments,
using environment-specific configuration plans that are attached at deployment time.

In the previous chapters we have deployed SOA composites several dozens of times, at least,
to see the work we had done on the application in action. But we have not really looked in any
detail at how deployment is done. That is an oversight that will be corrected in this chapter, as
we look at the various methods for packaging and deploying applications—from JDeveloper, the
command line, and the FMW Enterprise Manager Control.

At some point in the deployment procedure we should establish the correctness of the
composite application by executing unit tests against it. We will leverage the embedded unit
testing framework in the SOA Suite, which allows us to create test cases in JDeveloper and carry
out the automated unit tests on the deployed application.

After composite applications are deployed and have been happily processing requests, we are
not likely to reach a status quo. In this world in which we embrace change “for a living,” we will
be faced with changes—in the environment (for example, the location of services), in the
functional requirements, or in nonfunctional aspects such as security, performance, and audit
levels. We will discuss several ways in which we can respond and accomplish the desired
changes: through run-time property adjustment and management of metadata, redeployment of a
modified application, and the creation of a new version. Managing the evolution of services,
events, and composite applications as well as dealing with multiple versions of a composite
service are special challenges that we introduce in the last part of this chapter. The next chapter,
on SOA governance, further elaborates on this topic.

Building and Deploying SOA
Composite Applications
Deployment is the process that delivers an SOA composite application to a run-time environment.
This can be straight from the development environment in which it is created (JDeveloper), from a
source code control system where all constituent parts of the application are gathered, or even
from another run-time environment. Before the application is in a format that the SOA Suite run
time can handle, the application needs to be compiled, built, and packaged into a properly
constructed archive. Note that faultless deployment may not be enough for successful execution
of the composite application because the application may depend on data sources, JMS objects,
and external references that need to be configured and made available to the composite
application.

There are several methods for building, packaging, and deploying SOA composite applications
that are suitable for different roles and environments. Developers tend to use JDeveloper for
developing as well as building and deploying the application to non-production environments,

T

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 553

because it is the fastest way to go through development iterations. Automatic build procedures are
typically in place for testing environments and sometimes for production environments as well
(especially when these become too complex to handle manually); these procedures use the
command-line facilities—either using Ant or through the WebLogic Scripting Tool (WLST) and
Python scripts (all supported by WebLogic Server)—to automatically build the applications,
package and deploy them, and subsequently test them. Production environments will usually not
have such frequent rollouts through automated deployment procedures. The prepackaged archive
that was deployed to the acceptance test environment is taken and deployed by the administrators
to the production environment—typically through the Enterprise Manager Console. Note that the
administrator can export the application from acceptance test and import it to the production
environment.

We will discuss and perform each of these three deployment methods in the coming sections.

Pre- or Post-Deployment Operations
Deployment of composite applications themselves is, of course, an important step in enabling the
publication and subscription of events and successful invocation of the services exposed by the
SOA composites. Note that many applications have several dependencies on other objects and
configurations that we need to take care of—either before or after deployment of the composite
applications themselves—but at least before we attempt to invoke the composite’s services. Some
examples of these dependencies are listed here, but note that this list is not exhaustive. Note that
these steps that complement the deployment of the SOA composite applications are required,
regardless of whether deployment is done from JDeveloper, through a command-line script, or
from the FMW Enterprise Manager Console.

SOA composite applications may contain technology adapter services that depend on other
JEE resources or resource adapters. For example, database adapter services reference a database
resource adapter connection pool through a JNDI name that needs to have been set up—for
example, through the WebLogic Server Administration Console or the WLST command-line
interface. This connection pool is associated with a data source that connects to a database
schema that needs to expose the expected database objects such as tables and views, AQ queues,
or PL/SQL program units.

Likewise, JMS adapter services depend on a connection pool set up for the JMS adapter that
links to a JMS connection factory and on a JMS queue or JMS topic to consume from or publish to.

XPath expressions, in, among others, business rules, human tasks, and BPEL notification
activities, may refer to roles and individual users that need to have been set up in the identity
service configured for use in the SOA Suite.

Human tasks in the composite application may depend on ADF task flows (discussed in
Chapter 20) to provide the user interface for the task. Those task flows need to be deployed, either
before or after the composite application is deployed.

Compiling, Building, and Deploying from JDeveloper
Deployment is done in JDeveloper based on deployment profiles. These profiles specify what
type of archive is to be created in which location—for example, simple JAR, ADF library, Service
Archive (SAR), Web Application Archive (WAR), or Enterprise Application Archive (EAR). When a
new SOA composite application is created, JDeveloper auto-generates such a deployment profile
for it. That default profile is the one we have used throughout this book to deploy our composite
applications.

554 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 555

We can create a new deployment profile for an SOA-SAR file from the New Gallery—which
is really only useful when the project does not already contain one (that is, the auto-generated
one). There are no special settings to be made on this profile.

There are two other types of deployment profiles that cannot be created in the New Gallery,
but only from the application properties editor. These are called SOA Bundle and MAR File
(Metadata Archive).

The SOA Bundle is a collection of SOA composite application archives that can be distributed
and deployed as one bundle. When you create an SOA Bundle–style deployment profile, you have
to select the projects from which the SAR and MAR deployment profiles provide the archives to
include in the bundle. Note that, annoyingly enough, you cannot combine composite applications
that call each other in a single bundle. You first have to deploy the application that is being called.
Of course, this helps you to continue your strive for decoupling and reuse.

The Metadata Archive is used to deploy shared metadata, such as XSD documents and EDL
files. Instead of these artifacts being deployed as part of every application that uses them, they
can be stored in and exposed from a central location—the MDS repository. The next chapter
discusses the use of MDS and shared metadata to avoid duplication of shared artifacts.

Deployment for the various types of profiles—including SAR, WAR, and EAR—can be to the
file system or to a running application server over a predefined application server connection (or
both). This is what we have done over and over again in the preceding chapters. What you may
not have realized is that every deployment directly to a running SOA Suite instance was preceded
by the creation of a service archive in the deploy directory of the composite application. That JAR
file can also be used on its own—outside of JDeveloper—for deployment from an Ant or WLST
script or from the FMW Enterprise Manager Console.

The service archives are typically quite small: They consist of an initially fairly small number
of XML files that are not very large to begin with and compress quite well. Entire composite
applications result in archives of tens to a maximum hundreds of kilobytes, nothing like the
multimegabyte enterprise archives produced for most JEE web applications. Note that when a
composite application uses Java and relies on external libraries that are deployed with the
composite application, the size of the archive can increase rapidly.

We have to make several decisions before the deployment can proceed—either in JDeveloper
or in our automated build scripts—in order to specify exactly how the composite application is to
be processed in the SOA Suite. For example, what is the intended revision ID of the composite? And
if the target environment already has a composite with the same name and revision, should it be
overwritten, or should that not occur? Is the composite revision we are about to deploy considered
the default revision? In other words, all consumers that do not explicitly indicate which revision of a
service exposed by this composite are to be routed to this specific revision (or to the current default
revision if there is one). Also, should a configuration plan be applied during deployment? The
configuration plan will help morph the composite for a specific target environment—more on this in
the next major section of this chapter.

The last questions to be answered during deployment from JDeveloper to a running
application server are, to which target server(s) should the application be deployed? And into
which partition should the application go on each target server?

Figure 17-1 shows the deployment wizard in JDeveloper and how it presents the questions
discussed earlier.

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 555

When the deployment is concluded by clicking the Finish button, the composite application(s)
is validated, compiled, and built; packaged into archive files; and deployed to the application
server. The console window in JDeveloper contains the logging for these actions.

Building and Deploying from the Command Line
Packaging applications from JDeveloper is fine for developers going through many trial-and-error
cycles, but usually not as appropriate for administrators and certainly not when automated build
scripts are used to set up the environment. For example, test environments are typically created
using build scripts that are executed periodically, on request, or even with every check into a
source code control system.

Such build procedures start with a checkout of the tip of the trunk or some designated branch
in a source code control system (such as Subversion or CVS). This checkout creates a temporary
folder structure on the file system with all constituent parts that make up the application. Then
command-line scripts are run to compile the applications and package them into deployable units
(archives). Subsequently these archives are sent to one or more running WebLogic servers with
SOA Suite configured on them.

SOA Suite 11g supports two main categories of scripts that can be used to build and deploy
SOA composite applications: the Ant build-scripts, based on the popular Java-based Apache Ant
build tool, and the Python-based WLST scripts that are executed via the WLST command-line
scripting interface to WebLogic Server.

FIGURE 17-1. Deployment from JDeveloper—setting deployment options and choosing the
target server and partition

556 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 557

Using Ant
Ant (Another Neat Tool) is a rock-solid, proven Java-based tool under the Apache Software
Foundation, used for programmatically executing batch tasks, frequently as part of build, automated
test, and deployment procedures. More details on Ant can be found at http://ant.apache.org.

Ant is installed along with both JDeveloper and WebLogic Server. This means that you will have
Ant at your disposal for automating build and deployment tasks, both on the development environment
and on the server. In order to be able to run Ant tasks on Windows, you need to add the Ant bin
directory to the PATH variable. Here is the required statement for the JDeveloper environment:

PATH=<JDEV_HOME>\jdeveloper\ant\bin;%PATH%

And here is the required statement on the server where SOA Suite is installed:

PATH=<FMW_HOME>\modules\org.apache.ant_1.7.0\bin;%PATH%

Note that JAVA_HOME should also have been set, referring to a Java Runtime Environment—a
folder where a bin directory can be found that contains the Java executable.

The <FMW_HOME>\Oracle_SOA1\bin directory contains several Ant scripts that can be used
to perform various tasks, from compile and package to deploy and test. Additionally, the ant-sca-
mgmt.xml scripts allows Ant to stop and start as well as activate and retire composites. We need
JDeveloper or the SOA Suite in our environment in order to run these special Ant targets due to the
internal structures of build scripts and required JARs. This makes it harder to create a separate,
standalone build server. Note that when you deploy SOA composite applications directly from
JDeveloper, the compilation is done behind the scenes through the same ant-sca-compile.xml task
that we can invoke ourselves.

A simple first test to see how to work with the Ant scripts would be to open a command-line
window and submit the following command in the directory <FMW_HOME>\Oracle_SOA1\bin,
which contains the Ant scripts for the SOA Suite:

ant -f ant-sca-mgmt.xml listDeployedComposites
 -Dhost=localhost -Dport=8001 -Duser=weblogic

You will be prompted for the password of user weblogic. Then the script will produce a list of the
currently deployed composites on the SOA Suite. The ant-sca-mgt.xml script can be used with
various targets (in addition to listDeployedComposites).

These targets include listPartitions, to get a list of the partitions in the SOA Suite target server;
listCompositesInPartition, to list the composites in a specific partition; startComposite/retireComposite/
stopComposite/activateComposite, to start, retire, activate, and stop, respectively, a specific composite;
and startCompositesInPartition/stopCompositesInPartition, to bulk start or stop all composites in a
specific partition. Management of partitions is further supported with the targets createPartition and
deletePartition.

The SOA composite application can be packaged with an Ant script. Packaging means
creating a service archive (SAR), which is just a JAR file whose name starts with sca_, in the
“deploy” directory of the project root. This JAR file can then be deployed using the ant-sca-
deploy.xml script, as shown here, or from within JDeveloper or using the FMW Enterprise
Manager Console:

ant -f ant-sca-package.xml -DcompositeDir=C:\Patients\PatientDataService
-DcompositeName=PatientDataService -Drevision=1.0
-Dscac.application.home=C: \PatientDataService

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 557

Ant-based deployment of a service archive to a running SOA Suite instance is done with the
ant-sca-deploy.xml script—whether the archive is created from JDeveloper or from the command
line or as an export from another SOA Suite instance is irrelevant. The following statement is used
for deployment and transfer of the archive to the running SOA Suite:

ant -f ant-sca-deploy.xml -DserverURL=http://localhost:8001
 -DsarLocation=C:\PatientDataService\deploy\sca_PatientDataService_rev1.0.jar
-Doverwrite=true
-Duser=weblogic
-DforceDefault=true
-Dpartition=Patients

When the script is executed, you will be prompted for the password. Alternatively, to truly
run in batch mode, you can pass in the password as one of the parameters.

It is, of course, possible to create command scripts (.bat or .sh) that chain multiple calls to Ant
scripts. Alternatively (and preferably), new Ant scripts or, for example, Maven scripts are created
to compile, package, and deploy (and test) SOA composite applications as part of automated
build procedures.

WLST
The WebLogic Scripting Tool is a command-line scripting environment that allows interactive and
scripted (file-based, batch-wise) execution of administrative actions for the core WebLogic Server as
well as other Fusion Middleware components such as WebCenter, MDS, the Identity Infrastructure,
and SOA Suite. It is based on the Java scripting interpreter Jython (a.k.a. Python for the Java platform),
which supports local variables, conditional variables, and flow control statements. WLST provides an
additional set of scripting functions (commands) that are specific to WebLogic Server.

We can create WLST scripts that perform various activities, including configuring WLS
domains and servers, creating JDBC and JMS resources, configuring the User Message Service, and
managing SOA composite applications. These scripts cater to different environments and adapt
themselves to the specific environment for which they are used because they can inspect the
destination environment and set local variables, perform logical evaluations, and conditionally
execute specific code branches.

The WLST command-line interface is accessed from the command line under Windows or
Unix/Linux in the <FMW_HOME>\Oracle_SOA1\common\bin directory using the wlst.cmd (or
wlst.sh) command script. Note that you will find multiple occurrences of wlst.cmd in various
folders of the WebLogic Server installation. However, the one under the Oracle_SOA1 node is
the only one to support the specific WLST command for SOA composite applications.

The WLST commands for management of SOA composite applications are analogous to the
set of Ant scripts we discussed before. For example, here’s how to list all currently deployed
composites—for all partitions:

sca_listDeployedComposites('localhost', '8001', 'weblogic', 'weblogic1')

And here’s how to “undeploy” a composite application:

sca_undeployComposite('http://localhost:8001','Project1', '1.0')

NOTE
When this statement is executed, you will be prompted for the
username and password.

558 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 559

The WLST can run scripts using the execfile('someFile.py') command. A simple .sh or .bat
script can be created that starts WLST and runs a potentially complex script that prepares a
managed server by creating and configuring JEE resources such as data sources and a database
adapter connection pool, a JMS queue, and a connection factory, and then compiles, packages
(or exports), and deploys one or more composite applications and executes test cases for those
applications. WLST also provides commands for starting and stopping, activating and retiring, and
undeploying individual composites.

Deploying Through the Enterprise Manager Console
SOA composite applications can be deployed using the FMW Enterprise Manager Console. This
method is typically used for deploying applications to production systems. Note that the
application needs to have been packaged into a service archive—the Enterprise Manager can
only deploy already-built and packaged applications. This archive, as we have seen, can be
created from JDeveloper and through Ant or WLST scripts run from the command line or as part
of automated build processes, or through an export from the SOA Suite.

To deploy an SOA composite application from a service archive through the EM Console,
select the soa-infra node or any composite node and then open the Select SOA Deployment
submenu from the context menu. Select the option Deploy (or Deploy Another Composite from a
Composite Node). The three-step deployment wizard appears.

In the first step of the deployment wizard, select the archive to deploy through the browse file
dialog in the web browser and then click the Next button. In the second step, after the selected
archive has been uploaded and validated, select the target partition to deploy the composite
application(s) to. The third step provides an overview of what will happen: that is, which revision
of which composite is to be deployed to which partition. This step offers the option to set the
deployed revision as the default revision or to keep the current default. Note that we cannot
deploy a composite revision into a partition that already contains that same revision of that same
composite. We accept the information in this third step by clicking the Deploy button, which will
initiate the deployment of the application on the target partition.

Exporting Composite Application from Running SOA Suite
A service archive can also be retrieved from the Enterprise Manager console itself: A single
composite application can be exported, for example, from an acceptance test environment to an
archive on the file system. This archive is a normal service archive that can subsequently be
deployed from the console, for example, into a production environment. Note that there is no
special import operation—we use the normal deploy action to do the import.

To export a composite application from the console, select the composite in the navigator.
Then open the SOA Composite drop-down menu just below the title of the composite and select
the menu option Export. The Export dialog appears, which allows us to specify what exactly
should be exported: the application as it was originally deployed or the application along with
changes in properties and metadata that have been applied through the console post deployment
(see the next section for details on such changes). Export processes a single composite application—
you cannot create a composite bundle with multiple applications through exporting. The result
of an export operation is a JAR file that is initially created on the server side and can next be
downloaded from the browser to the client. This JAR cannot be told apart from a JAR file that is
the result of a command-line-driven compile-and-package operation or a deployment from within
JDeveloper.

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 559

Environmentally Friendly Customization
Using Configuration Plans
SOA composite applications will be used in environments that will be similar but probably not
equal. Development and various testing and production environments will use different servers
with possibly different ports, directory structures, polling times, and different values for other
properties that govern the behavior of service components or adapter services as well as different
security policies. Also, some environments will be configured for high availability and will be
clustered or have different transactions settings and so on. This might influence the configuration
settings for nonconcurrent adapters.

The service archive that gets deployed consists of the composite application as it has been
developed. However, during deployment a configuration plan can be applied to the composite
application. This plan is used to add policies and replace designated properties and references to
service endpoints and the physical location of WSDL and XSD documents in the composite
application with environment-specific values as they apply to the deployment target environment.
This means that a single composite application can be customized for each target environment
through the creation and application of configuration plans that have been especially prepared for
those environments. A composite can reference only one configuration plan during deployment.

Note that as an alternative to the use of configuration plans, the references to endpoints of
services in composite applications can also be environment independent through the use of a
run-time service virtualization layer—for example, a UDDI v2 directory service (such as Oracle
Service Registry) or an enterprise service bus. The composite application can use the same virtual
endpoint in every environment, leaving it up to the service virtualization layer to route the calls to
the appropriate endpoint in the current environment. However, we might still need different
endpoints from the ESB or registry for different target environments, so we never truly solve the
endpoint problem using this approach—while we introduce additional overhead and potentially
a single point of failure. Note that rewrite rules on web servers, load balancers, proxies, or other
elements participating in routing messages over the network could help discern between and
routing within different environments.

A last remark before we embark on the discussion of configuration plans is that—as we shall
see later in this chapter—all properties that we can automatically customize during deployment
using configuration plans, can also manually be configured through the Enterprise Manager
Console after deployment.

Creating Configuration Plans
A configuration plan is, by and large, an elaborate set of search-and-replace expressions
expressed in XML that prescribe which settings from the base application should be replaced
with environment-specific values. When the configuration plan is applied, the composite.xml
file (and the import statements in the listed WSDL and XSD files) are scanned for the search
expressions that, when encountered, are replaced with the value defined in the configuration
plan. Replacement is done for the following values:

 References to (the location of) WSDL files can be replaced in the composite.xml. ■

 References to (the location of) XSD files can be replaced in the composite.xml and also ■
in WSDL and XSD files.

 Values for port and location attributes in binding elements (specifying the endpoints of ■
references) can be replaced.

560 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 561

 Values for properties at any level in the composite.xml can be replaced. Note that only ■
values for properties that are explicitly defined in the composite.xml can be customized
through the configuration plan; for example, the (implicit) default values of technology
adapter bindings are not adapted through the configuration plan unless they have been
explicitly included in the composite.xml file.

Additionally, the configuration plan can add policy references for service/reference bindings
and components. Note that it will not remove or make changes to existing policy attachments.

A configuration plan is created in JDeveloper using the option Generate Config Plan in the
context menu on the composite.xml file. The sca_generatePlan() command is available through
WLST for the creation of a configuration plan. We need to provide the name of the configuration
plan; typically, the name will refer to the environment the plan is intended for—using abbreviations
such as dev, tst, acc, and prd. The configuration plan itself is a simple XML file that is, by default,
created in the root of the project.

Right after the creation of the plan by JDeveloper, it will not yet cause any replacements to be
made when applied during deployment. At this point, the plan only provides the skeleton in which
we can specify the replacements that should be made. JDeveloper creates entries for replaceable
properties and attributes at the composite and component level as well as for services and reference
bindings. Here are two examples:

<property name="some.custom.property">
 <replace>valueOfPropertyInApplication</replace>
</property>

and

<reference name="HW_Service">
 <binding type="ws">
 <attribute name="port">
 <replace>com.me/HW#wsdl.endpoint(HW_ep/HW_pt)</replace>
 </attribute>
 <attribute name="location">
 <replace>http://devhost:8001/soa-infra/services/HW_ep?WSDL</replace>
 </attribute>
 </binding>

Additionally, it contains suggestions for search-and-replace rules for the import section of the
composite.xml file—where WSDL documents are imported. The plan contains an example of a policy
that could be attached to service or reference bindings and components. Finally, the wsdlAndSchema
element in the generated plan can be used to specify rules to search and replace references to (the
location of) imported WSDL and XSD documents; these rules can be applied to all WSDL and XSD
documents that are part of the composite application—not just the composite.xml file.

Example of a Configuration Plan
Let’s create a configuration plan for the DoctorsAppointmentRequestsProcessor composite application
that we first worked on in Chapter 7. This application polls the file system and a database table for
new appointment requests from general practitioners in the region on behalf of their patients. Some of
these requests are, in fact, for dental appointments or chiropractical treatments—these are registered
by the application and subsequently routed to external services for the dentist’s service center and the
chiropractors’ association. Most requests are to be handled by St. Matthews, and those are routed to

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 561

the PatientAppointmentService. All requests are routed to a logging service that uses the file adapter to
write details about the request to a log file.

This application has quite a few settings that require environment-specific values—for
example, the directories the file adapter services read from or write to, the properties that govern
the polling times, and the physical endpoints for the test and production services exposed by the
central organizations for dentists and chiropractors. We will first generate a configuration plan
and then start to make the environment-specific replacements.

Inspecting the DoctorsAppointmentRequestsProcessor Application Open the
DoctorsAppointmentRequestsProcessor application. Double-click the composite.xml file
to open the editor and then select the Source tab. Note the properties, such as DOCTOR_
APPOINTMENTREQUESTS_DIRECTORY and LOG_DOCTOR_APPOINTMENTREQUESTS_
OUTPUT_DIRECTORY. Also note that several properties are not in the composite.xml, such as the
PollingFrequency for the ReadFileDoctorsAppointmentRequests Service binding. And remember
that the configuration plan cannot replace properties that are not in the composite.xml file.

The Reference elements contain binding.ws elements that specify the endpoint location for the
external services such as DentistServiceCenter and ChiropractorsAppointmentProcessorService.

Generating the Configuration Plan for the Test Environment Select the composite.xml file in
the navigator tree. Open the context menu and select the option Generate Config Plan. Type
DoctorAppointmentRequestsProcessor_TestEnvConfigPlan.xml as the name for the file to be
generated. Next, click the OK button. JDeveloper will now generate the configuration plan, with
entries for properties that can be replaced.

Now suppose that the edition of the DentistsServiceCenter service to be used in the test
environment has been deployed to a test partition on the SOA Suite, which means that the
endpoint for that particular reference binding needs to be replaced in the configuration plan, as
shown here:

<reference name="DentistServiceCenter">
 <binding type="ws">
 <attribute name="location">
 <replace>http://xp-vm:8001/soa-infra/services/test/...
 ...DentistsServiceCenter/HandleDentistAppointmentRequest?WSDL</replace>
 </attribute>
 </binding>
</reference>

Note that this entry was generated into the configuration plan; the only thing we need to do is
to provide the new value for the location attribute.

The import statement for the WSDL for this DentistServiceCenter service also needs to be replaced:

<import>
 <searchReplace>
 <search>http://xp-vm:8001/soa-infra/services/default/...
 ...DentistsServiceCenter/HandleDentistAppointmentRequests.wsdl</search>
 <replace>http://xp-vm:8001/soa-infra/services/test/...
 ...DentistsServiceCenter/HandleDentistAppointmentRequests.wsdl</replace>
 </searchReplace>
</import>

562 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 563

Another change between the development and test environment is the directory that is used
to write the log file with entries for every doctor’s patient appointment request. This directory is
set through the property LOG_DOCTOR_APPOINTMENTREQUESTS_OUTPUT_DIRECTORY,
also defined in the file composite.xml. In the development environment it is set to c:\temp\
stmatthews\logs, and that is the value generated by default into the configuration plan. However,
the test environment uses the directory c:\test\logs. We need to edit the configuration plan, as
follows:

<reference name="LogDoctorsAppointmentRequests">
 <property name="LOG_DOCTOR_APPOINTMENTREQUESTS_OUTPUT_DIRECTORY">
 <replace>c:\test\logs</replace>
 </property>
 <binding type="jca"/>
 </reference>

We have decided that for the test environment we would like every message that is sent into
the HandleDoctorsAppointmentRequest Mediator component to be logged. To achieve this, we
add the following entry to the configuration plan for the test environment:

<component name="HandleDoctorsAppointmentRequest">
 <wsp:PolicyReference orawsp:category="management"
 orawsp:status="enabled" URI="oracle/log_policy"/>
</component>

Replacing Properties for Technology Adapter Bindings Oftentimes, the properties for
technology adapter bindings are specified in the special .jca files that are created by the adapter
wizard. These files are not touched by the configuration plan. If we want those properties to be
set to environment-specific values, we first need to “promote” those properties to the composite.xml
file. We would like to set the polling time for the file adapter service ReadFileDoctorsAppointment
Requests to a value of 20 seconds for the test environment. Here are the steps for doing this (see
Figure 17-2):

 1. Bring up the Composite Editor and click the ReadFileDoctorsAppointmentRequests
service.

 2. Open the property editor for this service, locate the Binding Properties section, and click
the green plus icon to create a new property.

 3. Select the PollingFrequency from the drop-down list of properties, set the value to
10 seconds (the value used in the development environment), and click the OK button.

This will create a property element for the PollingFrequency property in the composite.xml
file inside the binding.jca element:

<binding.jca config="ReadFileDoctorsAppointmentRequests_file.jca">
 <property name="PollingFrequency" type="xs:positiveInteger" many="false"
 override="may">10</property>
</binding.jca>

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 563

When we next generate the configuration plan, it will include an extra element that allows us
to replace the value of the PollingFrequency for the service ReadFileDoctorsAppointmentRequests
from its current value of 10 (seconds):

 <!--Add search and replace rules for the binding properties-->
 <binding type="jca">
 <property name="PollingFrequency">
 <replace>10</replace>
 </property>
 </binding>

Set the value inside the <replace> element to 20.

Validation of the Configuration Plan
To verify the syntactical correctness of a configuration plan and to see the modifications it will
cause, the plan can be validated. Plan validation results in a log file that provides an overview of
all additions and replacements that would be made to the composite.xml (and possibly other
files) by the configuration plan as it currently stands. When the syntax of the plan is not correct,
the validation step will fail with messages indicating the problems in the search and replace rules.
The validate option can be accessed either from the context menu on an individual configuration
plan or on the composite.xml.

FIGURE 17-2. Promoting a technology adapter service-binding property to the composite level

564 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 565

The validation reports—shown in Figure 17-3—clearly logs the (test) environment-specific
changes that the configuration plan will bring about when applied during deployment:

Modified Composite [DoctorsAppointmentRequestsProcessor]
 Import Locations
 Old [http://xp-vm:8001/soa-infra/services/default/...
 ...DentistsServiceCenter/HandleDentistAppointmentRequests.wsdl]
 New [http://xp-vm:8001/soa-infra/services/test/
 ...DentistsServiceCenter/HandleDentistAppointmentRequests.wsdl]

FIGURE 17-3. Validation report for the configuration plan

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 565

 Component [HandleDoctorsAppointmentRequest]
 Adding policy Reference <wsp:PolicyReference
 orawsp:category="management" orawsp:status="enabled" ...
 Service [ReadFileDoctorsAppointmentRequests]
 Service Bindings
 Binding [jca]
 Property [PollingFrequency]
 Old [10]
 New [20]
 Reference [LogDoctorsAppointmentRequests]
 Property [LOG_DOCTOR_APPOINTMENTREQUESTS_OUTPUT_DIRECTORY]
 Old [c:\temp\stmatthews\logs]
 New [c:\test\logs]
 Reference [DentistServiceCenter]
 Reference Bindings
 Binding [ws]
 Attribute name=location
 Old [http://xp-vm:8001/soa-infra/services/default/...
 ...DentistsServiceCenter/HandleDentistAppointmentRequest?WSDL]
 New [http://xp-vm:8001/soa-infra/services/test/...
 ...DentistsServiceCenter/HandleDentistAppointmentRequest?WSDL]

Applying a Configuration Plan During Deployment
Configuration plans can be attached to composite applications during deployment. The applicable
plan can be selected as part of the deployment dialog in JDeveloper and in the FMW Enterprise
Manager Console as well as in the Ant and WLST deploy commands. When a configuration plan is
attached during deployment, then prior to moving the composite to the SOA Suite, the composite.
xml file is extracted from the service archive, the replace actions are performed, and the result is
put back in the archive. The same happens to all artifacts processed by the configuration plan files
in the service archive, such as WSDL and XSD.

Attaching a Configuration Plan upon Deployment from JDeveloper
Now that we have created the configuration plan for the test environment, we can use it
whenever the composite application is deployed to that environment. We will probably end up
having configuration plans for every environment that we deploy the application to. Whenever
we deploy the application, we should pick the configuration plan appropriate for the target
environment.

Let’s deploy the composite application to the test environment and apply the configuration
plan at that time. When the deployment dialog appears, choose Deploy To Application Server
and click Next. Select the radio button Select A Configuration Plan From The List. Next, select the
DoctorAppointmentRequestsProcessor_TestEnvConfigPlan.xml plan in the list box and click Next
(see Figure 17-4).

Select the Application Server connection for the SOA Suite 11g instance you want to deploy
into and then click Next. On the SOA Servers page, check the box for soa_server1. Select the
“test” partition from the drop-down list to direct this composite application deployment to that
particular partition that we use as the test environment, as shown in Figure 17-5. (Note that this
partition is created in the FMW Enterprise Manager Console on the Manage Partitions page that is
opened from the context menu on the soa-infra node.)

566 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 567

FIGURE 17-4. Attaching the configuration plan during deployment

FIGURE 17-5. Selecting the “test” partition as the deployment target

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 567

Click Finish to start deployment of the application. During this deployment, the configuration
plan is applied before the resulting SAR is deployed to the running server.

Verifying Deployment in the FMW Enterprise Manager Console
When the deployment is complete, we can open the Enterprise Manager console to check on the
effects of the configuration plan. Select the node for the composite DoctorsAppointmentRequests
Processor in partition “test.”

Click the Policies tab—this tab contains the logging policy that is added in the configuration
plan to the component HandleDoctorsAppointmentRequest.

From the composite menu, open the submenu Service/Reference Properties and then select
the item ReadFileDoctorsAppointmentRequests on this submenu. The Properties tab for this
incoming file adapter service binding contains the property PollingFrequency with the value 20,
as was set in the configuration plan. Note that this—and all other file adapter properties—can be
edited in this page. See Figure 17-6 for an illustration.

From the composite menu, open the submenu Service/Reference Properties and then select the
item LogDoctorsAppointmentRequests on this submenu. The Properties tab for this item displays
the LOG_DOCTOR_APPOINTMENTREQUESTS_OUTPUT_DIRECTORY property, which contains
the (modified) value c:\test\logs for the output directory, as was specified in the configuration
plan. Note, again, that most properties on this file adapter reference binding can be manipulated at
both design time and run time.

The fourth change brought about by the configuration plan was the location attribute for the Web
Service binding in the DentistServiceCenter reference—to use the service in the test partition. This
change is slightly harder to find: Open the System MBean Browser using the Administration submenu

FIGURE 17-6. Inspecting the effects of the configuration plan in the FMW Console

568 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change

on the context menu on the soa-infra node. In the browser, locate Application Defined MBeans and
select oracle.soa.config/Server: soa_server1/SCAComposite/DoctorAppointmentRequestsProcessor/
SCAComposite.SCAReference/DentistServiceCenter. The Attributes tab displays the wsdl-file attribute
that refers to the WSDL document in the test partition. The location attribute that we replaced in the
configuration plan on the ws.binding element can be inspected when we select the grandchild node
SCAComposite.SCAReference/WSBinding.

Attaching Configuration Plans on the Command Line
The ant-sca-deploy.xml script can be invoked with the following optional parameter to apply a plan:

-Dconfigplan=<location and name of configuration plan file>

The WLST command sca_deployComposite can be invoked with a last optional parameter to
specify the configuration plan:

sca_deployComposite(...,
configplan="c:/temp/DoctorAppointmentRequestsProcessor_TestEnvConfigPlan.xml")

Exporting Composite Applications from the Console
Note that the resulting service archive that is created when you export a composite application
through the EM Console contains the composite application, including the environment-specific
values that were applied from the attached configuration plan at the time of deployment. However,
when the exported archive is redeployed, you can still attach another configuration plan.

Automated Unit Testing
for Composite Applications
Most software developers will—albeit perhaps a little grudgingly—agree that it is probably a good
idea to test applications before they are thrown at production environments and real end users.
This applies to the first time an application sees the light of day as well as to later incarnations of
the application (regression testing). Our desire for agility and the ability to flexibly embrace and
implement changes leads to a constant production of new incarnations that all need testing. This
is impacted because we deliver smaller pieces of functionality (services) instead of monolithic
applications. So we have more frequent (but often) smaller changes, leading to a more dynamic
type of release management. This alone is a powerful trigger for the introduction of automated
testing of applications.

Various types of testing should be considered (for example, targeted at functionality or
performance) as well as different levels, such as unit and (composite) application or service and
integration (across multiple services and entire business processes). In addition to the scope of the
test, we need to consider various types of components or aspects that require testing—for
example, user interfaces and (programmatic) service interfaces—and how exactly do we test a
composite that is triggered by the consumption of an event on the EDN or the arrival of a file on
the file system?

Most modern testing methodologies heavily rely on interfaces and contracts to provide the
foundation for both the tests and the implementation of the software; this is sometimes referred to
as “contract and test-driven development.” Service-oriented applications are, by their very nature,

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 569

based on interface definitions and functional contracts. Adoption of automated testing based on
design contracts is, therefore, fairly easily achieved for SOA composite applications.

Automated Testing
Automated testing of SOA composite applications can be done from the outside of the applications
by simply invoking the public services and operations exposed by the applications and checking the
responses received. In a simplistic approach, we consider the application a black box where we
need no more than the public WSDLs and associated XSDs to create test cases (and probably the
functional design to be a little smart about it).

A slightly more advanced approach is called “white box testing,” where we make use of our
knowledge of the internals of the composite application to devise the test cases we should throw
at the application in order to cover as many different paths and special conditions.

Both black box and white box testing require tools that can invoke Web Services in an automated
fashion, but do not require any knowledge about the implementation of the application or the SOA
Suite. A well-known tool that is frequently used for functional testing of Web Services is soapUI.
When the test is specifically focused on performance and the behavior of the application under a
substantial load, Apache JMeter is a frequent test tool.

However, the automated test scenarios described here are fairly coarse grained: They test the
application in its entirety (and are beyond the scope of this book). Before we embark on these
application-wide tests, or at least as a complement to them, it is probably a good idea to do unit
testing. In a unit test, we try to establish the correct behavior of a unit or part of an application or
service. We do so by testing the unit in isolation—without any dependencies on external components.

Unit Testing in SOA Suite 11g
It would seem like a contradiction in terms to test parts of an SOA composite application
because—with the exception of the simplest BPEL process components or the Mediator, which
only does an echo of the request message—all components or other sub entities in composite
applications seem to have dependencies. Messages are passed to other components, external
services are engaged to provide information, and interaction is sought with technology adapters.
Stand-alone units are hard to find.

Fortunately, the SOA Suite comes with a unit-testing framework that allows us to define units
inside composite applications by arbitrarily selecting services, components, and references. All
calls from within this unit to external references—other components, technology adapter
references, or to external services—can be handled by the unit-testing framework and responded
to with predefined mock response messages. When the unit test is done, no real calls are made to
any element outside of the unit, so we can test the unit in isolation.

We define a test suite for such a custom defined unit and create test cases in it. Each test case
is the combination of the following:

 The request message sent into the unit to one of the services it exposes (called ■ initiation).
Note that we can also emulate events that enter the composite during the test.

 The mock response messages to be fed into the unit during the test for each of the wires ■
coming out of the unit (known as emulation in the unit-testing framework).

 The expected result that the unit should produce for the test case given the request ■
message (indicated with an assertion). This is usually a response but can be any other
message travelling out of the unit as well.

570 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 571

The assertion does not take into account any possible side effects the test case may have—for
example, in a situation where not all outgoing wires have been plugged through an emulation
and the execution of the unit test should result in a change in a file or a database table. The
unit-testing framework does not have special setup and tear-down facilities to prepare for and
clean up after the test.

Test suites for automated unit tests are created in JDeveloper as part of the composite
application that they test. They are deployed along with the application. A test suite can be
executed from the FMW console, as well as from an Ant script or a WLST command. These last
two options make it possible to execute unit test suites automatically, as part of Maven and
Ant-based build procedures, for example.

We will next create a unit test suite with test cases for the DoctorsAppointmentRequestsProcessor
application. One of the things we want to test is whether the AppointmentRequestRouter component
will send requests that are intended for external care providers to the HandleAppointmentRequestFor
ExternalPartner that takes care of these appointment requests. The condition for this decision is a weak
spot in the design—based on the first character of the appointment type being a “W” (chiropractors) or
the appointment type containing the string values Q1, Q2, or Q4 (dentists).

Creating the Test Suite for the DoctorsAppointmentRequestsProcessor Application
A new test suite is created from the context menu on the node testsuites in the project navigator;
the relevant menu item reads Create Test Suite. The test suite has a name that typically conveys the
purpose of this particular collection of test cases. All cases could focus on a specific component in
the composite—the name of this component is then a logical element in the suite name. In our
case the test suite is called ExternalPartnersTest_AppointmentRequestRouter.

After the test suite is created, JDeveloper immediately prompts us to create the first test case.
We can add many test cases later on, from the context menu on the node for the test suite.

Creating Test Cases for the AppointmentRequestRouter Mediator
Let’s create a first test case from the context menu on the node for the test suite. Select the option
Create Test. Call this first test case ChiropractorAppointmentRequest_test. In this test, we send
in an appointment request for an appointment type that starts with W. Our functional design
prescribes that this type of appointment should be routed to the external Chiropractor Service
Center. For the purpose of our test case, this means that the AppointmentRequestRouter should
send this request to the HandleAppointmentRequestForExternalPartner Mediator (and from there
onward to the Web Service reference binding ChiropractorsAppointmentProcessorService—but
that is outside the scope of this unit test). Note that when we click the OK button to complete the
creation of the test case, the Composite Editor visualizes in a subtle way (yellow background in
the swimlanes and an additional icon in the toolbar) that we are not looking now at the definition
of the composite application, but at the editor for a new test case of that application instead.

Initial Chiropractor Appointment Request Message To initiate this test case, we create the
initial message on the service that acts as the test case’s entry point, as shown in Figure 17-7.
Right-click the ReadFileDoctorsAppointmentRequests service. The menu has a single option that
you should activate: Create Initiate Messages. The Initiate Messages dialog appears in which we
can specify the message(s) to send into the composite during this unit test. Click the Generate
Sample button. This will create an XML document that contains three request messages. Remove
two and make sure to set the appointment type element in the remaining one to any string value

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 571

that starts with W. Click the OK button. The dialog closes and a small icon marks the service in
the editor to indicate that a message from this binding initiates the test case.

Assert Message to HandleAppointmentRequestForExternalPartner The expected
behavior of the unit that we are testing in this test case is that it routes the message through
to the HandleAppointmentRequestForExternalPartner Mediator because it is a request for an
external appointment. This expectation is laid down using an assertion on the wire from the
AppointmentRequestRouter to the HandleAppointmentRequestForExternalPartner Mediator.
Right-click the wire. The context menu has a single option: Create Wire Actions. Activate
that option, and the Wire Actions dialog appears.

Click the green plus icon to create a new assertion. We want to assert that the initial appointment
request that was sent into the composite is forwarded through this wire. An easy way of doing so is
to test for a message that contains the same appointment type as the initial message. Select the
appointment type element as the Assert Target and set the Assert Value to the value for Appointment
Type that we used in the initial message (see Figure 17-8).

You should realize—and I consider it a shortcoming in the unit-testing framework—that the
only thing we will be able to test here is that if the message is routed via this wire, then the
appointment type is the same as in the initial message. However, if it is not routed via this wire,
the absence of the message does not trigger a failure.

In this case, we do not expect the unit to call out through other wires to retrieve responses,
so we do not need to emulate those services on the outgoing wires. Note that for the unit test
we would prefer no external calls at all, but we cannot prevent calls to the one-way reference
bindings LogDoctorsAppointmentRequests and RegisterReferralToPartner.

If we want to ascertain that the chiropractor-oriented appointment request in this case is not
accidentally forwarded to PatientAppointmentService and incorrectly treated as an internal
appointment request, we can create an assertion on the wire to that external service and have that
assertion fail on any message content—there should never be a message, so every message
should trigger a test failure.

FIGURE 17-7. Creating the initial message for the test case

572 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 573

Other Test Cases in the Appointment Request Router Test Suite
In addition to the test case for the chiropractor appointment, we can create a similar test case for an
appointment with a dentist—the appointment type contains Q1, Q2, or Q4. The same assertions as
with the chiropractor will do. An internal appointment—that is, an appointment type that does not
start with W and does not contain Q1, Q2, or Q4—is slightly more interesting: It should be routed by
the AppointmentRequestRouter to the external Web Service binding PatientAppointmentService (and
not to the HandleAppointmentRequestForExternalPartner Mediator). We can create corresponding
assertions on the two wires.

Because we do not want the PatientAppointmentService to be really called for this unit test, we
can emulate this service and its response. Right-click the wire to the service and select Edit Wire
Actions from the menu. The Wire Actions dialog appears, with two tabs: Assertions and Emulations.
Activate the latter tab. Create a new emulation—for the output from PatientAppointmentService’s
process operation. Click the Generate Sample button to have a sample response message generated
(see Figure 17-9).

Testing the First Development: The Test Case for the New Functionality
A good practice before starting the development of new functional requirements is the up-front
creation of the test cases for the new functionality. Suppose our new requirement is that in addition
to Q1, Q2, and Q4, an appointment type value of Q7 is also used to indicate an appointment with a
dentist. Before we adapt our composite application for this latest requirement, we can create the test
case for it. This test case can be a clone of the ChiropractorAppointmentRequest_test. There is no
simple clone operation; however, we can create a new test case and copy the contents from the
Source tab in the original to the clone, which will do the trick nicely. Edit both the initial message
and the assertion on the wire to HandleAppointmentRequestForExternalPartner—to cater for

FIGURE 17-8. Creating an assertion for the wire to the HandleAppointmentRequestFor
ExternalPartner

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 573

appointment type Q7. Make sure an “anti-message” assertion is in place on the wire to the
PatientAppointmentService: No message should go that way, but during the test we can expect one
anyway because we have not yet modified the AppointmentRequestRouter to cater for Q7.

Deploying and Running the Test Suite
Unit test suites are part of the composite application. When the application is packaged and
deployed, the test suites are taken along for the ride. So by redeploying the composite application,
we automatically deploy the unit test suite.

Test suites can be run from the Unit Tests tab on the composite application’s dashboard. We
can select the test suite to run and pick the test cases that should be executed (see Figure 17-10).

The result of running the unit test is as to be expected: One failure (for the not-yet-implemented
Q7 appointment type) and three successes. We can inspect the reason for the failure by looking at
the violated assertions. In this case, the message across the wire to the PatientAppointmentService
violated the assertion (which basically says that any message on that wire is an unexpected result for
this test case).

Unit tests produce new instances of the composite application. These are marked as test
instances and have visual indicators in the FWM Console. Calls to external services or internal
components outside the test unit that have been emulated are not really made—the message trace
makes that clear. In the figure, for example, we see that the components we know live inside the
PatientAppointmentService and that the calls normally made from the PatientAppointmentService
are missing. This is because the emulation wire action handled the call and the PatientAppointment
Service composite was never actually accessed in the unit test.

FIGURE 17-9. Emulating the response from the PatientAppointmentService (to prevent this
service from being called during the unit test)

574 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 575

Limitations in the Unit-Testing Framework
The unit-testing framework is undoubtedly useful, but it does have several limitations that you
should be well aware of. We cannot test for the fact that a message is sent; when a message is not
sent, there will never be a failure reported. An assertion will succeed in the absence of a message,
even though the message should have been sent. In our example, we cannot test for the fact that
a request for an appointment type W61 is sent onward to the HandleAppointmentRequestFor
ExternalPartner Mediator. We can check for a message sent to the (alternative) PatientAppointment
Service reference binding and declare any message sent that way a failure. But the test cannot
conclusively prove that the correct message was sent (only that if it was sent, then it was correct).

We cannot emulate (the response from) one-way services and thereby prevent a real call from
being made. This means that our unit test will, for example, call out to the outbound file adapter
service that logs the test request just like any other (real) appointment request. Side effects from
one-way services invoked from the unit under test scrutiny cannot be prevented, nor can those
side effects be tested for by the framework.

We also cannot emulate the publication of a business event. A composite that is triggered
through the consumption of an EDN event cannot itself be tested using this unit-testing framework.

Including Testing in Automatic Deployment
The previous section showed how we can manually start execution of a test suite from the FMW
Console. However, unit testing is ideally incorporated in automated build scripts that may run
periodically or even following every check-in for an integrated testing environment—coordinated

FIGURE 17-10. Running the test suites from the FWM Console

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 575

by tools such as Continuum, Hudson, and Cruise Control. Fortunately, we can execute test suites
for composite applications in the SOA Suite from the command line, using an Ant script or a
WLST command.

Running the test suite from Ant is done through the ant-sca-test.xml script:

ant -f ant-sca-test.xml -Dscatest.input=DoctorsAppointmentRequestsProcessor
-Dscatestsuite.input=testSuite1,testSuite5
-Dscatest.partition=test -Dscatest.format=junit
-Dscatest.result=c:\temp\test\reports
-Djndi.properties=c:\temp\test\soasuite11g_jndi.properties

The file soasuite11g_jndi.properties contains JNDI properties that are needed to connect to
the SOA Suite instance in which a composite application needs testing; this includes the server
name, port number, and user account. We get prompted to provide the password.

The format property instructs the SOA Suite to produce a JUnit-style HTML-based test report;
it is created in the directory c:\temp\test\reports, specified through the result property.

Most command-line operations can be performed using Ant as well as using the WLST
interface. Testing of SOA composite applications is no exception. The WLST command for
running a test suite is sca_test. It takes parameters for the composite name, partition and revision,
the name of the test suite, and the jndi-properties filename. Note that the WLST command
invokes the Ant script to run the test suite:

sca_test('DoctorsAppointmentRequestsProcessor', '1.0'
 , 'testSuite1,testSuite5'
 , 'c:\temp\test\soasuite11g_jndi.properties', partition='test'
)

Embracing Change
One of the main objectives of SOA in general is to achieve business agility. Agility can be defined
in various ways, but a central element of all definitions will be an ability to adapt to changes in a
flexible, quick, and controlled manner. A constant willingness and preparedness to embrace
change is what we try to instill in people as well as install in the applications we develop.

This section discusses various ways of dealing with changes—both by leveraging the intrinsic
facilities of SOA Suite for absorbing changes in the environment and embedding a degree of
dynamic customizability in the SOA composite applications as well as through changing and
redeploying (new versions of) composite applications.

Dynamically Adjusting Application Behavior
A portion of the changing requirements we face for our composite applications can be resolved
by an administrator, at run time, without the need for changing and redeploying the application.
For example, endpoints of external services that are invoked from composite applications can be
adjusted. The configuration of technology adapter services is another aspect that can be altered at
run time. When it comes to the more functional aspects of the application, there are several
options to make those subject to on-the-fly manipulation too. When applications make use of
SCA properties and facilities such as Domain Value Maps and business rules that can be edited at
run time, parts of their behavior become manageable.

576 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 577

Run-time Management of Adapter Configuration and Endpoint Settings
SOA Suite has built-in support for run-time adjustment of various types of properties. The
administration pages for composites and their service and reference bindings offer access to the
same properties that we can replace using configuration plans during deployment. When we
inspected the effect of the configuration plan a few paragraphs back, we visited those pages that
we can now also use to apply run-time modifications to those same properties.

Changing the Endpoints of Services A possible change that we may need to make to a deployed
composite application is a readjustment of the endpoint of one of the services referenced by the
composite. The service referenced by the composite may simply be moved to a different server, and
we need to use a different address to access it. Or it may be the case that the owner of the service
offers a new, improved version of his service that we want to make use of (and because the port and
message definitions have not changed, we will be able to). Or a virtualization layer—wrapper
service, enterprise service bus, service registry—is to be inserted between the composite and the
referenced service and therefore the reference binding needs to switch to a different address.

Whatever the occasion, when the endpoint of a referenced service needs to be changed, the
steps are as follows: Select the composite application for which the reference binding needs
adjustment. From the SOA Composite drop-down menu, open the submenu Service/Reference
Properties and select the reference that needs changing. The Reference Binding dashboard opens.
Click the Properties tab. The new endpoint address for the referenced service can be entered into
the Endpoint Address field, as shown in Figure 17-11. Click the Apply button to save this change.
From then on, whenever the composite invokes the reference, the call is routed to this new address.

Note that the use of an enterprise service bus (for example, using Oracle Service Bus) or a
directory service such as the Oracle Service Registry to virtualize Web Service addresses at run
time in the first place would prevent most if not all of these changes to the composite’s reference
binding properties. Changes in the location of the services accessed through the OSB or service
registry would be handled inside that service, transparent to the composite application.

FIGURE 17-11. Changing the endpoint address of a reference binding of an external service

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 577

Modifying Properties for the Composite, Components, and Technology Adapter Services Both
the custom properties that we may define on the composite or one of the components (as we will
see in the next section), as well as the standard properties for the technology adapters, can be
manipulated in the FMW Console. Earlier we checked on the effect of the configuration plan on
the properties logging directory for the outbound file adapter service and the polling time for the
inbound file adapter service. The console pages that we used for this inspection can also be used
for manipulation of the values of these properties.

All aspects of the composite application and its adapter bindings that are controlled through
properties that can be set at design time are also up for adjustment at run time.

Reapplying Configuration Plans Configuration plans can almost be seen as run-time themes—
snapshots of a coherent set of property and endpoint values that make sense in a certain context.
It would be quite nice if we could apply configuration plans to deployed composites—without
redeploying—as an efficient way to apply a meaningful set of logically related changes that, for
example, switches a composite from development settings to acceptance test settings, or to
reapply the same set of configuration settings to the new version of the composite in the same
environment. In that light, it would also be useful to be able to export the current set of property
values as they have been set through the console as a configuration plan (or “theme”) that can be
reused. At the present, however, that functionality is not available in SOA Suite.

Designing Customization into Composite Applications
We have seen how the configuration and behavior of composite applications can be manipulated,
prior to deployment, by attaching the right configuration plan and at any point after the application
has been deployed from the FMW Enterprise Manager. In addition to the standard properties in
bindings and the technology adapter we tweaked in the previous section, we can also expose
custom properties from our composite application that influence the application behavior and that
can be altered at run time to implement changes in the behavior. Note, however, that next to these
properties there are other ways to influence applications after they have been deployed.

Let’s investigate an example. We have currently implemented an implicit business rule in the
PatientAppointmentService: to change the status of an appointment to “No Show” when the
patient has not arrived for the appointment within four hours of the scheduled appointment time.
This “deadline” period of four hours is rather arbitrarily chosen—and it is a candidate for post-
deployment readjustment. Several customization strategies are available to turn this value into
one that can be manipulated at run time. The value of this setting can be

 Set using a Business Rule component (that itself can be manipulated in the SOA ■
Composer at run time);

 Read from a database table, PL/SQL package, or properties file; ■

 Retrieved from a Web Service, singleton BPEL process, EJB, or (static) Java object (which ■
may act as a properties cache);

 Read from properties defined in the composite.xml file and manipulated through the ■
MBean browser in the SOA FMW Console.

For simple properties that are used in BPEL processes, using custom SCA properties at the
component (or composite) level is the leanest approach. These properties are defined in the
component element in the composite.xml and in the componentType file—for example, for

578 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 579

Mediators and BPEL components. These properties can be accessed inside these components
using special XPath operations (for example, in the BPEL Assign activity). The value of these
properties can be inspected and modified through the System MBean browser.

We will now edit the PatientAppointmentService BPEL component to make the no-show
deadline a customizable property. Subsequently, we will see how to find and manipulate this
property after deployment.

Configuring the noShowDeadline Property in composite.xml Defining SCA properties is
done in the composite.xml file, at the composite level or at the component/service/reference
level—either directly in the source file or through the Property Inspector. Properties can also be
defined in the componentType file that describes the abstract definition of a component.

A property definition consists of the name and type of the property—and may also indicate
whether the value can be overridden, whether multiple values are allowed, and what the source
of the property value is when the component-level property inherits its value from a composite-
level property. Note that the name for properties for BPEL components has to start with
“preference.”

In this case, the property is called preference.noShowDeadline, is of type duration, and has
the initial value of P0Y0M0DT4H0M0S (which means four hours):

<component name="PatientAppointmentService">
 <implementation.bpel src="PatientAppointmentService.bpel"/>
 <property name="preference.noShowDeadline" type="xs:duration">P0Y0M0DT4H0M0
S</property>
</component>

As an aside, custom properties like the noShowDeadline property are among the elements
that can be customized by configuration plans. When we generate a new configuration plan for
the composite.xml in which we added the property definition, the following entry is created to
support environment-specific customization of the property value:

<component name="PatientAppointmentService">
 <property name="preference.noShowDeadline">
 <replace>P0Y0M0DT4H0M0S</replace>
 </property>
</component>

Accessing the noShowDeadline Property in the BPEL Process PatientAppointment
Service The BPEL process needs to be altered to have it make use of the noShowDeadline
property. Values of BPEL component properties are retrieved in Assign operations using the
getPreference() XPath function that is part of the BPEL XPath Extension Functions. We have to
pass the name of the property to the getPreference() function—without the prefix “preference.”
The following copy operation populates the BPEL variable NoShowDuration with the duration set
in the property that was defined on the BPEL component:

<copy>
 <from expression="ora:getPreference('noShowDeadline')"/>
 <to variable="NoShowDuration"/>
</copy>

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 579

Inspecting and Adjusting the noShowDeadline Property Through the Console We can
deploy and run the PatientAppointmentService composite application with these changes
applied, and initially everything would be the same as before. However, we now have the option
of changing the behavior of the BPEL component: The noShowDeadline is exposed by the
application and can be adjusted through the FMW Console.

Open the console and then open the context menu on the soa-infra node. Open the
submenu Administration and the item System MBean Browser on this menu. Locate the node
Application Defined MBeans in the tree and find its child node oracle.soa.config. Expand this
node and its child Server: soa_server1. Expand the SCAComposite child node. You will now see
a list of all deployed SOA composite applications. Open the node for the composite application
PatientAppointmentService. It has three children: one for components, one for services, and
one for references. Expand the node for the component and, finally, select the node for the
BPEL component PatientAppointmentService. All attributes of the selected MBean are shown on
the right side of the page, as is illustrated in Figure 17-12. Click the attribute called Properties
and locate the property called preference.noShowDeadline. You will see the value that was
specified in the composite.xml file—or in the configuration plan that was used to deploy the
application. You may now decide to change the property value and click the Apply button.
From now on, whenever the PatientAppointmentService component refers to this property
through the getPreference() method, it will retrieve the value that has just been set.

FIGURE 17-12. Inspecting and manipulating the noShowDeadline property for the
PatientAppointmentService component

580 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 581

NOTE
This applies immediately and to all instances—new ones and
instances that are already running and have not yet retrieved the value
of the noShowDeadline preference.

Design Time at Run Time Through Rules and DVM in SOA Composer
SOA Suite ships with the SOA Composer, a web-based tool that is used at run time to edit the
definitions of business rules and Domain Value Maps. This opens up another way of modifying
the behavior of deployed composite applications: When these applications use a Business Rule
component or a Domain Value Map to govern part of their behavior, then that part of their
conduct can be influenced through SOA Composer. Chapter 7 briefly introduced the Domain
Value Map in combination with the Mediator component. Chapter 8 discussed the Business Rule
component as well as the SOA Composer; it contains an example of how a custom System
Parameters rule set can be created that also offers a way to make centrally defined properties
available to applications that can easily be managed at run time.

Let’s take a brief look now at a special kind of Domain Value Map that we could introduce as
a fairly generic way of influencing run-time characteristics of composite applications.

This Domain Value Map could be called something like Properties, and it contains two
columns: PropertyName and PropertyValue. It contains properties that are used in composite
applications, and whose values need to be customizable at run time.

The values in the domain value map are accessed through XPath expressions that can be used
in Mediator Transformations and Assign Value steps as well as in BPEL Assign activities and
transformations. Domain Value Maps are easily edited at run time through the SOA Composer tool.

The online chapter complement demonstrates the steps for creating this Domain Value Map
and using it in a composite application.

Referencing the Domain Value Map in BPEL and Mediator Components Domain Value Maps
are accessed in composite applications through the XPath extension function dvm:lookupValue.
This function can be used in XPath expressions in BPEL and Mediator. An example of using this
function to set header properties or message elements on the outgoing message in a Mediator
component using the Assign Values dialog is shown next. It is part of the Mediator’s .mplan file
where it is used to set the value of a property called temp.chiro using an entry in the Properties
Domain Value Map that has its PropertyName set to CHIRO:

<assign>
 <copy target="$out.property.temp.chiro"
 expression="dvm:lookupValue('Properties.dvm',
 'PropertyName','CHIRO','PropertyValue','Q1')"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/...
 ...oracle.tip.dvm.LookupValue"/>
</assign>

Note that when a header property has been set by one Mediator, the value of that property is
accessible to subsequent Mediator components—both in the Assign Values dialog and in XSLT
transformations:

<xsl:value-of select='mhdr:getProperty("in.property.temp.chiro")'/>

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 581

BPEL Assign activities can use this same lookupValue function to retrieve values from the
Domain Value Map. In a similar way, a property value can be extracted in the filter condition for
a routing rule or in the transformation performed in the routing rule or in the BPEL transform
activity:

<xsl:value-of select="dvm:lookupValue('Properties.dvm',
 'PropertyName','CHIRO','PropertyValue','Q1') "/>

Run-time Administration of Domain Value Map Domain Value Maps—like business rules—
can be edited at run time from the SOA Composer. This browser-based editor can be accessed at
http://localhost:8001/soa/composer/ (replace localhost with the host on which you run your
instance of SOA Suite). Open the properties for the Domain Value Map. This is deployed in the
DoctorAppointmentRequestsProcessor composite. Click the Edit button to go into edit mode.
Click the row for the property that you want to change and click the edit icon. Change the
property value and click the Commit button. At this point, the changed property value is loaded
in memory and any subsequent access to this property through the dvm:lookupValue function
will return this modified value.

Process Composer for Dynamic Business Process Management As we have seen in Chapter 11,
the BPM Composer—shipped as part of BPM 11g and completely integrated with SOA Suite
11g—is another application that is used for “design time at run time.” The BPM Composer is used
to modify the design of business processes, or even create new ones. Through this application,
service invocations can be introduced, variable assignments manipulated, human tasks added or
modified, and the flow logic of business processes rearranged. This capability to dynamically
reorganize and manipulate business processes is an intrinsic quality of the BPM Suite 11g and not
something we have to build into the application.

Changing Composite Applications
The previous section showed how a certain category of functional changes in a composite application
can be handled at run time, through the console, without changes in the implementation of the
application and thus with no need for redeployment. However, that will be the exception, not the
rule. Usually, functional changes will require changes in the implementation of the application. These
changes can be of various types:

 Bug fixes, refactoring, or performance enhancements ■ The functionality does not
deviate from what was intended, the interface does not change, and the metadata
describing the services does not require an update.

 Functionality changes ■ The functionality is changed even though the interface and
contract do not change; the service behaves differently, but those changes fit within the
predefined boundaries of the schema definition, the existing message type, and the port
type definition in the WSDL.

 Interface changes ■ The schema definitions for the message types and/or the operations
in the port type change; some of these changes are merely extensions that are fully
backward compatible (only optional elements added to request message types; new
operations but no changes to existing operations), and others break the existing contract
and force consumers to adapt.

582 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 583

The SOA Suite provides various ways of dealing with changes to composite applications: A
deployed application can be replaced through redeployment with a changed implementation, a
new version of a deployed application can be deployed in parallel with the existing application,
and an application can be renamed and deployed as an entirely new application.

Adopting a Change Procedure for SOA Composite Applications
Before we start making decisions, we should discuss two important characteristics of the SOA
Suite.

Versions of Composite Applications and the Default Version We need to look at the
endpoint address resolution in the SOA Suite. The services exposed by the composite applications
are available at an endpoint that looks like this URL:

http://xp-vm:8001/soa-infra/services/default/...
 ...PatientAppointmentService!2.0/PatientAppointmentService_ep

There is some logic built into this URL: It first identifies the partition and the composite, then
it names a specific version of the composite. Consumers of the service can use this full-blown
URL that determines exactly which version of the (services exposed by the) composite they will
access. Alternatively, they can use a URL that does not contain the version information, like this:

http://xp-vm:8001/soa-infra/services/default/...
 ...PatientAppointmentService/PatientAppointmentService_ep

In this case, they leave it to the SOA Suite to decide which version of the composite will be
accessed to handle the request. This is where the concept of the default version makes its
appearance: When we deploy a version of composite application, we can indicate whether that
version will be the default version; we can also designate the default version of a composite
through the FMW Console using the Set A Default button on the composite revision’s dashboard.
This default version is the version that will handle all requests to the composite that do not
explicitly name a version in the URL. It is also the version that will be activated by inbound
adapters (for example, Database, JMS, or File). Note that EDN events will be consumed by all
versions of the composite.

NOTE
If changes from one version of a composite to the next are not
backward compatible, consumers that access the composite’s services
using a version-free endpoint designation—effectively using the
default revision of the service—can be severely impacted if we adopt
the new incompatible version as the default revision.

Effects of Redeployment of a Composite When a composite application is changed and
redeployed, all URLs—whether version specific or relying on the default revision—stay the same
and continue to work. No consumer may even know that the redeployment has taken place,
except for two important facts: During redeployment, there will be a period of unavailability that
may result in timeout exceptions for service consumers. Even more dramatically, the status of

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 583

running instances of the composite that is redeployed is changed to “stale.” Stale instances have
ceased running—they are effectively aborted. And, of course, it is obvious that when the WSDL
changes during the redeployment, the consumer may no longer be compatible with the deployed
composite and the consumer will very much become aware of the redeployment.

Before starting redeployment of a composite, you can first retire it. This will prevent new
instances from being started. Running instances will continue normally. Short-running instances
can be allowed to complete. Then redeployment is performed and the composite can be
activated again. Note that the composite is unavailable to consumers as soon as it is retired.

Long-running instances of a composite application do not survive redeployment of that
composite, and redeployment is probably not a useful strategy for composite applications that
can be long running.

Versioning of Web Services
Versioning of services is a little more complex than versioning in a traditional architecture.
The number of artifacts that each potentially have their own individual life cycle is much
larger than in traditional monolithic applications. And even though through decoupling we
try to minimize direct dependencies between these artifacts, they still rely on each other
and on their interface definitions (WSDL and XSD). The impact of changing the interface of
a single service artifact can be quite huge.

Another aspect of versioning in our service-oriented world is the fact that unlike with
the monolithic applications, we can have multiple versions of the same artifacts active at
the same time. Provided, of course, that we carefully manage the access of the consumers
to the specific version they can work with.

Because a service consists of three parts, all three parts can change independently.
Suppose we have a service that can be invoked to update the medical records for a patient.
The interface definition for the operation addLabResult has two parameters: patient identifier
and the laboratory test result. The implementation will return the result code and the current
number of results. The contract of this service states that you need to authenticate with an
X509 certificate and that HTTPS is used to encrypt the message during transport.

Now the business decides that the patient’s medical information is confidential and that
they want the message itself to be encrypted using WS-Security instead of just securing the
transport layer. Do we consider this a new service, or a new version of the existing service?

What if we fix a bug in the (encapsulated) implementation of the service? Do we
consider this a new version of the service, even if the contract and the interface are
unchanged, or just a new version of the component that implements it? Or does this
constitute a new service altogether? And what if the interface is changed, but the change is
fully backward compatible, such as a new operation or support for a new optional input
parameter? Should we then declare a new version of the service or an entirely new service?

Many books and blogs have been written about this topic. In our experience it is a best
practice to keep it simple. In general, when the interface, the component, or the contract
changes, it is a good idea to consider this to be a new service altogether. In our repository
we can deprecate the old service and then retire it as soon as the new service is live, or as
soon as all the consumers have switched to the new service. This is clear for the service
consumers and keeps the complexity of backward compatibility to a minimum.

584 Oracle SOA Suite 11g Handbook Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 585

Redeploy, Revise, or Re-create?
For all intents and purposes, a new version of a composite application is not really any different
from a new composite application. The only difference is in the default revision mechanism that
allows administrators to automatically transfer consumers to a version without them realizing it.
This automatic transfer can only be done for changes that fully respect the service contract and
are fully backward compatible.

Changes to a composite application that change the contract and are not backward
compatible should probably not be regarded as producing the next version of the application but
rather as the birth of a new composite application—conceptually at least. Automatic rerouting
using the default revision mechanism cannot be allowed for such drastic, incompatible changes.

One intermediate strategy to consider could be something like this:

 Backward-compatible changes are labeled with the second digit in the revision ■
indication (1.2 leads to 1.3); the new version is immediately designated as the default
revision; consumers relying on the automatic routing to the default revision always use
the latest compatible revision. Running instances of previous revision can continue to
run. Consumers with a specific preference can continue to use prior revisions.

 Substantial changes that are ■ not backward compatible are labeled using the first digit
in the revision label (1.2 leads to 2.0); this new revision is not immediately designated
as the default revision. A grace period is defined during which consumers can choose
to either adopt the new version or change their application to specifically consume the
previous (1.2) revision of the service. The grace period is the phase during which the new
situation is not yet forced upon everyone, even though from the provider’s perspective
that is what we probably would prefer to be doing. The grace period gives consumers a
chance to make a decision about the new version and act on it. After the grace period,
the latest version (2.0) is designated the default revision.

 Another procedure should be set up to determine when older revisions of services will be ■
terminated; this is part of SOA governance that is further discussed in the next chapter.

The major new revision—the second step in the preceding strategy—will always require work
to be done by the consumers of the service. The fact that it is a new revision of an existing
composite instead of an entirely new service is perhaps somewhat useful in a semantic or
symbolic way, but it does not really help our tools at all.

Note that changing a shared artifact like a publicly exposed service is a tricky business with a
serious responsibility on the part of the party initiating and making the change. It requires a lot of
communication, planning, coordination, (impact) analysis, and more. The next chapter, on SOA
governance, will discuss this in somewhat more detail.

Summary
This has been a very hands-on chapter. The initial discussion was on how to package composite
applications to prepare them for deployment and subsequently on how to deploy the application.
Build and deployment can be done from JDeveloper or the command line using Ant or WLST.
Deployment of a service archive can also be done from the FWM Console.

To cater to differences between environments into which composite applications are deployed,
we can create configuration plans—one per target environment. A configuration plan contains the

Chapter 17: Lifecycle Management: Testing and Dealing with Environmental Change 585

environment-specific values for properties and endpoint addresses. During deployment, a specific
configuration plan can be selected to be applied.

The properties that can be set by the configuration plan during deployment can also be
manipulated through the FWM Console. Note that through custom properties, such as BPEL
preferences, business rules, and Domain Value Maps, we can integrate a form of customizability
into the composite applications: the behavior of components can be implemented to depend on
these elements. These elements can all be configured at run time through the FMW Console. The
same applies to technology adapter bindings and the endpoints of external Web Services.

Between development and deployment (to a production environment at least), we should test
applications. The SOA Suite comes with a built-in framework for unit testing. Unit tests are
created in JDeveloper. Test suites contain test cases that consist of input messages or events,
emulated (mock) response messages, and assertions about the expected results from the unit that
is tested. Test suites are deployed along with the composite application and can be executed in
the FMW Console—or from the command line using Ant or WLST.

Somewhat advancing on the discussion of governance in the next chapter, we concluded this
chapter with a discussion on changing (the implementation of) composite applications and
guidelines for versioning services. The SOA Suite supports the notion of versions of composite
applications. Multiple versions can be active at the same time. One version can be designated the
default version—that is the version that will handle all requests that do not target a specific
service. When this default version mechanism is used, a policy could be adopted to only version
a service when the changes are backward compatible and create an entirely new composite for
substantial, incompatible changes.

This page intentionally left blank

Chapter
18

Tactical Management
and Governance

587

588 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 589

e discussed the overall objectives with SOA in the first part of this book.
“Business Agility through Decoupling” was in the book’s opening sentence
(SOA is BAD!):

 Decoupling through encapsulated, reusable, stand-alone services and events with well- ■
defined interfaces and contracts that are orchestrated together into processes

 Reuse of proven assets resulting in shorter time to market, lower development costs, ■
higher quality, and the IT department’s ability to eagerly follow business desires and
even lead the way in spotting opportunities for improvement

After stating those objectives, we have spent many pages discussing the technical concepts of
services, Service-Oriented Architecture, SOA composite applications, and the service components
at our disposal in the Oracle SOA Suite for implementing these applications and fulfilling the
service contracts. However, the tools and technology by themselves are not enough to deliver the
goods required by an organization.

Reuse, for example, requires a paradigm shift—it requires developers to shake off their
not-invented-here intuition and look for already existing functionality (services) outside their own
scope and span of control.

And first of all, this requires very easy access to the reusable assets: They need to be easy to
find, easy to understand and trust, and easy to adopt. Organizations that really want to achieve
reuse need to work on a culture—and before that probably an obligatory but also stimulating
process—that makes it hard and/or expensive not to reuse or to create nonreusable services if
they could be reusable, and rewarding those who do reuse or develop reusable services. In order
to build an inventory of reusable assets, the design and development of new artifacts need to be
done in the spirit of reuse and flexibility—and not with only the immediate utilization of the
artifact in mind. Developers are not only developing and delivering services for their project but
possibly for all projects within their organization (or even outside the organization). This usually
requires them to make a service more generic than would be the case if it concerns only a local
project’s artifact.

Additionally, when assets are being reused, new challenges stare us in the face, such as
dependency management, ownership, versioning, and lifecycle management of the reused assets.
Because of the reuse, the number of involved parties and dependent assets has increased.
Evolving the reusables or discontinuing them is no longer a matter of a single owner or team—
much more is at stake. One cannot just modify a service because one of its users asks for a
change. What if other consumers will “break” due to a modification?

The process of governance (of software artifacts) deals with the challenges just described. This
chapter will introduce governance and discuss some of the objectives, concepts, and high-level
approaches.

The MDS (Metadata Services) repository offers a small, down-to-earth aspect of managing shared
SOA artifacts that is used from JDeveloper (design time) and the run-time SOA Suite environment.
Use of the MDS repository helps to prevent duplication of artifacts and the synchronization
challenges that are the unavoidable result of such duplication. This chapter demonstrates the use
of MDS for straightforward assets such as XSD, WSDL, and EDL (event) definitions.

MDS is a great facility for some operational governance aspects. However, as soon as
organizations take a step back to take a more tactical look at things, they will quickly realize that
some form of service inventory should be created, too, to record and share information about

W

Chapter 18: Tactical Management and Governance 589

services and other SOA assets. Such inventories can be simple and straightforward, created using
a wiki or just a spreadsheet, used for design-time activity. A more formal inventory can be
implemented using service directories—such as those based on the UDDI standard, including
Oracle Service Registry. These directories support both design-time gathering and communication
of metadata, as well as run-time (automated) sharing of artifacts.

This chapter also very briefly discusses the Oracle Enterprise Repository, a tool that integrates
with JDeveloper, Oracle Service Bus, Service Registry, and the SOA Suite to support the next
(enterprise) level of governance in a largely automated fashion.

We can only briefly touch upon governance in this book—unfortunately it is by and large
outside its scope. The field is too vast, the topics and discussions too specialized for us to be
able to really do them justice and have a truly thorough discussion. This chapter has a modest
ambition and is meant to provide a first introduction, high-level overview, and a down-to-earth
small example using MDS.

Introducing Governance
Traditionally, stand-alone applications were developed by dedicated teams that remained
attached to the application during subsequent stages in its lifecycle. The assets that formed the
application were completely owned, controlled, and exclusively used and modified by this
relatively small team.

Packaged applications have by now been introduced in most organizations. The evolution of
those applications is largely out of the hands of an organization—it can only decided to upgrade
to a next release or (temporarily) refrain from doing so. Yet many organizations will have custom
extensions and integrations developed around these off-the-shelf applications that are managed in
a similar way to the stand-alone custom applications. However, the manufacturer of the packaged
application is in a somewhat different situation—one that is close to where, as a result of a
service-oriented approach, most development teams will be.

Services are usually initially designed and built for one or more specific consumers at the
time being, but they are created with additional future reuse in mind. Reuse and flexibility are
things we want to achieve. However, reuse can also lead to new challenges. When a service is
deployed, it might be—and hopefully will be—used by others than just the consumer it was
originally built for. In a Service-Oriented Architecture, most assets therefore end up very much
not (exclusively) owned by any team or even department: They are (in theory, at least) co-owned
by the enterprise, targeted at widespread reuse, and not naturally controlled by an individual or
group. Note, however, that every service needs to have a designated owner who is responsible for
the services delivered. Because the service delivers business value, it is a business unit that owns
it. And this unit needs to work together with other interested parties in the enterprise when it
intends to evolve the service artifacts.

Management of the lifecycle of these assets is important, especially given the extent of reuse
we are trying to achieve. To realize reuse, the availability of assets needs to be made public, and
the assets need to be found, understood, and trusted. Once reuse has happened, the process of
evolving those assets becomes more involved: Multiple parties have a stake in the assets and may
have specific requirements with regard to their evolution. The designated owner of an asset—or
the body governing the lifecycle of the asset—needs to be aware of all the usages of the asset.
Other aspects of governance include: How do we ascertain that assets have the required quality
and deliver on their (functional) promise? How do we define and record the required service and
security levels and subsequently (at an operational level) monitor the actual performance of assets?

590 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 591

Implementing Governance
Before the management of the assets themselves is in full swing, governance is also required to
enforce the architectural principles laid down for the organization. What processes must be
implemented to ensure that all teams stick to the rules and are stimulated to do so (not only the
service police!)? And how do we ensure that teams do not create the same or overlapping assets?
How do we decide which reusable assets should be created? What should the interface be for a
new reusable service, and how much functionality should it comprise? Or at a higher level, what
should the process look like that determines which assets will be created and how they should
look? How do we organize the process to create and control the canonical data model?

We also need strategic governance to link corporate goals to SOA and to have a process in
place to check and possibly modify the governance processes for SOA. (And, of course,
governance processes themselves are also subject to improvement and change. How do we
govern this evolution?)

Governance must be implemented at every stage of the SOA lifecycle to track ongoing
changes to the architecture, design, and implementation—and to define, implement, and execute
the processes around the creation of new assets and changes to existing ones. An architecture
board or (SOA) competence center can be considered with representatives from different
departments to align SOA initiatives—and to help overcome each department’s not-invented-here
tendencies, which stand in the way of true reuse and flexibility. Governance should be aimed at
stimulating and enforcing desired behavior. And the one most important behavior we try to
achieve is collaboration—opening up applications can only be successful when we open up
inward-looking departments and have them collaborate with other units in the organization.

Governance should be aimed at getting all involved parties to do the right things and to do
these things right. Not only by laying down rules that are enforced, but mostly by inspiring the
people involved, leading the way by setting the right example, and taking care of clear, timely,
and open communication. Acting in a truly service-oriented, decoupled, reuse-focused way will
take time. Knowledge and skills are required, as well as internalization of the objectives and
approach. Ownership must be taken—like Frank did, back in Chapter 4—and cannot just be
assigned. Coaching of teams that start out in the spirit of SOA by members of the architecture
board or representatives from more experienced teams is valuable in order to inspire confidence,
to help prevent making common mistakes and reinventing the wheel, and to guide the way
through the acronym jungle, the technology challenges, and the adopted practices and mantras of
the organization.

All of this requires organizational courage—and real leadership. Governance is not a problem
you can simply throw money at, nor can you hire consultants to do it for you. It is organizational
change. Therefore, an important aspect of SOA governance, especially in the early stages of
adoption of SOA in an organization, is spreading the word (evangelizing), demonstrating the
success, celebrating the measurable results, and thus building the case for SOA. Think big, act
small, start successful.

Asset Registration and Publication
Reuse can only happen when assets are first of all identified as reusable and then created and
subsequently made available to potential consumers. The latter requires assets to be discoverable,
along with metadata that clearly states the status, QoS provided, and meaning of assets and also
helps establish the credibility through insight in the current usage of assets, QoS, and the
satisfaction of the current consumers. The exact location, security measures, conditions for reuse,
and future plans for the asset should be clear as well.

Chapter 18: Tactical Management and Governance 591

Registration is essential as part of SOA governance—to record a description and status of a
service and some of its assets (XSD, WSDL, and so on) as well as to gather and record metadata and
metrics. Subsequently, the metadata about the assets must be made available throughout the
enterprise. A central repository, here called the “asset manager,” provides a single source of truth for
what was intended—the to-be architecture design—and what has been and is being implemented
(the as-is architecture).

Note that there is typically a grow path here: Start with a run-time registry, which can be very
lightweight with only service descriptions and an indication of the status and owner of service.
Later on the organization could move to a more elaborate registry. The next stage along the path
could be the move to a thin repository (initially only XSD and WSDL artifacts) and finally to a
complete repository. The registry is by far the most important when starting with SOA. A full-
blown design-time repository loaded with metadata is quite possibly overkill in the early days of
SOA adoption in an organization.

At the advanced stage, assets must be managed across every stage of the lifecycle, from
conception to implementation, and from deployment to retirement. Ideally, an asset manager
includes functionality for automated harvesting of assets and metadata on assets, as well as
customizable asset-approval workflows, notifications, and event infrastructure.

The assets themselves as well as this metadata must be easily searchable. The asset manager
or SOA artifact registry is the primary means for architects, designers, and developers to learn
about the assets available for reuse.

The administration of assets and their metadata can be done in various ways with different levels
of sophistication. Most organizations will start out with spreadsheets and text documents, based on
predefined templates, collected in a central directory. As the number of assets and the volume of
metadata increases, simple content management systems, custom-developed administration tools, or
standard governance tools, such as the Oracle Enterprise Repository and Service Registry and BPA
Suite, may be adopted.

Life Cycle Stages for SOA Assets
One of the concerns of SOA governance is the evolution of services and other SOA assets or
artifacts (these terms are used interchangeably). An organization that starts with SOA must have
clear rules about what happens when a service needs to be changed. This applies to change
management, configuration management, release management, and for the planning of projects.
It also needs to label each asset in such a way that everyone involved understands the status of an
asset. At St. Matthews, Mary has defined the following states of a service (or other SOA artifact):

 Identified ■ The service is identified, either by a project as something they need or in the
to-be architecture.

 Development ■ A service is being created but not yet in production.

 Released ■ The service is released and ready to be used or already used by service consumers.

 Deprecated ■ The service is still working, but (new) service consumers are not supposed
to use it anymore because the organization plans to discontinue the service. Information
that could be stored with this status is a pointer to the alternative and/or a planned
retirement date for the service. Services should be deprecated before a replacement has
been made available. Some organizations introduce an additional service state called
“Sunset.” This state is a specialization of Deprecated in that it not only declares the intent
to discontinue the service, but also provides an official date for retirement.

 Retired ■ The service is not available anymore.

592 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 593

The states apply to the service as whole. It is not meaningful to have separate states for the
service implementation, contract, and interface.

To use services, the organization needs to be aware of the state of the services. Knowing who
owns a service and what interface and contract are associated with it is also very important in
deciding whether the service can be reused in a certain situation. These and other governance
issues can be addressed using tools. But more importantly, the organization has to define and
communicate this information to stakeholders in order for services to be (re)used safely. Required
information includes the state, owners, and terms and rules for reusing and changing the services
(for example, payment, security, and so on). This information is typically published through the
SOA Asset Manager.

Versioning
When we talk about the various states of a service through its lifecycle, a discussion on versioning
cannot be far away. We briefly touched upon versioning in the last chapter, concluding that, in
general, having multiple versions of the same service does not seem to be a good idea: As soon as
the interface or the contract of service changes, it is best to create a new service altogether rather
than try and establish a series of versions. However, with smaller changes that are backward
compatible, for example, versioning may be useful. The SOA Suite has some support for the notion
of versioning services—allowing the use of a revision ID in the identification of composite
applications and in the URL used to access them. Clearly, when versioning is applied to specific
artifacts, it should very much be part of the governance process.

MDS Repository for Managing
and Reusing Shared Artifacts
Many development and deployment strategies that involve reuse sooner or later end up having to
rely on copying artifacts. When an XSD definition or XSLT stylesheet is reused, it seems always
necessary at some point to create physical duplicates of these artifacts. And in general, duplication
of assets in the long run becomes a problem that frustrates the very reuse we try to achieve.
Although some level of duplication is acceptable—between environments such as System Test,
Acceptance Test, and Production, and across multisite production environments—in general it
should be prevented. The effort required to keep duplicate artifacts synchronized is huge and
typically will fail at some point. On the other hand, if we do not replicate the thing that stores all
artifacts, it becomes a single point of failure, also during development.

SOA Suite provides a central store for shared artifacts that can be accessed at design time from
JDeveloper and at run time from deployed SOA composite applications. This central store, the
MDS repository, along with the Metadata Services on top of it, helps to organize reuse of cross-
application artifacts such as canonical data model definitions and business event definitions. Note
that the MDS repository is an intrinsic part of the SOA Suite run-time environment, not something
that you need to install separately and additionally. However, also note that during development,
the JDeveloper IDE can also make use of a local, file system–based MDS repository (see the
section “JDeveloper and the Split-Brain MDS” for the background on this).

Using MDS with SOA Suite 11g
Resources in the MDS can be directly accessed at design time as well as at run time using a URL
that starts with “oramds:”. This URL is valid at design time as well as at run time, resolved against

Chapter 18: Tactical Management and Governance 593

the local or the central MDS service. When a composite application is developed in JDeveloper,
it can refer to artifacts in the MDS, and when that application is deployed, those same references
into the central MDS are valid.

The MDS repository is organized in partitions, container structures similar to file system
directories. Resource names must be unique within a partition. MDS contains three types of
resources: (pre)seeded, application specific, and shared.

The pre-seeded resources are the run-time artifacts shipped with the SOA Suite and required
out of the box. This includes RuntimeFault.wsdl, HumanTaskEvent.edl, and ws-addressing.xsd.
These resources are stored in the partition path /soa/shared.

The second category contains SOA composite applications and their artifacts (business rules,
DVMs, and so on) that end up in the MDS repository when they are deployed to the SOA Suite
container. Each composite, and in fact each revision, has its own store (or MDS partition) for
artifacts such as XSD, WSDL, XSLT, EDL, adapter configurations, and the composite.xml file.
These application-specific artifacts are in a path that starts with /apps/.

The last category of shared resources is created by users and deployed in a special type of
archive (MAR, or Metadata Archive). It consists of artifacts that are shared by multiple applications.
Examples are XSD with common (canonical) definitions, Domain Value Map definitions, and EDL
files with business event definitions.

Using MDS to store shared artifacts and references to MDS to reuse those artifacts is an
important method for reducing duplication (such as local copies) of artifacts. We will next define a
shared artifact—an EDL file with a business event definition. This artifact is deployed to MDS.
Subsequently, this artifact is used in a composite application—first at design time and subsequently
at run time. We will also briefly look at how the MDS and its resources can be managed.

JDeveloper and the Split-Brain MDS
Duplication is evil, and the MDS is here to coordinate and facilitate reuse of shared artifacts.
That, in short, is the summary of the previous section. So it may come somewhat as a surprise that
in fact the MDS itself is duplicated—for a very pragmatic reason.

The central MDS repository is available only when SOA Suite 11g is up and running. This
repository is part of the WebLogic domain that runs the SOA Suite and is integrated inside the
soa_server1 managed server and the MDS schema of the database. References to MDS resources
can only meaningfully be used during development when the central MDS is available. However,
it would be inconvenient if development on SOA composite applications can only be done when
the server is up and running.

The team behind the SOA Suite came up with a solution where a local MDS repository is
created in the JDeveloper directory during installation of the SOA Suite plug-in for JDeveloper.
This local repository contains the pre-seeded artifacts such as RuntimeFault.wsdl and ws-
addressing.xsd. You will find this repository at the following location: JDEVELOPER_HOME\
jdeveloper\integration\seed.

JDeveloper knows how to find this local MDS store and uses it during development of the
composite application to retrieve common definitions—for example, when a Notification activity
or Human Task is added to a BPEL process.

The resources in the seed partition of this local MDS store are also available in the central
MDS repository in the SOA Suite server. This repository is created during installation by the
repository creation utility in the FMW database.

We can also use this local MDS repository to store our own shared artifacts. Although ideally
these artifacts are always and only stored in the central MDS, it can be convenient to employ the

594 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 595

local MDS to reduce the complexity and dependencies of the development environment—and
allow development of shared artifacts in relative isolation. We can add resources to the local
file-based MDS repository by copying them to (a child folder under) the directory JDEVELOPER_
HOME\jdeveloper\integration\seed\apps.

Composite applications that refer to custom shared artifacts from the local MDS use the same
type of references that are used for resources in the central MDS. This means that during
deployment, nothing needs to be changed to those references. However, we do need to ensure
that the shared artifacts in the local MDS are also available in the central MDS; otherwise, the
deployment will not be successful. Deployment of shared artifacts to the central MDS is done
using a MAR (Metadata Archive) deployment profile; this is discussed later in this chapter.

IDE Connection to MDS Repository
In order to be able to access MDS resources from applications developed in JDeveloper, we need
to create a special type of connection on the Resource Palette: an SOA-MDS connection. This
type of connection comes in two flavors: one to connect to the local file-based MDS repository,
and one to connect to the central MDS repository stored in a database.

An SOA-MDS connection is created using the New Connection dialog on the Resource Palette.
Select File Based MDS under Connection Type and specify the root folder JDEVELOPER_HOME\
jdeveloper\integration\seed. Test the connection and, when successful (which only means that the
directory exists), close the dialog. We can now browse the contents of the local MDS repository on
the Resource Palette. Then, whenever during development of composite applications we browse
for a resource—such as an EDL file, a WSDL document, or an XSD definition—we can also select
from the contents of the MDS repository.

The SOA-MDS connection to the central (shared) MDS repository is created in a similar
fashion. However, this connection is of type DB Based MDS. We need to provide the connection
details to the MDS database schema that was created by the repository creation utility during the
installation process of SOA Suite 11g. For this connection we also need to select the appropriate
MDS partition, which in our case is soa-infra. When we have verified the success of this connection,
we can use it in the same way as the local SOA MDS connection: to browse (and search) the
repository for resources and to create references from our composite applications to those
resources (see Figure 18-1). Note that the MDS does not only contain resources designated to
be shared: It contains and exposes all artifacts that have been deployed as part of composite
applications as well.

Sharing the ContagiousDiseaseBusinessEvent Definition
It is good practice to identify shared artifacts and adopt governance procedures for their design,
development, lifecycle management, and administration. Shared artifacts are reused, and this
should be facilitated without the need for duplication through local copies. MDS is the appropriate
way for exposing and accessing shared artifacts. Governance tools such as the Enterprise Repository
will contain the metadata assets describing these shared artifacts, including details about their
history, current usage, status, rating, and location.

Let’s take a look at how some shared artifacts can be created, deployed, and exposed and
can subsequently be reused. In order to be able to respond promptly to suspicions of contagious
diseases, the analysts at St. Matthews have defined a new type of business event: the
SuspectedContagiousDiseaseEvent. This event is a shared artifact, just like the XSD definition
that specifies its payload. The underlying .xsd and .edl sources are to be deployed to the MDS
repository and subsequently reused without local duplications.

Chapter 18: Tactical Management and Governance 595

Note that the online chapter complement for this chapter contains detailed descriptions of the
steps outlined next as well as source code and screenshots for each step.

Creating and Deploying Shared Artifacts The SOA composite application SharedArtifacts is
created to be the container for the artifacts we are about to create and deploy to the MDS. The
PatientEvents.xsd schema definition is created with the definition of the element Suspected
ContagiousDiseaseEvent that describes the payload of the SuspectedContagiousDiseaseEvent that
is created next in the new PatientRelatedEvents.edl file.

In order to deploy these artifacts to an application-spanning section of the MDS repository,
we will create a simple JAR deployment profile that contains the artifacts. Next, we have to create
a deployment profile of the type SOA Bundle at the level of the composite application. Specify a
dependency for this profile on the simple JAR deployment profile. We can then deploy the
application according to this new SOA Bundle deployment profile.

FIGURE 18-1. Browsing the central MDS repository through the SOA-MDS connection

596 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 597

After deployment, go to the Resource Palette, refresh the SOA-MDS connection, and expand
the apps node. The shared .edl and .xsd artifacts that were just deployed are now visible under
this node and thus available for reuse (see Figure 18-2).

Reusing Shared Artifacts in a Composite Application The PatientAppointmentService should
publish the ContagiousDisease event whenever it suspects—based on the requested appointment
type and the diagnosis from the general practitioner—that the patient is carrying a transferable
and potentially dangerous disease. For now we will not go into the logic of making that
evaluation—we will just look at the publication of an event type defined by a shared MDS
artifact.

Add an Invoke activity to the BPEL process PatientAppointmentService. Open the editor for
this activity and select Event as the interaction type—instead of Partner Link.

Click the looking glass icon to browse for the Event Definition Language file, as illustrated in
Figure 18-3. Select the Resource Palette in the top drop-down list. Open the IDE Connections
node and expand the SOA-MDS node. Two connections are available: the local MDS store and
the central MDS repository to which we have deployed the SharedArtifacts project with the .edl
file we are now looking for. Open the SOA-MDS connection to the shared, central MDS
repository. Under the apps node, we see the PatientRelatedEvents.edl. Select this file and click
OK. Select the SuspectedContagiousDiseaseEvent and click OK. Have a local input variable
created that will be populated to provide the payload for the event (based on the element
definition in the PatientEvents.xsd document referenced from the EDL file and stored in the MDS
repository). This completes the Invoke activity. Next, create an Assign activity to populate the
local input variable auto-created for the Invoke activity.

FIGURE 18-2. The shared artifacts for the ContagiousDiseaseEvent are available from the MDS
after deployment.

Chapter 18: Tactical Management and Governance 597

Here’s the import element added to composite.xml file for the EDL file used from the MDS:

<import namespace="com.stmatthews.hospital/events/patients"
 location="oramds:/apps/PatientRelatedEvents.edl" importType="edl"/>

The PatientAppointmentService.wsdl document has a new schema import that references
oramds:/apps/xsd/PatientEvents.xsd.

The prefix oramds is an indication for the MDS repository. At run time it is resolved using the
registered MDS repositories for the soa-infra application. At design time—during the compilation
and build from JDeveloper—the resolution depends on the adf-config.xml file. This file contains
<metadata-store-usage> elements that specify connections to the central MDS repository and
local file-based repositories.

Using the Local MDS Repository for Custom Shared Artifacts
We have discussed previously how the seeded reusable artifacts are available from not only the
central MDS repository but from the local file-based MDS store as well—primarily for practical
purposes and a less complex development environment. Custom shared artifacts such as the EDL
and XSD files for the ContagiousDiseaseEvent can also be added to this local MDS repository.
This allows reuse of these resources across composite applications without the need to have
access to a full-blown running SOA Suite environment. The main drawback of using the local
MDS store is, of course, the artifact duplication that may lead to inconsistencies between the
various copies of the artifacts as well as among all local MDS repositories.

FIGURE 18-3. Selecting the EDL file from the MDS repository for reuse in a composite
application

598 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 599

In the example of the PatientRelatedEvents.edl artifact and its associated XSD document, we
can simply put the files representing the shared artifacts into the local file-based MDS repository:
<JDeveloperHome>\jdeveloper\integration\seed. Create a subdirectory called apps and copy the
two files to this directory. When we now refresh the SOA-MDS connection to the local file-based
repository, we will see these shared artifacts just like we could see them through the connection
to the central database–backed repository. The Browse dialog we used before to select the
PatientRelatedEvents.edl file can select artifacts from the local MDS repository in exactly the same
way as from the central MDS repository. The resulting references in the composite application are
also exactly the same: Both start with oramds:/apps.

The only difference between applications that reference the local MDS and applications that
reference the central MDS repository is in the adf-config.xml file; this difference is relevant at
design time only, during editing and compilation of the application. The adf-config.xml has a
namespace element that associates the /apps path with a metadata repository connection and a
metadata-store-usage that defines that connection:

<namespace metadata-store-usage="mstore-usage_3" path="/apps"/>

When it references the local file-based repository, this element is defined like this:

 <metadata-store-usage id="mstore-usage_3">
 <metadata-store
 class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property
 value="C:\Oracle\JDeveloper11gR1PS2Beta\Middleware\jdeveloper\integration"
 name="metadata-path"/>
 <property value="seed" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>

Then, when /apps is associated with the central, database-backed repository, the element is
configured like this:

<metadata-store-usage id="mstore-usage_3">
 <metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property value="FMW_MDS" name="jdbc-userid"/>
 <property value="fmw" name="jdbc-password"/>
 <property value="jdbc:oracle:thin:@xp-vm:1521:orcl"
 name="jdbc-url"/>
 <property value="soa-infra" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>

Note that these configurations are maintained by JDeveloper—you do not have to create
them manually. Also note that you cannot reference resources in both the local and central MDS
repository at the same time: The /apps path is resolved to either one.

Administration of MDS Repositories
MDS repositories are a special component in the run-time infrastructure that require appropriate
administrative attention. This attention from the administrator includes well-known aspects such
as backup and recovery. More specific are tasks associated with the versioning capabilities of the

Chapter 18: Tactical Management and Governance 599

MDS repository: Every import or deployment of an artifact to the MDS repository (when it is
backed by a database) produces a new version of the artifact. An impressive version history with
a substantial number of documents can be created over time. The purge operation allows the
administrator to remove redundant revisions of the artifacts in the MDS repository.

The administrator can create a version label in the MDS repository, a named collection that
consists of the latest version of each document in the partition at the time the label is created.
When new revisions of the composite applications are deployed and new versions are added for
the document in the repository, the label is still available as a logically coherent collection of
document versions that can be manipulated as a group.

Administration of the MDS repository is partly done through the FMW Control Console, via
the command line with Ant and WLST, and possibly directly against the underlying database
schema.

Migrating Artifacts in the MDS Across Environments
The contents of an MDS partition can be exported from the FMW Enterprise Manager console
and by using the WebLogic Scripting Tool (WLST). An import can be done from Ant, the WLST
command-line interface, and the FMW Control Console. The export and import operations can
be performed for backup and recovery reasons and to migrate between environments, such as
from development to testing and onward, all the way to production.

Note that the current export and import functions are not at all very refined or fine grained;
you may be better off hanging on to the JAR file that was originally used to load shared artifacts to
MDS and use that when these artifacts are required in another MDS or MDS partition. Perhaps—
though probably quite unsupported—it may be useful to do management, export, and import at
the level of the database tables that contain the MDS resources. The wiki has an article that goes
into this particular option.

Exporting MDS Resources from the Console The export and import operations in the console
are accessed as follows: Select the soa-infra node in the FMW Control Console. Open the context
menu and select the option MDS Configurations from under Administration. The MDS
Configuration page is displayed with support for three operations—export, import, and purge
partition—and two links that provide access to MBeans for more fine-grained operations.

The export operation (a very indiscriminate procedure that will export the entire MDS
partition, which adds up to more than 9MB’s worth of pre-seeded artifacts) has us specify the
target directory (on the server) for the export and subsequently exports all documents in the MDS
partition soa-infra.

Alternatively, we can go to the Runtime MBean Browser and click the Operations tab, select
the operation exportMetaData, and export selected documents to a location on the server. This
operation allows us to specify a particular label to process, to export a specifically labeled version
of artifacts in the repository.

Exporting Through WLST and Ant The export of artifacts in the MDS repository is supported
on the command line through Ant scripts as well as WLST commands. The file ant-sca-deploy.
xml is the Ant script that contains the task that exports MDS data. Here’s the basic statement to
run this Ant-based export:

ant -f ant-sca-deploy.xml exportSharedData

600 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 601

The script takes additional parameters to connect to the SOA Suite instance, select the
artifacts to export, and specify the name and location of the JAR file created by the export task.

The WebLogic Script Tool supports a command called exportMetadata. It takes parameters to
specify the application (always soa-infra), the managed server running the SOA Suite, the target
location for the export, and a document selector. Other parameters can specify a version label to
filter documents by. Here’s an example:

exportMetadata
(application='soa-infra'
, server='soa_server1'
, toLocation='c:\temp\MDS_XSD_export'
, docs='/**'
)

Importing Metadata from an Export Importing resources into the MDS repository can be done
in the console, on the MDS Configuration page. Click the Import button, specify the location on
the server (either a directory or an archive file) that contains the resources to import, and click OK.

On the command line, we can use the importMetadata command through WLST to perform an
import. This command takes the name of the application (which is soa-infra for SOA composite
applications), the name of the managed server, the source location, and the docs (a list of comma-
separated, fully qualified document names or document name patterns, or both).

Service Inventory for Gathering and Publishing
As stated previously, governance is a collection of processes and agreements that have to live in
the minds, and preferably the hearts, of many different stakeholders involved in the architecture,
planning, design, implementation, testing, and administration of service-oriented artifacts such as
Web Services, canonical data models, and events. These processes together have to enable the
organization to achieve the objectives with SOA, such as agility through decoupling and reuse.

Implementing governance is, to a large extent, a matter of communication, building awareness
and involvement, making information available about procedures and reusable artifacts,
collaborating on the creation of services and the design of the canonical model, and so on. Many
of these governance processes require registration and publication of metadata about these
processes themselves as well as about artifacts and dependencies between the assets. Various
approaches and tools can be adopted for the management of this metadata—some simple DIY
tools, others more formal, such as UDDI directories (for example, the Service Registry), or even a
full-blown enterprise-level system like the Oracle Enterprise Repository (OER).

DIY Service Registry
Especially in the early stages of SOA adoption, organizations do not need complex, advanced,
enterprise-level artifact registration infrastructures. They need simple, accessible, lightweight
mechanisms for recording the key data about services and other SOA assets—and for making
these details readily available to any interested party. Core aspects to be recorded about services
include their name, a description, the status and owner, and the dependencies. And in the
beginning, when the number of services is still relatively small, this can be just unstructured text
that is maintained in a corporate wiki or even a spreadsheet on a central file share.

Chapter 18: Tactical Management and Governance 601

Teams that create new assets should describe them in the service registry—in the format and
with the details that the organization has agreed on. And before they do so, they should browse
through the registry to see whether perhaps what they want to create has been created already—
or at least something that is similar to it. Note that services that have been identified should be
recorded in the registry, even if they have not yet been implemented.

A common experience is that organizations that may have had a lukewarm start with some of
the abstract concepts and intangible objectives of SOA quickly start to pick up some enthusiasm
when a tangible, commonly owned service inventory is introduced and the first real assets have
been recorded. An important aspect of the inventory is to provide recognition, celebrate
successes, and foster a sense of achievement.

Oracle Service Registry
As the SOA matures, and the size and complexity of the collection of SOA assets increases, an
organization may outgrow the informal inventory and move to a more formal and structured
service inventory. Various vendors, including Oracle, have products on offer, many of which
implement a UDDI-based registry.

Oracle Service Registry is a fully V3-compliant implementation of the UDDI (Universal
Description, Discovery, and Integration) specification. A UDDI registry in general provides a base
foundation for locating services, invoking services, and managing metadata about services
(security, transport, or quality of service). A UDDI registry can store and provide these metadata
using arbitrary categorizations—called “taxonomies”—that are used to describe the assets and to
support richer search facilities.

Services and their artifacts are recorded in the Oracle Service Registry (OSR) through the
Registry Managed console. Here are the essential asset types in OSR:

 Business entity ■ Organizational units such as groups, roles, projects, departments, or
individuals who are responsible for other assets.

 Business service ■ Functionality or resource provided by the business entity; a business
service can be a (SOAP/HTTP) Web Service, but just as well a service available through
different transports and protocols (for example, EJB, CORBA, or REST style).

 Binding template ■ Represents the technical details of how to invoke the service,
including the endpoint URI and a specification of the protocol.

 tModel ■ Referenced from binding templates to describe the interface (often a WSDL)
of the business service; also used to link additional categorization information to the
business service.

The OSR publishes the information recorded about these four core asset types. Using the
Business Service Control, developers, architects, and business users can browse the various
perspectives of the registry, including business-relevant classifications such as service and
interface lifecycle, compliance, and operational/readiness status. They can browse information
through business-relevant abstractions of SOA information such as schemas, interface local
names, and namespaces. Just as in the basic inventory discussed in the previous section, the core
attribute of the assets include their name, status, description, keywords, release date, version, and
availability, as well as an indication of their dependencies and current usages. OSR allows
subscriptions on assets that result in notifications sent to interested parties for meaningful changes
to these assets.

602 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 603

Note that the OSR can be for design-time use by developers and architects as well as for
run-time dynamic discovery by consumers of services. In the latter case, the consumer does not
refer directly to the endpoint of the service itself, but uses the registry like the telephone operator
of old to connect through to wherever the service currently may be hiding out.

NOTE
The OSR does not contain the artifacts themselves. It only has
references to them and metadata about them. The OSR helps you to
learn about the existence and characteristics of assets and shows you
the way to them.

Integration with the SOA Suite
The Oracle Service Registry is a reference point for services that have been deployed into the run-
time environment. It is primarily used for programmatic, dynamic discovery, and binding by
elements of the SOA infrastructure. The Oracle Service Registry typically contains a subset of the
metadata from the Oracle Enterprise Repository for runtime discovery. A major use case for
Oracle Service Registry is to provide a UDDI interface by which selected OER content may be
accessed or published. More on OER in the next section.

The Service Registry integrates with various components of SOA Suite, both design time and
run time. For example, connections can be created in JDeveloper to OSR servers, to look up
business services that are to be invoked from, for example, SOA Composite applications.

References to services exposed by the OSR can be set to “dynamically resolved [endpoint].”
This means that the actual endpoint of the service is looked up at run time in the Service Registry.
For this to work, you need to configure the UDDI Inquiry URL in the FMW Enterprise Manager
Console. The SOA Suite run-time engine will consult the OSR to get hold of the real endpoint of
the service that needs to be invoked. This means, for example, that if you move the business
service WSDL from one host to another, you only need ensure that you change the location in the
Registry Control, and no change is required in the WSDL location in Oracle JDeveloper or in the
configuration of the WebService binding in the Oracle Enterprise Manager Fusion Middleware
Control Console.

The services exposed by SOA Composite applications can be registered with and subsequently
published by the OSR. This applies to SOAP/HTTP service bindings but other transports as well.

You can use Oracle Service Bus to import services from Oracle Service Registry and then
publish Oracle Service Bus proxy services back to Oracle Service Registry. Oracle Service Bus
imports business services from Oracle Service Registry. Proxy services are configured to
communicate with the business services in the proxy service message flow. The proxy services
can then be published back to Oracle Service Registry and made available for use by other
domains.

Oracle Enterprise Repository
The OER provides organizations with a central repository of metadata about software assets,
facilities for importing and harvesting such metadata from design-time and run-time SOA
environments, functionality for providing access to the metadata, and BPM processes for
coordinating the lifecycle of the metadata (and the underlying assets). The OER has a number of
special integration points with the SOA Suite and JDeveloper that make it an attractive option for
supporting SOA governance in organizations that primarily use Oracle’s SOA technology.

Chapter 18: Tactical Management and Governance 603

Note that OER is an enterprise-level infrastructure for governance. It is relevant only in larger
organizations with fairly mature SOA environments where processes have evolved sufficiently
and departments have embraced service orientation. Implementing OER is not the first step
organizations should take when starting to adopt SOA.

You will find more details on the OER and some of its features and functions in the online
chapter complement.

It’s about Assets
Fundamentally the Enterprise Repository (OER) is a very generic data store that contains things
that have relations to other things. They don’t come more universally applicable than this. The
things stored in the OER are assets—such as WSDL, XSD, and XSLT artifacts—but also noncode
elements such as design documents, test scenarios, payment/cost models, and application screen
designs. The OER ships with a number of predefined assets and asset types, as well as definitions
of meaningful relationship types between these asset types.

Assets are registered in the OER by their creators, owners, architects, or sponsors. Upon
registration and throughout their lifecycle, metadata providing additional information about the
assets is recorded. Users may browse the repository in order to learn more about the assets they
intend to use in some way, or to first discover assets that they might want to reuse. Browsing can
be done through the OER web console and also directly from JDeveloper via a connection on the
Resource Palette.

Ideally, users also record feedback—reviews, cost-saving information—about the assets they
reuse, so as to inform other potential users about the value and trustworthiness of the assets.

The OER can be configured in such a way that new assets or changes to assets are not simply
recorded, but have to go through an evaluation and approval workflow. In such a workflow,
subsequent roles have to evaluate the asset or the proposed changes, leading to acceptance or
rejection.

Each asset has indicators that mark its status along various dimensions: unregistered or
registered; under review, approved, rejected; active, inactive, retired, deleted, and more. Both the
workflow steps and associated roles, as well the status values that can be assigned, are fully
configurable.

The Enterprise Repository can also be set up to perform automated quality reviews on the
assets that are submitted to it. These reviews can verify, for example, whether all required
(metadata) details have been provided for an asset and whether all dependent assets have been
submitted as well.

Search and Publish An important function of the OER is to facilitate the discoverability of the
assets it contains. To that end, it has extensive search capabilities that allow users to search for
assets based on many asset properties, including custom properties. Search forms are available
with fields per property as well as advanced search filters on extended metadata fields using
XPath expressions.

Workflow (BPM) Not just any asset submitted to the OER should be accepted and published
just like that. There may be rules and procedures to apply in order to establish the status of new
or even changed assets. Some form of workflow can be designed to implement these parts of
governance processes, specifying which roles need to act in order to get a new asset or changes
to an existing asset approved for an asset of a specific type and submitted by a user with a certain
role from a certain part of the organization.

604 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 605

Events and Notification Ideally you quickly learn about changes to assets that you have an
interest in—such as the approval of a new version or the deprecation of another version. The OER
fires events when assets reach the lifecycle stage. Users subscribed to an asset are automatically
notified by e-mail if a new version has been created or registered. Manual notification can also be
used to communicate any metadata changes to the asset.

Reporting and Quality Assurance Various reports on the assets and their usage can be
generated from the Oracle Enterprise Repository. Oracle Enterprise Repository offers more than
20 preconfigured reports—on projects and on assets—that provide insight into asset status and
usages, reported value and cost savings, project compliance, (quality) policy status, and asset
ratings and rejections.

Dependencies and Impact Analysis The visual navigator tool in the OER web console
provides very good insight into how assets hang together. It visualizes which assets have
dependencies on one another and what the nature of those dependencies is. The tool supports
traversal of dependency chains, in both directions, to do impact analysis (what may be impacted
upon a change in some asset) and lineage analysis (what an asset depends on, and what it derives
its meaning from).

How to Use the Enterprise Repository in Combination with SOA Suite
As stated before, the Oracle Enterprise Repository has a special, tight relationship with WebLogic
Server, the Oracle Service Bus, and the SOA Suite when it comes to harvesting assets. Furthermore,
the OER integrates with JDeveloper—bidirectionally, in fact, both for harvesting artifacts from SOA
projects in JDeveloper to the Enterprise Repository, and vice versa, by searching, browsing, reusing,
and inspecting assets in the repository from within JDeveloper.

The online chapter complement describes and shows the detailed steps for harvesting assets
from SOA composite applications into the OER as well as for browsing the repository from the
context of JDeveloper. Harvesting can be done—as shown in this complement—from JDeveloper,
directly against the file system and against managed WLS servers running SOA Suite and Oracle
Service Bus.

Integration Between the Enterprise Repository and JDeveloper
The Oracle Enterprise Repository is one of the servers that can be exposed in JDeveloper on
the Resource Palette. Just like with connections to databases, application servers, and UDDI
directories, we can also create a connection to the Enterprise Repository by providing the URL
(such as http://localhost:7111/oer) and the username and password (such as admin/admin). When
this connection is created, the contents of the repository can be browsed through and assets can
be inspected in JDeveloper, as shown in Figure 18-4. Note that assets cannot be edited, copied to
the project, or directly referenced.

An SOA composite application can be associated with a project in an Oracle Enterprise
Repository instance, from the Repository tab in the Application Properties editor in JDeveloper.
Projects in the application can be harvested (or published) to the repository. The artifacts in the
project are registered in the OER as assets with mutual relationships.

Harvesting from Run-time SOA Suite and Oracle Service Bus
As discussed previously, the Oracle Enterprise Repository ships with a tool called the Harvester.
The Harvester can read artifacts from various sources, including the file system, a running

Chapter 18: Tactical Management and Governance 605

WebLogic Server, a running SOA Suite, and an Oracle Service Bus environment. The Harvester
connects to the indicated environment, retrieves the artifacts, and offers these artifacts as assets to
the configured OER instance (see Figure 18-5).

Feeding Run-time Metrics to the OER
Part of the metadata gathered in the Enterprise Repository consists of run-time metrics about
performance (load and response times) and availability. Such metrics are collected by Oracle’s
Enterprise Manager Management Pack Plus for SOA, part of the Enterprise Manager Grid Control,
which also provides dynamic discovery and service-level monitoring of all artifacts deployed
within a Java application server.

FIGURE 18-4. Browsing the Enterprise Repository in JDeveloper through the connection on the
Resource Palette

606 Oracle SOA Suite 11g Handbook Chapter 18: Tactical Management and Governance 607

The Enterprise Manager Grid Control and several (until recently) third-party tools, such as
AmberPoint, collect statistics that include latency, invocation counts, and exceptions for each of
the service components. These are aggregated and stored over various aggregation periods to
provide a rich dashboard of metrics presented across a user-selected set of time periods. The EM
Integration utility closes the loop between EM and Oracle Enterprise Repository by migrating
metrics from EM into Oracle Enterprise Repository. The EM Integration utility pulls the statistics
into the Oracle Enterprise Repository from EM feeds, in some cases via the Service Registry. They
help complete the picture about the service assets exposed in the repository.

Note that the OER can publish Web Service assets directly to the Oracle Service Registry or
other UDDI directories through the Exchange Utility.

Summary
SOA governance is a term that covers a wide range of activities, agreements, and processes aimed
at making SOA a success in an organization by ensuring that the key SOA objectives are realized:
agility through decoupling and reuse. At a higher level of abstraction and detachment than design
and implementation of concrete SOA components, SOA governance tries to instill a fairly new
way of thinking among the many stakeholders involved with the SOA initiatives. It also puts
supporting procedures in place, identifies proven best practices, and possibly provides tools to
support communication, coordinated execution of agreed-upon workflows, and automated
quality assurance. SOA governance first and foremost strives to provide everyone involved with
inspiration, timely information, and required facilities to think and act “service oriented.” SOA
governance is part of and/or related to other types of governance such as corporate governance,
Enterprise Architecture governance, and general IT governance.

FIGURE 18-5. The resulting assets in OER after harvesting the running PatientDataService
composite

Chapter 18: Tactical Management and Governance 607

One of the very tangible aspects of SOA governance is the publication of metadata about
potentially reusable SOA assets—such as services, schema definitions, and business events. This
metadata should make it possible to discover assets; understand their meaning, history, and
planned future; assess their applicability and trustworthiness; and get hold of the physical location
or the contents of the assets themselves. From the perspective of the owners of assets, the
governance infrastructure supports the asset lifecycle management and provides insight in the
dependencies and extent of reuse of the assets. As such, it should enable the organization to
measure and demonstrate the results and the success of the implementation of SOA concepts.

Metadata Services (or MDS) are a built-in facility in the SOA Suite that offers capabilities to
share artifacts across composite applications and across design-time and run-time environments.
MDS is an important weapon against unwanted duplication of documents such as XSD, WSDL,
EDL, and XSLT. This chapter demonstrated how artifacts can be deployed to the MDS repository
and reused from it.

Early on in their adoption of SOA, organizations should implement a service inventory. Its
purpose is to record and communicate information about all services and other relevant SOA-related
artifacts (including canonical data models and policies) that are available to all stakeholders. This
SOA governance infrastructure can be as simple and informal as a wiki or a bunch of spreadsheets to
communicate the services and other reusable artifacts, or as advanced as tools such as the Oracle
Service Registry or even the Oracle Enterprise Repository.

Both OSR and OER provide a number of integration points with SOA Suite, JDeveloper, and
each other, and have enterprise-level support for a wide range of governance procedures. The
OER can also be customized in many aspects, including the definition of custom asset types and
their attributes as well as tailor-made governance workflows.

This page intentionally left blank

Part
IV

Beyond the Basics

This page intentionally left blank

ChaPter
19

From Live Data to Real-time
Insight and Action Using

Complex Event Processing and
Business Activity Monitoring

611

612 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 613

hat good is data if you cannot extract information from it? And only when you can
turn the information into meaningful conclusions and relevant actions will it be
truly useful and understood. Our objective with IT in general is to better run our
business—more cost effective, with higher quality, and faster throughput. SOA
aims to help with that and explicitly add the ability to quickly adapt to changing

requirements, which we have dubbed business agility. Data about the business processes and the
components that constitute and execute these processes is needed, not only to measure whether
we meet our objectives, but also to improve, adjust, and even intervene.

This chapter is about understanding the ongoing events in our organizations in general, and
more specifically our IT systems and the SOA applications in particular. And doing something
with that understanding—be it redesigning a process at a tactical level, changing systems
parameters or business logic on a more day-to-day pace, making snap decisions, or taking
immediate action under exceptional circumstances.

We will be using two very specific components in the SOA Suite that help us to deal with
events. One is the Complex Event Processor (CEP), which can sift through large volumes of
continuously streaming data, producing aggregates, trends, exceptions, and patterns. The other is
the Business Activity Monitoring (BAM), a component for creating real-time dashboards. BAM
can turn information received from CEP, SOA composite applications, or external sources into
meaningful visual displays that human operators can base operational decisions and actions on.

As with most chapters in this book, you will find detailed hands-on instructions and many
dozens of screenshots in the online chapter complement.

Sorting Out the Real-time Data Avalanche
The term ongoing events can refer to many different things—from fairly high-level business events
such as signing a long-term agreement with some vendor or the arrival of a large order from a
wholesaler, to tiny crumbs of information such as the current temperature in a fridge, a click on a
navigation link in the patient self-service web application, the heartbeat of some device, or the
fact that some security badge was scanned to gain entry into a storage room. The higher-level
events typically have a much lower frequency—counted in occurrences per hour or day—than
the lowest-level data grains, arriving in up to thousands per second. The information contents of
these two ends of the events spectrum tend to range from rich for the high-level, low-frequency
events, to quite sparse for highly frequent packets.

An important aspect of the processing of these events is that much of it must be done in real
time. Ongoing business leads to continuous streams of events that may require instantaneous
actions. We cannot afford to just dump all the data into data warehouses that we will analyze
later on, even though for some of the data that is, of course, exactly what we will do. The urgency
of some of the reactions the events may prompt us to come up with is one reason. The sheer
volume of the data is another: Thousands of low-level events occurring every second represent
tons of data that a data warehouse cannot comfortably handle—and should not handle, as the
vast majority of those events represent entirely useless information, especially when considered
by themselves.

Therefore, we need a way to process the zillions of events that the business operation keeps
on producing. A processor that turns these events into information—usually by producing a
higher-level type of event that has some special business meaning, carries a larger information
payload and is produced at much lower frequencies. This is illustrated in Figure 19-1.

W

Chapter 19: Real Time Insight Using CEP and BAM 613

Typically the events produced by the processor are propagated in a more generic, canonical way,
both in terms of protocol and channel as well as information structure.

After the first stage of event processing, downstream consumers absorb the higher-level
events. These consumers can do several things, including sending out alerts or notifications,
updating a real-time report or dashboard, taking actions such as invoking a Web Service or
starting a human task, or loading data into a data warehouse. These downstream consumers can
also further process the events—into even higher-level, more meaningful events. These events are
then propagated through a next iteration of event processing.

Complex Event Processing
Finding the needles in the haystacks of large volumes of continuously arriving, largely
individually meaningless events is the purpose of Complex Event Processing (CEP), also known as
Intelligent Event Processing (IEP). CEP is a field that came to existence in the early 1990s, first in
academic circles, such as Stanford University and the California Institute of Technology, and later
in the IT industry. Over a dozen vendors are active in this space, including Progress Software,
Aleri, IBM, Tibco, Oracle (also through BEA and Sun), JBoss, and EsperTech. These vendors offer
various software products that provide “operational intelligence” through real-time computing
that involves pattern matching with their respective intelligent or complex processors of event
streams.

Event processors consume events from heterogeneous sources—such as JMS queues, JMX
MBeans, incoming HTTP requests and native API calls, Message Driven Beans, and databases.
The outcome of processing consists primarily of another generation of events that are sent through
usually more homogenous channels in canonical data formats. Note that the event processors are
decoupled from both the producers of the events they process and the consumers of the events
they produce.

The processors perform the following operations on incoming events resulting in the events
they publish:

 Filter ■ Finding the needles in the haystack, those rare events that indicate exceptions

 Enrich ■ Adding context and thereby (business) meaning to events

FIGURE 19-1. Event processing—increasing information content and decreasing frequency

Complex event
processor

Event
consumer

Alert
JMSJMS

HTTP
JMX
File
DB

Dashboard
SOA composite
- Human task
- EDN
- File
DB
Data warehouse
Web service

Events

614 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 615

 Aggregate ■ Counting events or determining a sum, an upper or lower limit, or an
average over a metric that the events carry in their payload

NOTE
An aggregate is frequently calculated over a window that consists of
all events in the specific timeframe or a specified number of the latest
events.

 Pattern detection ■ Spotting a trend by comparing correlated events over a period of
time, finding a special sequence of values or value changes that is known to herald a
certain incident, and discovering the absence of an event that should have occurred are
all examples of the detection of meaningful patterns among a string of correlated events.

 Promote or propagate ■ The result of the preceding operations can be to propagate the
event, either as is or in an enriched or promoted state, or to publish entirely new events
that carry an aggregated value, some indicator, or an alert.

To be clear: The word complex in Complex Event Processing does not refer to the events—
they are usually extremely simple—but rather to the processing that takes place. Especially the
detection of patterns can be very advanced, considering the complexity of the patterns and the
addition of the challenges of continuously processing very large volumes of events in real time.

The Event Processing Language
Complex event processors need to be programmed. They are like query engines that need to
query events—not static sets of records, but incessantly changing collections of data granules.
Event queries are not executed just once. They are instead attached to an event stream and
continuously executed. Every new arriving event may cause the event query to produce a new
result. Results are constantly being published in the form of events.

Over time, special languages have evolved for programming the event processors, under the
generic label of Event Processing Language (EPL). However, no single standard unified EPL has
emerged in the industry. Several quite dissimilar EPLs are used for various CEP products. Some
EPLs are derived from or inspired by Business Rule Languages—such as Tibco BEPL and JBoss
DRL. Other EPLs are inspired by, derived from, or even integrated with SQL—such as CCL,
StreamSQL, EQL, and CQL. It turns out to be quite handy to be able to combine event streams
and relational data sources in a single query (for example, to join historical and reference data
with the live event feed). The SQL-based EPLs typically facilitate this union to some extent.

As of late, it seems like out of this union of SQL and EPL, a standard EPL is evolving: CQL, the
Continuous Query Language, which has its root at Stanford University. At least Oracle is putting
its weight behind this event query language, using it for its CEP product. As it happens, the
Intelligent Event Processor that Sun provided in Glassfish OpenESB also makes use of CQL. It
seems likely that Oracle will also implement (parts of) CQL in the query engine in its RDBMS at
some point in the not-too-distant future.

CQL queries select from an event channel, often with some range or time window applied,
using a where clause to filter on the events that are returned by the query. The select clause refers
to event properties and uses functions and operators to derive results.

Chapter 19: Real Time Insight Using CEP and BAM 615

Here is a simple example of a CQL query that produces an output event whenever the
number of input events with a payload value larger than 15 changes, looking at a five-second
window:

select count(payloadValue) as countEvents
from someEventStream [range 5]
where payloadValue > 15

We will be using CQL later on in this chapter when we use the Oracle Complex Event
Processor to monitor the temperature sensors around St. Matthews.

Downstream Event Consumers
The Complex Event Processor brings us only part of the way from data to insight and action. It only
speaks in events on channels such as JMS—not directly with people or even Web Services—and it
has no user interface of its own. The events published by the CEP—no matter how advanced and
enriched they may have become—need to be consumed and turned into something else: a report
or dashboard, an alert or an action.

Complex Event Processors typically publish their findings in the form of fairly generic messages
on a JMS queue or HTTP channel, or requests to a Web Service interface or to some other standard
facility. Many different products can therefore be used downstream of the CEP to absorb the events
and do something with them: load in a data warehouse, use to refresh a real-time dashboard,
update a database record, notify a Web Service, send an e-mail or text message, create a human
task, or publish on a website or RSS feed.

Business Activity Monitoring
A special category of event consumer is the Business Activity Monitoring (BAM). Wikipedia gives
the following definition for BAM:

“The goals of business activity monitoring are to provide real time information about the
status and results of various operations, processes, and transactions. The main benefits of
BAM are to enable an enterprise to make better informed business decisions, quickly
address problem areas, and re-position organizations to take full advantage of emerging
opportunities.”

Note the use of real time in this definition—which is a key reason for the link between BAM
and CEP.

BAM products usually publish a real-time dashboard that provides visual (graphical) insight
into the key performance indicators of a business and its processes. This dashboard is continually
refreshed as new data arrives and gets pushed to the dashboard. Besides looking pretty, the
Business Activity Monitoring also applies rules to detect (pending) exceptions, threshold
surpassing, deviations, trends, and other situations that require attention. Attention can be drawn
through visual means on the dashboard and by sending alerts to human operators and/or
automatic agents.

BAM may seem very similar to Business Intelligence (BI) as you know it, and of course there
is a lot of similarity if not overlap. The key differentiator is the real-time aspect of BAM, along
with the active alerting responsibility it has. The scope in time of BAM dashboards is usually fairly
short—up to hours or days—and would hardly ever cross the quarter or year boundary, whereas
traditional BI tends to take a look at data from a more historic, longer-term perspective in a more
passive way.

616 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 617

Event Processing and Monitoring in the SOA Suite
Processing event streams is handled in the SOA Suite through the CEP 11g product—the
successor to BEA’s WebLogic Event Server. CEP runs CQL and still supports its own EPL (primarily
for reasons of backward compatibility).

Note that the Complex Event Processor is not directly integrated into the SCA container—it is
not a service engine like BPEL and Mediator. It even runs outside the WebLogic Server—it has its
own stand-alone lightweight Java Application Server. See Figure 19-2 for an overview of the
architecture of CEP and its relation with SOA Suite and other components. CEP consumes events
from sources such as JMS, incoming HTTP requests, and other sources, including files, MBeans
(JMX), and sockets through custom adapters. These events are then transported through channels
to processors that execute CQL and/or custom Java. The results from the processors are carried
across outgoing channels to destinations such as other processors, JMS queues, and registered
HTTP consumers.

The higher-level events produced by CEP are typically published on JMS queues or topics.
Selected events can be consumed into the SOA Suite via JMS Adapter Services, which could
create business events on Event Delivery Network (as discussed in Chapter 9) or directly forward
the events via a Mediator to other service components. Either directly or via the EDN, these

FIGURE 19-2. Complex Event Processing working with SOA composites and Business Activity
Monitoring

HTTP
consumers

JMS

E
D
N

CEP

BAM

ADC

ODI

@

JMS
HTTP
JMX
File
DB

Alerts
(rules)

Web Service client

SOA Suite

Reports

Chapter 19: Real Time Insight Using CEP and BAM 617

events that originated with the CEP will trigger a BPEL process and notifications, a human task, or
some adapter services, including possibly the BAM adapter that sends information to the Oracle
Business Activity Monitoring. Note that composite applications can also produce messages on
JMS queues that are consumed by CEP.

Part of the SOA Suite is Oracle BAM—a product that typically runs in the same WebLogic
domain as the SOA Suite, but using its own server. It is not part of the SCA container. However,
through the BAM adapter and the BPEL sensor framework, events can be channeled from
composite applications to the Business Activity Monitoring in a fairly direct way.

BAM maintains an in-memory data cache with potentially a large number of active data
objects. These objects can be refreshed via messages arriving from the SOA Suite BAM adapter,
over JMS, in Web Service requests, from Oracle Data Integrator (ODI), or via the BAM ICommand
interface. Web-based real-time dashboards can be created on top of this data cache—with lists,
charts, dials, and gauges and cross-tab displays that are automatically refreshed in the browser
when the server-side data cache is refreshed by newly arriving events.

BAM is more than a visual dashboard: It can also execute rules against the data objects—
testing values or aggregations against thresholds or other conditions. The rules allow BAM to do
event processing somewhat similar to CEP, though in a simpler way and with much smaller
volumes of events. When the rules are triggered, various types of actions can be executed by the
BAM engine. Among these actions are onscreen indicators, e-mail alerts, and calls to Web
Services (which in turn could publish events on JMS or invoke SOA composite applications that
create human tasks, update a database, generate a file, or execute business processes with BPM
or BPEL).

In the next chapter we will see how ADF provides us with a BAM data control that acts
against the Active Data Cache and allows us to create custom user interfaces with ADF that are
refreshed live, thanks to server push from the BAM engine.

Analyzing Continuous Data Streams Through
Complex Event Processing
The first line of defense in situations with lots of real-time information is likely to be some form of
Complex Event Processing. This will act to filter, aggregate, and enrich the fine-grained, largely
meaningless events that come streaming in to the level of businesswise, meaningful packets of
information that are fed to downstream consumers—such as the EDN of the SOA Suite or the
Business Activity Monitoring.

St. Matthews has a number of areas where voluminous event streams provide the hospital
potentially with a lot of useful information. However, the challenge is to sift the information from
the real-time data overload and turn it into insight and action. We will discuss a number of
business situations at St. Matthews where Complex Event Processing would be useful to do
exactly that.

Data-rich Business Areas, Ready for the Harvest
Areas in the hospital where events are more or less constantly generated range from signals from
physical devices and biometric sensors to security and detection appliances, as well as from
clicks and fine-grained traces from within websites and computer systems to business process
metrics. These pose a wide variety to us: various business areas, very different types of events,
with a wide range of frequency. Note that CEP excels at sifting through large volumes of real-time

618 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 619

events and also at detecting complex patterns within events collection, be they small or very
large. The conclusions CEP arrives at need to be communicated to relevant recipients. This will
often happen through reporting tools and a real-time dashboard (for example, Oracle BAM). And
that is what we will discuss later in the chapter.

Emergency Room
Events in the emergency room should be closely monitored and acted upon: the entrance of new
patients, the first triage and priority assignment, the actual consult for the real diagnosis and
subsequently treatment, which could even mean an operation, and finally checking in to the
hospital or the dismissal to go home again. Patients go through various stages. By monitoring
each new stage for each patient as events, the hospital can assess the overall waiting time against
preset performance indicators as well as predict whether more staff is needed to handle the influx
of patients. Patients that for some reason do not get to the next stage—for example, they may
have lost their consciousness—can be identified.

Biometrics
Thousands of devices at St. Matthews are making biometric measurements, more or less
constantly—checking on heart rhythm and pulse, on temperature and blood composition, on
breathing, and on many other bodily functions. These measurements need to be monitored
constantly, in real time, though typically we only care about exceptions and deviations. The heart
rhythm is distorted for longer than a few seconds. The temperature drops beyond the safe range,
or the sugar content in the blood reaches a level that warrants closer scrutiny. CEP can collect
thousands of readings per second, aggregating them where necessary and forwarding only the
situations that require attention. In addition, CEP can monitor the devices themselves: If a device
is not delivering the events it should produce, CEP can detect the malfunction and report an alert.

Security
The hospital has several security zones. Public facilities are areas where patients are allowed—
and relatives during visiting hours only. There are areas accessible to staff, with various degrees of
security clearance. Some areas—where dangerous drugs are stored or where the data center is
located—are off limits to everyone except a select number of employees. Surveillance cameras
are used to monitor movements in the most sensitive areas. Additionally, staff as well as patients
have badges with RFID tags that are scanned in hundreds of places in the hospital buildings.
These badges are also used to gain entrance to secure zones. Tens of thousands of scan events are
generated every hour, potentially providing insight into failed entry attempts, popular routes, the
number of people (and even their identities) in every area at any one moment, and the fact that a
person went into a zone but did not emerge within a certain period of time. This information is
very useful in the event of fires or other emergency situations where parts of the hospital need to
be evacuated. On a less dramatic level, the information can be used to guide patients to their
destinations in the hospital (for example, with a wireless handheld device that is fed with
directions based on the information produced by CEP about the position and movement of the
patient).

Customer Service Levels
Customer service is a top priority at St. Matthews. Patients complained a lot in the past about not
getting through on the phone or being left on hold for ages by rude operators. CEP can analyze
the events that each phone call generates—the connection with the St. Matthews telephone

Chapter 19: Real Time Insight Using CEP and BAM 619

system, the start of the actual conversation, and the end of the conversation as well as all through
connections and their respective waiting times, and also the calls that ended with the caller
hanging up while waiting. It will know the date and time of the day for each call, the different
departments and operators that handled the call, and the identity of the patient who made the
call. CEP will help identify increasing wait times as they start to occur—allowing for immediate
and targeted reactions. It provides insight into the bottleneck departments across the hospital
when it comes to dealing with phone calls. It tells us when and where in their interaction people
hang up on St. Matthews. CEP and consumers of its findings, such as BAM, can prove
tremendously valuable in increasing customer service levels and customer satisfaction.

Performance of Computer Applications
Events are produced in the zillions by our computer systems. Some represent a very technical
level of detail—for example, hardware statistics or database trace information. Some are more
functionally meaningful, including the search, click, and navigation behavior of users on the
website. Yet others are a direct representation of the progress of business processes—for example,
signals from SOA composite sensors, human task callbacks, and other trace signals. CEP can help
analyze those signals—in real time, acting before real problems start to emerge and unfold.

The Product Architecture of Complex Event Processor
Oracle CEP consists of a number of components: the Server and Visualizer for the run time, and
the Oracle CEP IDE inside Eclipse for the design time. This section gives a very brief introduction
to the product architecture, illustrated in Figure 19-3. More details on installation and getting
started are in Appendix C and on the wiki.

Run-time CEP Components
The Oracle Complex Event Processor is part of the SOA Suite license. However, it is not part of
the SOA Suite SCA container—it does not even run in the same WebLogic Server as the SOA
Suite does. It runs on its own streamlined, lightweight server—which is POJO based, founded on
Spring DM and an OSGi-based framework to manage services. This server comes with Jetty, an
HTTP container for running servlets, and support for JMS and JDBC. It has caching and clustering

FIGURE 19-3. Architecture of CEP

Other
WebApp

CEP Visualizer
(web console)

CEP server

Run time

Design time

Eclipse

CEP
plug-in

Web
(Bayeux)

server

JMS

http

DB

620 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 621

facilities—possibly backed by an Oracle Coherence grid. To provide real-time processing of
substantial event loads, it works with special JVMs: JRockit or WebLogic Real Time. CEP can
handle thousands of concurrent queries and process hundreds of thousands of events per second.
The average message latency can be under 1 ms.

Messages are typically read from JMS—for example, a queue in the SOA Suite WebLogic
server. However, tables can be used as an event source as well, and through custom adapters, we
can consume messages from virtually any source, including files, sockets, and JMX.

The CEP server provides an HTTP Pub/Sub event channel based on the Bayeux protocol; this
allows the CEP application to consume messages pushed from a Bayeux-compliant server as well
as allows clients to subscribe to messages published by the CEP server. Clients can also publish to
an HTTP channel without having to be explicitly connected to the HTTP Pub/Sub server.

Event messages are typically processed by CQL processors—nodes in the event processing
network (EPN) that receive messages from stream sources and act on them to produce new event
messages. The outcome of a CQL query is typically a stream of events. For backward
compatibility, CEP also still supports its own EPL.

Oracle CEP provides additional facilities, such as the ability to record events flowing through
an event processing network and store them. They can later be played back from the event
repository.

The Oracle CEP Visualizer is a Web 2.0 application that is the administration console. CEP
applications can be deployed, paused and resumed, and uninstalled from the Visualizer. Current
operations can be monitored, including all console output. It also has support for visual and
run-time CQL Query editing. Events published on an HTTP Pub/Sub channel can be monitored in
the Visualizer, asynchronously pushed by the server to the browser.

CEP at Design Time
The design time for the Complex Event Processor is not—at present—JDeveloper, as you might
expect, given that JDeveloper is the strategic integrated development environment of Oracle. CEP
may move into JDeveloper at some time, but for the moment the design time is Eclipse with the
Oracle CEP plug-in. The installation process consists of downloading and installing Eclipse and
then adding the Oracle CEP plug-in through the standard Eclipse plug-in mechanism.

The CEP Eclipse environment has pretty good capabilities for productive development of CEP
applications—such as visual editing of the event processing network (EPN), validations on all CEP
configuration files (XML based), including the CQL queries, and good integration with the CEP
server. It is easy to add your own Java logic into the CEP application for producing or consuming
event messages, or performing data manipulations.

Monitoring Temperature Sensors
St. Matthews is going to put CEP to good use. The hospital has many hundreds of temperature
sensors, in dozens of areas (floors, wards, buildings), measuring the temperature in maternity
wards, normal patients’ rooms, refrigerating storage units, and other places. These sensors report
the temperature once every few seconds. Sensors are configured in clusters of three, and the
temperature is to be calculated per unit by taking the average of these three sensors. This cluster
arrangement ensures that up to two sensors can break down without the knowledge of the
temperature at that location being lost.

Chapter 19: Real Time Insight Using CEP and BAM 621

All these sensors produce up to 100,000 signals per hour. And CEP comes to the rescue—
because most of these can be discarded right away. In other words, if we learn about the
temperature in a room or fridge once every minute, that would be quite enough.

Here is some of the information we hope to learn from all the temperature signals—and the
actions we may need to trigger as a result:

 Find failing heaters and open windows (detected from sudden temperature drops, steady ■
declines, deviation of more than 4 degrees Fahrenheit from 66 degrees Fahrenheit).

 Discover potential fires. ■

 Find failing refrigerating equipment (steady increase in temperature above the preset ■
temperature).

 Report on average temperature in special areas such as maternity wards and intensive ■
care units.

 Find faulty sensors (no signal for longer than 30 seconds). ■

Let’s see how we can set up CEP to get some of these answers.

Getting Started with CEP
Install the CEP Server and Eclipse with CEP development environment, as per the instructions on
the wiki and in the online chapter complement. Also follow the instructions for setting up some
JMS queues—called temperatureReadingsQueue, temperatureFindingsQueue, and
failedTemperatureSensorsQueue—for the examples in this chapter.

Preparing Temperature Sensors Simulator
In your development environment, you may not have hundreds of temperature sensors that send
temperature readings to JMS queues every other second—and neither have I. In preparation for
the next steps, where we want CEP to find the average temperature per room or clinic and detect
faulty sensors and spot fires, we need to set up a simulation of those sensors. One way of doing
this would be to create a simple Java application that puts messages onto a JMS queue. However,
we can also use CEP itself to do this. A simple CEP application will be able to do the following:

 Use a custom adapter to create temperatureReadingEvents—simple POJOs that carry the ■
temperature value and the sensor’s identification.

 Channel these events to a JMS queue that makes these events available to various ■
consumers, including a second CEP application (one that could also be used to process
the real temperature sensor readings).

Such an application that simulates or provides a mock implementation of the real event
producers is frequently useful to develop and test a CEP application, because we may not have
access to real events during development and we definitely have a need to explicitly hide needles
in haystacks in order to thoroughly test our CEP application’s capability to find those needles.

The first step in this process is to create a new Oracle CEP project in Eclipse, based on the
HelloWorld template; this template adds some initial objects to the application that serve as a
good example of what we need to develop ourselves, including a simple EPN, and an example of
a custom adapter (class HelloWorldAdapter).

622 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 623

Rename the META-INF/spring/helloworld-context.xml file to temperatureSensorSimulator-
context.xml. This file contains the EPN, the heart of the application (or rather the brains).

Create a new class called TemperatureSensorSimulator. It implements the CEP interface
StreamSource with a single method (setEventSender) that allows the CEP framework to inject the
StreamSender object through which our adapter can start emitting events. The class also
implements the interface RunnableBean (with the methods run and suspend)—it will run in a
thread and suspend itself to be reactivated some time later and fire another burst of events when
the run() method is invoked. The class initializes a list of TemperatureSensor objects that each
emulates a temperature sensor, with its identifier, a cluster reference, a base temperature, and a
range of variation over which the sensor’s reported value will randomly swerve.

In every burst of activity, all sensors are iterated, and for each one an event (pojo
TemperatureReadingEvent) is filed with the injected EventSender. Every 50 bursts, one sensor is
randomly selected and “disabled,” not to emit temperature readings anymore. This is the needle
we will later need to have our CEP application detect. See the chapter complement for the Java
source code involved.

Open the temperatureSensorSimulator-context.xml file (in the folder META-INF/spring) in the
EPN editor. It will visually show the event processing network—currently the HelloWorld
network that we will delete later on, but now serves as a good example.

We can create new components in the EPN from the context menu. Right-click anywhere on
the pane and select Adapter from the list of supported components. Call the adapter
temperatureSensorsSimulator. Add a channel called temperatureReadingsChannel and another
adapter, called temperatureReadingsQueueJmsOutbound. Wire the channel to this outbound
adapter and likewise the temperatureSensorsSimulator adapter to the inbound side of the channel.
The result is shown in Figure 19-4.

Open this file in edit source mode—for example, by double-clicking any of the components
in the EPN. Add an event type, TemperatureReadingEvent, to the element event type repository,
based on a class with the same name. Set the event-type attribute of the channel you created to
this event type. Set the provider attribute for the outbound JMS adapter to jms-outbound. You
may now remove all elements that refer to Hello World in any way. Configure the JMS provider
in the file META-INF/wlevs/config.xml.

Open the Servers view—using menu path Window | Show View | Others | Server/Servers.
The view that opens contains the CEP server we configured in the previous section. From the
context menu on this server, select the option Add And Remove. In the window that pops up,
select the TemperatureSensorsSimulator application to add to the server and then click Finish.
The server is started, if it is not already running, and the application is deployed and starts
running right away.

FIGURE 19-4. The event processing network for simulating temperature sensors, as seen in the
EPN editor

Chapter 19: Real Time Insight Using CEP and BAM 623

We can check for messages being published to the JMS queue in the WebLogic Administration
console.

NOTE
Because we are using a JMS queue in WebLogic soa_server1, we have
to ensure that this server is up and running before trying to execute
the CEP application.

Creating the CEP Application TemperatureReadingsProcessor
After our first introduction to CEP applications and an EPN, we are ready to create an application
with some real CEP logic in it. The TemperatureReadingsProcessor will take the incoming
temperature sensor readings from the JMS queue jms/temperatureReadingsQueue and analyze
them in two ways:

 The complex event processor is enlisted to consolidate the very large number of ■
temperature readings, in two ways: The application publishes the average temperature
per cluster of three sensors, every 30 seconds, using the readings from the last 60
seconds. The derived aggregate temperature findings are published on a second JMS
queue, called TemperatureFindingsQueue. This queue feeds into the Business Activity
Monitoring, with more meaningful information at a sensible pace.

 The CEP will also be tasked with finding faulty temperature sensors. A sensor is considered ■
faulty if it has not produced a signal for longer than 30 seconds. Failed detectors are
reported on another JMS queue, this one called failedTemperatureSensorsQueue.

The logic of this application is defined through two processor elements that each run a CQL
query that continuously scans incoming events and produces finding events. Here are the steps
for creating this application:

 1. Create a new CEP project in Eclipse called TemperatureReadingsProcessor.

 2. Configure the JMS adapters in the META-INF/wlevs/config.xml file, in the same way we
saw before, using the queue names mentioned previously and using the event types
TemperatureReading, TemperatureFinding, and FailedSensorDetection. These event
types are defined in the event repository in temperatureReadingsProcessor-context.xml,
referring to POJOs with simple properties.

 3. Open the context file in the EPN editor. Add an adapter, called consumeTemperature
Readings, that consumes events from the inbound JMS queue with temperature readings.
Add two processors, called temperatureAggregator and failedSensorDetector. Add two
other adapters—temperatureAggregatePublisher and failedSensorDectectionPublisher—
both outbound JMS Queue publishers. Create the temperatureReadingsChannel (with
event type set to TemperatureReading) that is the conduit between the incoming adapter
and the two processors. Also create the channels temperatureAggregatesChannel
(connecting temperatureAggregator to temperatureAggregatePublisher carrying
event type TemperatureFinding) and failedSensorDetectionsChannel (which links
failedSensorDetector to failedSensorDetectionPublisher with the event message of
type FailedSensorDetection). The final situation is shown in Figure 19-5.

624 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 625

Configuring the Temperature Aggregator Processor with a CQL Query
Double-click the processor temperatureAggregator to edit the CQL query it needs to execute. Edit
the XML file that opens and specify the query as follows:

<query id="aggregateTemperatureReadings">
 <![CDATA[
 select avg(temperatureReadingsChannel.temperature) as temperature
 , temperatureReadingsChannel.clusterId as clusterId
 from temperatureReadingsChannel [range 60 slide 30]
 group by temperatureReadingsChannel.clusterId
]]>
 </query>

This relatively simple CQL statement processes events (of type TemperatureReading) that
appear on the temperatureReadingsChannel. Range 60 instructs the CQL engine to take the
events in this channel for the last 60 seconds, and slide 30 is an instruction to produce a result
every 30 seconds. The average temperature is calculated over all temperature reading events in
the 60-second window and all sensors grouped per cluster. The events that are produced by this
query have two properties set: temperature and clustered.

Keep in mind that this query may look a lot like the regular SQL used in queries against
relational data sources. However, there are some really important distinctions. The CQL query
operates on a stream of events, a dynamic data source that can change all the time. Also, the
work of the query is never done—as events continue to arrive on the stream, the query
continuously executes and potentially publishes events.

Detecting Non-Events to Identify Faulty Sensors with a CQL Query
The other processor we have to program with a CQL query is the failedSensorDetector. It has a
tougher job to perform than the first processor we created. Spotting a faulty detector is done by
finding a lack of events—one of many event patterns that CQL can unravel.

The MATCH_RECOGNIZE section of the next query is where the pattern must be matched.
This section is partitioned by sensorId because we want to find events—or spot missing events—
per sensor. The values returned by this section are sensorId and clustered, the two measures that

FIGURE 19-5. The event processing network for TemperatureReadingsProcessor

Chapter 19: Real Time Insight Using CEP and BAM 625

are defined. The pattern clause indicates what combination of occurrences we are looking
for—using a simple regular expression—like syntax. Here we have indicated that we are looking
for an occurrence of A followed by one more occurrences of B. A is an anchor event for this
pattern: Every temperature reading fits the bill for A. B occurs when there is an event that has a
different sensorId value than the A event. However, because we have partitioned the events by
sensorId, this really should not happen…wouldn’t you say so?

If a sensor fails, the last A event is not followed by an event with the same sensorId; instead, it
will be followed by a heartbeat event—a null event. The combination of “include timer events”
and “duration multiples of 30” is responsible for producing the null event when the duration
expires—that is, after 30 seconds. The null event does not have the same sensorId as the A event
it follows, which means that the (A B*) pattern is detected. An output event is produced with the
measures set as specified:

<query id="failedSensorDetection">
 <![CDATA[
 select sensorReadings.sensorId as sensorId
 , sensorReadings.clusterId as clusterId
 from temperatureReadingsChannel
 MATCH_RECOGNIZE(
 partition by sensorId
 MEASURES A.sensorId as sensorId
 , A.clusterId as clusterId
 all matches
 include timer events
 PATTERN(A B*)
 duration multiples of 30
 DEFINE A as A.temperature > -100, B as B.sensorId != A.sensorId)
 as sensorReadings
]]>
</query>

The temperature readings taken from the inbound queue are forwarded through the channel
to the CQL-based processor. This processor detects the absence for 30 seconds of a signal from a
sensor that previously sent in messages—or at least one. This absence detection is reported
through a FailedSensorDetection event that is sent through the channel to the outbound JMS
adapter failedSensorDetectionPublisher to be put on the outgoing JMS queue. In the next section,
we will see how this event is consumed into the SOA Suite’s Event Delivery Network to produce
a human task.

Test Run: Pinpointing a Malfunctioning Sensor
We have created two CEP applications—one to simulate a bunch of hyperactive temperature
sensors and produce a load of events on a JMS queue, and the second one to process and analyze
those temperature readings. This yields consolidated average temperature values once every
30 seconds and the detection of faulty sensors. Both results are published to JMS queues.

We can deploy these applications to the CEP server and have them run. There would be no
spectacular displays—in fact, no visual output at all, except the arrival of messages on the JMS
queues that we can monitor in the WebLogic Administration console.

626 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 627

A third and very small CEP application can also be used to tap into the JMS queue for failed
detector events—at jms/failedTemperatureSensorsQueue. This application feeds events through a
channel into an EventBean component based on the custom class FailedSensorTrapper that
implements the EventSink interface. This class writes a message to the console for every failed
sensor event it receives. This gives us an easy way, with almost no programming, to monitor the
CEP applications.

All three CEP applications can now be added to the CEP server. This will deploy and start
them. And this time we will be using the browser-based CEP Visualizer tool, an Administration
console with run-time application-editing capabilities (for example, to edit CQL queries). The CEP
Visualizer can be accessed at http://localhost:9002/wlevs. You can connect with wlevs/wlevs. We
can find the console output in the Visualizer tool under Non Clustered Server/Services.

When the simulator decides to take a sensor offline, it writes a message to the console.
Approximately 30 seconds later, the CEP processor failedSensorDetector has detected the lack of
events from this sensor and produced a FailedSensorDetection event on the failedTemperatureSensors
Queue queue. The TrackFailedSensors application consumes messages from that particular queue
and logs them. The console output in the CEP Visualizer shows how various sensors start to fail
from the simulator and after some time are being detected (see Figure 19-6). The figure highlights
the case of sensor NU.0191 that fails and is detected as having passed away.

FIGURE 19-6. Monitoring the console output of the CEP applications in the CEP Visualizer
Administration console

Chapter 19: Real Time Insight Using CEP and BAM 627

Promotion from a Simple, Anonymous Signal
to a Business Event
CEP processes up to thousands of signals and low-level events per second. CEP applications filter,
aggregate, and analyze those events to produce a far smaller number of facts that are truly
meaningful at the level of human operators or the business processes. In the situation we have
discussed in the previous section, where hundreds of temperature sensors post their readings with
a JMS queue, the Complex Event Processor distills two new streams of events:

 Average, consolidated TemperatureFindings per sensing unit and per half-minute ■

 FailedDetectorEvents that are sent whenever a sensor is found to be absent for ■
30 seconds in a row

These two types of events are to be treated differently: The average temperature findings can
be presented in a dashboard that consolidates lots of monitoring details relevant to operators in
the control room for the hospital facilities. They can be used in that dashboard to create alerts
when the temperature starts to deviate too far from the preset value or when it rises so high a fire
is suspected. The events that indicate a failed sensor should be turned into a human task for a
technician to inspect and potentially replace the detector.

Reporting, possibly alerting, and triggering specific follow-up actions are typical ways to
handle the outcomes of a complex Event Processing application. However, these are not normally
the responsibility of the CEP product itself. Through the queues, CEP produces the findings in a
generic, decoupled way, independent of the consumers (and even in the absence of any
consumers).

We will discuss two consumers of CEP outcomes in the remainder of this chapter. First, we
take a look at SOA composite applications and how they consume CEP findings. Next up is the
Business Activity Monitoring, which can also consume the CEP output.

Integrating CEP with SOA Composites
The integration from CEP to the SOA Suite is not a direct, native one on either end. CEP publishes
events, usually to a JMS queue. And the SOA Suite—or rather composite applications running
inside the SOA Suite—can consume messages from JMS queues through the JMS adapter, first
introduced in Chapter 12.

The business scenario we will implement here is that whenever a failed sensor event is
consumed from the JMS queue failedTemperatureSensorsQueue, an event of type
FailedTemperatureSensorEvent is published on the Event Delivery Network inside the SOA Suite.
The EDN was introduced in Chapter 9.

We will create a composite application that creates a human task assigned to the engineering
pool to do something about this sensor. Because the JMS message only contains the identifiers of
the sensor and sensing cluster, which is not enough information for the technician to go on, we
will use a database adapter to retrieve location-specific details from a database table that contains
information about the sensing clusters and their whereabouts in the hospital.

Alternatively, we could have a BPEL process just send an e-mail notification to the general
e-mail account for the engineering department, bypassing the more formal human workflow
mechanism.

628 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 629

Promotion from CEP to the Event Delivery Network
CEP and EDN both handle events. However, these events are usually not quite the same: CEP
handles large numbers of small, largely meaningless events, and the Event Delivery Network
works with much smaller numbers of events that each have a business meaning and represent a
noteworthy occasion in the business processes. However, the Complex Event Processor may very
well produce the kind of events that EDN deals in.

In the case at hand, the EDN can get hold of such meaningful events produced by CEP from
the failedTemperatureSensorsQueue. We need to go through a few straightforward steps to define
a new type of business event and broadcast this event on the EDN based on messages on the
queue fed by CEP.

 1. Create a new composite application in JDeveloper. Call it FailedTemperatureSensor
EventProducer.

 2. Create a new XSD document, called TemperatureSensors.xsd, with the definition of the
payload element for the event (see Figure 19-7).

 Note that the FailedSensor element is not specific for temperature sensors, because failed
sensors can be found in various measuring categories.

 3. Define a business event called FailedSensorEvent by clicking the Event Creation icon in
the Composite Editor. See Figure 19-8 and the next step for this.

 4. Call the EDL file TemperatureSensorEventDefinitions and set the namespace to http://
com.stmatthews.hospital/facilities. Select the FailedSensor element that was defined in
the XSD document.

FIGURE 19-7. Documenting SensorEvents.xsd with the FailedSensor element—the event’s
payload

Chapter 19: Real Time Insight Using CEP and BAM 629

 5. Create a JMS adapter service (FailedTemperatureSensorEventConsumer), inbound, in the
Service lane of the composite. Configure this adapter service to consume messages from
the queue jms/failedTemperatureSensorsQueue. Note that for simplicity’s sake, we use
the existing JMS adapter’s connection pool (eis/Queue/patients).

 6. Add a Mediator component to the composite, called PublishFailedSensorEvent. Wire
the JMS adapter service to this Mediator. Create a static routing rule in the Mediator that
has the FailedSensorEvent as its target. Create the mapping from the JMS map message
to the event payload. Note that this may not be as trivial as it sounds, because the JMS
messages arriving on this queue are MapMessages—a type of message that carries key/
value pairs. The following snippet of the XSL mapping code illustrates how to process
these messages:

 <xsl:template match="/">
 <fac:FailedSensor>
 <fac:sensorId>
 <xsl:value-of select="/implmap:MapMessage/entry[
 @name='sensorId']"/>
 </fac:sensorId>
...

Note how we extract the sensorId from the map entry elements.

FIGURE 19-8. Defining the EDN event type FailedSensorEvent

630 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 631

We can now deploy and test the composite—to see whether events are published on the
Event Delivery Network after being produced by the CEP application. See Figure 19-9 for
confirmation.

From EDN to Human Task
The next step in deriving insight and actions from the data avalanche is a simple one, with
everything we have discussed so far. When a FailedSensorEvent appears on the Event Delivery
Network, it should be turned into the human task SensorInspection and assigned to a technician.
Therefore, we will create a new composite application with a Mediator that subscribes to this
event. Unfortunately, the event does not have enough information for the task to be created right
away: We need to add the exact location of the sensor that has broken down.

Frank’s database-of-all-trades contains two database tables that together provide this
information: TEMPERATURE_SENSOR_CLUSTERS and HOSPITAL_AREAS. The latter has a
self-referencing foreign key that represents the hierarchical relationship in areas—zooming in
from the main building via the west section of the second floor to a specific room somewhere in
that section. A hierarchical query can be used to retrieve a “zooming” identification of the exact
position of a temperature sensor cluster given that cluster’s identifier.

FIGURE 19-9. Promoting the CEP failed sensor events to business events on the EDN

Chapter 19: Real Time Insight Using CEP and BAM 631

The steps for creating a composite application that creates the human task from the EDN
event are as follows:

 1. Create a new SOA composite application called SensorInspectionCoordinator. Drag the
database adapter service to the external references lane. Configure the adapter service
as RetrieveLocationOfSensorCluster using the database connection to Frank’s database.
The operation type is Execute Pure SQL. We use this operation type because we use
a hierarchical query to retrieve the location path for the cluster, and this type of query
cannot be handled in the regular query editor.

 2. On the next page, enter the following slightly advanced SQL statement (and see the
corresponding XSD created for it):

select tsr.id cluster_id
, haa.full_location
from temperature_sensor_clusters tsr
 join
 (select sys_connect_by_path(location,'/') full_location
 , id location_id
 from hospital_areas
 connect
 by parent_area = prior id
 start
 with parent_area is null
) haa
 on (tsr.location_id = haa.location_id)
where tsr.id = #clusterId

 This SQL creates a hierarchy of areas in the hospital—starting with the buildings and
drilling down into individual rooms and storage units—and then joins it with the sensor
cluster we are looking for. The sys_connect_by_path operator helps us construct the
route from the top-level location all the way down to the actual location of the cluster.

 The query has a single input parameter—clusterId—that we will need to set when
invoking this database adapter service.

 3. Create the human task SensorInspection. See Chapter 10 for more details on human tasks
and how to create them.

 Eventually we need to set up the group TechnicalEngineeringStaff in WebLogic and assign
this task to that group. However, to keep things simple and moving forward, let’s just
assign it to Margaret for testing purposes. After all, we are only trying to demonstrate how
low-level event (and non-event) detection is turned into a technician dragging his feet
down a hallway in search of a faulty sensor. We will keep things really simple for this task:
A BPEL process will initiate the task and assign a title that contains the required context
information. No task form is required, nor are any routing flows or escalation rules.

 4. Create a BPEL process component, called FailedSensorInspectionPlanner, that subscribes
to the failed sensor event. Select this event through the MDS connection, and browse for
the EDL file in the deployed composite FailedTemperatureSensorEventProducer.

632 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 633

 5. Create a BPEL variable called FailedSensorEvent based on the same element as the
event’s payload. Set this variable as the input variable in the Receive activity.

 6. Wire the BPEL component to the Database Adapter Service RetrieveLocationOfSensor
Cluster. Have local variables generated. Add an Assign step to set the input—called
clusterId, taken from variable FailedSensorEvent—for the database service.

 7. Add a Human Task activity to the BPEL process, associated with the SensorInspection task
we created earlier. Set the title to this fairly long expression—the easiest way to convey
task details to an assignee.

Now is the time to deploy this composite application to the SOA Suite and see how it all
comes together—from the CEP simulator that randomly breaks down the temperature sensors, to
the technical staff (just Margaret for now) that starts receiving notification e-mails, prompting
them to do something about the fictitious malfunctioning sensor. Figure 19-10 shows the message
flow trace that is the result of an instance of the FailedSensorEvent.

The human task that is instantiated as the last step in this flow trace results in the e-mail
notification to Margaret shown in Figure 19-11.

FIGURE 19-10. From CEP to human task—failed sensor events from CEP flow through JMS and
EDN to BPEL and finally to a human task, assigned to “the fixer.”

FIGURE 19-11. The e-mail received by Margaret, prompting her to do something about a failed
detector

Chapter 19: Real Time Insight Using CEP and BAM 633

Oracle BAM: Real-time Business
Activity Monitoring
Real-time insight into what is happening in your organization, through the actual values of
relevant KPIs, presented in a visually attractive dashboard, with special alerts being raised and
appropriate action being taken upon violations of predefined rules, such as crossing thresholds—
that, in short, is the promise of BAM.

BAM maintains an active set of data that is constantly being refreshed, added to, and updated.
Reports and charts can be defined against the data objects—and are updated in the browser that
displays them whenever the underlying data objects are refreshed by incoming events.

Rules can be specified to identify exceptional situations that may require instant action. These
rules are evaluated when the data objects they are defined against are refreshed. When a rule is
violated, a visual alert can be displayed in the dashboard and the configured actions can be
executed—including sending an e-mail and calling a Web Service. The rules can be quite
advanced, thus allowing BAM to do a fair bit of filtering, aggregation, and pattern matching
against its data objects and the events that update them.

BAM collects data in its Active Data Cache, an in-memory collection of data objects that are
created and updated from the incoming events. Reports can be defined against these objects—
dashboards containing one or multiple lists, charts, and other visualizations of the active data.
The dashboard report is published in a web browser. BAM uses server push—an advanced
technique where the server actively updates a web client—to ensure that it always displays the
actual situation.

BAM is accessed through a browser-based web application, both for development activities
such as creating the data objects and designing the reports, as well as for accessing the live
dashboards. The BAM server can also take initiative in the form of two types of outbound actions:
sending e-mails and calling Web Services, which in turn, of course, can start SOA composite
applications, create human tasks, write files, update databases, and produce JMS messages.

Business Scenarios for BAM
Business Activity Monitoring is the business front-end of the SOA Suite. It is where we come full
circle: Having started with (high-level) Business Process Analysis, including the definition of
processes, interactions, business objectives, and key performance indicators, the BAM Dashboard
is the live visualization of the execution of those business processes and their effect on the KPIs.
Any organization with an interest in how its processes are performing should consider creating
BAM reports—usually as a complement to their Business Intelligence initiatives based on more
historically oriented, longer-term data warehouses. Once again, BAM is very much for real-time
insight.

BAM complements CEP with the visual presentation of findings and the ability to take actions.
At the same time, there is some overlap with CEP, because both products analyze events in real
time, aggregating and detecting patterns. CEP is geared toward more intense event streams with
generally simple, virtually meaningless, almost payload-less signals and events. Through CQL, it
has far more advanced capabilities for analyzing complex patterns and executing advanced event
queries. CEP is not meant as the final destination for events: It emits events that report its findings
to downstream consumers to take advantage of. BAM is one of the usual suspects as a consumer.

634 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 635

In situations where substantial numbers of events need to be processed or complex patterns
are to be analyzed, CEP is a perfect gateway. It can feed into BAM as well as into other
consumers, such as the Event Delivery Network. When the events are not as frequent and maybe
more meaningful in a business sense, they may be absorbed directly by BAM—for example, SOA
composite applications sending EDN events or other signals to the BAM engine.

BAM for Business
Typical users of BAM are business representatives responsible for the execution of specific
business processes and their managers. Whether monitoring the status of physical equipment,
tracking the vital life signs for the newborn babies in the maternity ward, managing the waiting
times and number of calls processed by the hospital’s helpdesk, analyzing the load on and
efficiency of the emergency room, or studying the efficiency of the invoicing process and the
effect of the “get better, pay faster” campaign, BAM can be used to collect the data, events, and
statistics needed for deriving the values of performance indicators and visualizing the progress of
the operations, as well as to put together the dashboard that updates in real time.

BAM even allows business users to create or enhance reports and dashboards themselves—
just like they could do in Excel. When the developer has set up the data objects in BAM—and
made sure that those are loaded with the live data feeds—it is an easy, declarative, browser-based
task to create the charts, lists, and KPI visualizations.

BAM for System Administration
In addition to its importance for analyzing and visualizing the events on the business and process
level, BAM dashboards can be very useful for lower-level, more-detailed technical tasks, such as
operational control of computer applications and service infrastructures, including the SOA Suite
and the applications it is running.

Events at this level include the number and time of invocations of composites and
components, the time it takes to complete each instance, the number and types of faults that
occur, the values of variables, changes in environment settings, and so on. The data available
from these events can be retrieved from various systems across the enterprise. The data is
aggregated in dashboard reports that help to provide insight into bottlenecks in the system—both
historic and actual—in terms of performance and functionality (looking at the number of faults
originating from specific components). The BAM server can take even some forms of corrective
action, or at the very least can alert administrators when the performance of a specific component
seems to be degrading very rapidly. Monitoring of Service Level Agreements could also be
supported if not implemented using BAM.

The BAM Product Architecture
Oracle Business Activity Monitoring is a product that consists of several components, including a
web application, application server components, and a database. The BAM server runs in its own
WebLogic server (default name, bam_server1). This server is managed from the WebLogic
Administration console— for configuring users, groups, application roles, adapter settings—and
the Oracle Enterprise Manager Fusion Middleware Control for most operational tasks, such as
performance and load monitoring. The FMW Repository hosts a database schema for BAM that
contains all metadata (such as data object definitions and report definitions) and all active data
for the data objects.

Chapter 19: Real Time Insight Using CEP and BAM 635

BAM is logically built from a number of components:

 ■ The Active Data Cache (ADC) An in-memory store of the data in the data objects.
Incoming updates, events, and messages are pushed to the ADC and made available to
the Report Cache and the Event Engine; the ADC is driven by metadata that describes the
structure of the data objects.

 ■ Enterprise Message Sources Defines and connects to JMS queues and topics,
consuming messages and forwarding them to data objects in the ADC.

 ■ The Event Engine Validates alert rules in response to events (updates of data objects)
and takes action when appropriate.

 ■ The Report Cache Runs the reports, making them available for the Active Viewer web
application and for dispatching via e-mail messages.

BAM publishes a service API, both as a SOAP Web Service as well through RMI to EJBs. It
also supports external data objects that are based on tables or views in a database schema
accessed through a JNDI data source. BAM is integrated with Oracle Data Integrator in two
ways—both as a source and as a target. ODI ships with knowledge modules that implement
specific data-integration patterns. It has several knowledge modules for integrating with BAM—
using BAM both as a source for data that it transfers to another target store, and also as a target,
where ODI loads data from one or more sources to the BAM server’s data objects in the ADC.

The Oracle ADF framework ships with a BAM data control that makes it quite an easy task to
develop custom, rich user interfaces against the data objects in the BAM Active Data Cache.
These user interfaces have the same server push facility as the BAM dashboards themselves,
meaning that changes in the ADC are pushed to a custom-developed ADF user interface. ADF
has many different types of user interface components, charts, and other rich data visualizations
as well as trees and tables. We will discuss ADF in the next chapter and also see how we can
make use of this BAM data control to embed a BAM dashboard in a custom application.

The event engine can execute actions that include sending e-mails and invoking external
Web Services. BAM uses the User Messaging Service (UMS), which is also used by the BPEL and
Human Task service engines to send notifications. The UMS needs to be configured for the BAM
server in the FMW Control. The outgoing e-mail server and send-from e-mail account need to be
configured.

An incoming e-mail account and server can be specified too, because BAM supports a
specific type of action that sends an e-mail with a link that the addressee should click to
acknowledge the receipt of the message; upon that click, a reply e-mail is sent to the BAM
engine’s incoming e-mail account and the action is completed. If the incoming e-mail is not
received within the specified period of time, the action is escalated and the next person on the
list is notified via e-mail.

Developers and administrators will access BAM through the BAM Architect (for managing
data objects and Enterprise Message Source), the Active Studio (for development of reports), and
end users go through the Active Viewer (for running reports and watching dashboards).

User Administration
Users of Business Activity Monitoring are all defined in the Identity Store that is configured with
WebLogic Server. Initially this will be the default, file-based repository.

636 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 637

Management of the user accounts takes place primarily in WebLogic and to a smaller extent in
BAM Administrator. In WebLogic, a number of BAM-specific groups has been defined during
installation: BamAdministrators, BamReportArchitects, BamReportCreators, and BamReportViewers.
These groups have been granted the corresponding BAM application roles. When a user is added to
one of these groups, that user inherits the application role that defines the level of access in the
BAM web application.

Privileges on specific reports, data objects, and even rows within data objects can be assigned
in BAM Architect and BAM Active Studio.

Note that users are added to the BAM Administrator the first time they connect to the
product—or when the administrator actively registers the users defined in the WebLogic Identity
Store into BAM.

Feeding the Output from the Complex Event
Processor into the Business Activity Monitoring
In the first part of this chapter, we have developed a Complex Event Processor application that
processes thousands of temperature readings per second produced by hundreds of temperature
sensors all over the hospital. The CEP application consolidates the temperature readings from the
sensors into temperature findings averaged per sensor cluster and per half-minute. It emits these
events on a JMS queue—TemperatureFindingsQueue—from where it can be consumed by
consumers such as BAM.

Our business objective in this section is to create a dashboard that displays the actual
temperature for every area in the hospital and, even more importantly, to send out alerts when
the temperature in any area starts to deviate from the predefined value. Thus, someone can act to
shut the window that is left open near the incubators, close the refrigerator lid before the vaccines
go bad, or extinguish a potential fire before there really is one.

Reporting on Temperature Sensor Readings
We will have to go through the following steps to create such a dashboard. All of them are done
in BAM Architect, except for the last one:

 Create an external data source—a lookup database schema. ■

 Create a ReferenceTemperatureSensorCluster data object that is based on a database ■
view.

 Define a TemperatureSensorCluster data object that represents a live temperature sensor ■
cluster.

 Configure an Enterprise Message Source—a bridge between the JMS queue ■
TemperatureFindingsQueue and the TemperatureSensorCluster data object.

 Create a report based on the data object in BAM Active Studio. ■

Configuring the Active Data Cache in BAM Architect
The BAM development environment is entirely web based. Before we can access Oracle BAM,
we need to start up the BAM server, which is one of the managed servers in the WebLogic
domain—next to soa_server1 for the SCA container. You can start this server in almost the same

Chapter 19: Real Time Insight Using CEP and BAM 637

way, replacing the string “soa_server1” with “bam_server1.” Administration is done in the
WebLogic Administration console and the Enterprise Manager Fusion Middleware Control.

Access BAM in Internet Explorer 7 or 8 at http://localhost:9001/OracleBAM. Mozilla Firefox,
Google Chrome, and other browsers are not currently supported, unless you install the IE Tab
plug-in for Firefox 3.0. Connect with the same weblogic user that you also use for the soa_
server1.

Go to the BAM Architect. Select External Data Sources from the drop-down list in the upper-
left corner and click the create link in the right pane. Create an External Data Source called
FranksDatabase using the database connect details for the database schema that contains the
tables for St. Matthews. The External Data Source is used to retrieve static lookup information that
we can use to enrich a (dynamic) data object. Click the Create button to commit the changes.

Next, select Data Objects from the drop-down list. Select the folder Data Objects, click
Create Subfolder, and create a folder called HospitalFacilities.

Now, click this new folder in the folder navigator tree on the left side and then click Create
Data Object. Enter ReferenceTemperatureSensorCluster as the name for the new data object. Mark
the check box External Data Object to indicate that this data object is based on a database table or
view. Select the External Data Source FranksDatabase and subsequently VW_TEMPERATURE_
SENSOR_CLUSTERS for the External Table Name setting. This view provides the static lookup
information for the clusters: the location and the target temperature it is supposed to find. Click
the Create Data Object button to go ahead and really create the object. Click the contents link to
review the data in the external data object—retrieved from the underlying database view. Figure
19-12 shows this data object.

Next, click the link Create Data Object and enter TemperatureSensorCluster as the name.
This object represents a live temperature sensor cluster and includes the current temperature
value as well as the lookup values location and target temperature retrieved from the Reference
TemperatureSensorCluster object. Figure 19-13 demonstrates how this object is created.

FIGURE 19-12. Inspecting the contents of the external data object—the data retrieved from the
database view

638 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 639

Create the fields actualTemperature of type Float and clusterId of type String. Then create two
lookup fields—TEMPERATURE_TARGET and FULL_LOCATION—that are both retrieved from the
external data object ReferenceTemperatureSensorCluster.

BAM data objects can have auto-generated fields—the last modified timestamp or a version
field that is incremented with every update. Calculated fields can be added to provide values
derived through some formula to make life easier for report developers. Expressions for calculated
fields can refer to other fields in the data object and make use of operators and system functions
such as now() for the current timestamp. Quite powerful and frequently used in formulas is the
if-then-else syntax. For example, here’s a formula for the target room temperature (in degrees
Celsius) depending on whether it is currently night or daytime:

if ((Hour(now())>21) ||(Hour(now())< 6)) then (16) else (22)

Note that the views created in reports can also have their own specialized calculated fields.
Next, we need to configure an Enterprise Message Source—the bridge between the messaging

infrastructure and a BAM data object, or more specifically in our case, between the JMS queue
TemperatureFindingsQueue and the TemperatureSensorCluster data object.

Select the option Enterprise Message Source in the drop-down list in the upper-left corner. The
page shown in Figure 19-14 appears. Specify a name (for example, TemperatureFindingsQueue).
Set the URL details for the JNDI provider: t3://localhost:8001. Provide the JNDI names of the
queue (jms/TemperatureFindingsQueue) and the connection factory (jms/patientsJmsCF). Enter
the username and password for user weblogic. Select MapMessage for the message type—that is
the type of message produced by the CEP TemperatureReadingsProcessor.

Select the data object that this message source will feed into—obviously this should be the
TemperatureSensorCluster object we have just created. Now we need to make an important
decision: What operation should be performed on the data object? Should a newly arriving

FIGURE 19-13. Configuring the TemperatureSensorCluster data object, including lookup fields

Chapter 19: Real Time Insight Using CEP and BAM 639

message on the queue always create a new data object instance? Or should a new message first
attempt to update an existing data object before—when necessary—creating a new one? In this
case, we want the TemperatureSensorCluster data objects to represent the actual situation of a
cluster of sensors—and we do not care about historical reading. Therefore, we pick the Upsert
operation type, which instructs BAM to update a data object when it can find one (based on a key
that we will specify shortly) and insert one if no object is available to update.

The MapMessages contain two attributes that we care about, with tags clusterId and
temperature. We should map these two attributes to the fields clusterId and actualTemperature
in the TemperatureSensorCluster data object. Check the box Key for the clusterId field. Click
Save to commit the changes.

FIGURE 19-14. Defining the Enterprise Message Source—mapping the JMS queue to the data
object

640 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 641

NOTE
An Enterprise Message Source (EMS) must explicitly be started in order
to commence the process of consuming messages from the JMS queue
and feeding them into the data objects in the Active Data Cache.
When you click the Enterprise Message Source name in the list on the
left side, the right pane has a number of options on the top, including
Start, Stop, and Metrics. The latter lists the number of messages
received from the queue since the EMS was started.

Creating the Dashboard Report in Active Studio
With the Active Data Cache set up—and the data objects ready to go, one external and one
mapped to an Enterprise Message Source—we can start creating the reports and alerts on top of
these objects. In the next few paragraphs, we will put together a report on the temperature
situation at St. Matthews. A single dashboard-style overview will make visible in real time what
the temperature sensors are reporting and where hotspots may appear. The report will combine
four different displays, all on top of the same data object.

From the BAM home page, open the Active Studio component and click Create New Report.
Select the four-tile report layout by clicking it, as shown in Figure 19-15.

FIGURE 19-15. Creating a new report with the four-tile layout style in BAM Active Studio

Chapter 19: Real Time Insight Using CEP and BAM 641

Live List of Temperature Cluster Values The first tile in the new report will display a list of all
temperature sensor clusters, with their actual temperature value as well as an indication of their
location in the hospital and the target temperature they were set to. The Updating Ordered List
view type displays a list of data object instances and processes, and displays the updates to these
objects that are pushed in real time. Click the icon for this view type.

On the first tab that appears, choose the TemperatureSensorCluster data object. On the second
tab, select all fields except readingTimestamp. Click Next and then Finish (see Figure 19-16). This
basically completes the first part of the dashboard.

The Arrow: A Quick-Glance Temperature Indicator Click the Arrow view type in the second
report tile. We will use the Arrow to indicate in a loud and clear way whether all temperature
clusters report a value in the safe range (a big green upward-pointing arrow) or if one or more
clusters measure a value that’s outside that range (a red arrow pointing downward).

Select the TemperatureSensorCluster data object. On the Data Fields tab, select the Maximum
of the readingTimestamp for the top value. Accept the default for the KPI value itself; we will
create a calculated field to determine this KPI that dictates the arrow style.

Click Next and then click Create A Calculated Field. Enter the following expression, as shown
in Figure 19-17:

if ((deviationFromTarget > 2) || (-2 > deviationFromTarget))
then (-1000) else (1)

This expression returns 1 for all clusters that are within the designated temperature range and
–1000 for any cluster outside that range. Click Enter. A new calculated field is created. Rename
the field SeriousDeviation.

FIGURE 19-16. Creating the Updating Ordered List view for temperature clusters in the first
report tile

642 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 643

Return to the Fields tab. Set the KPI value—in the center of the arrow—to SeriousDeviation.
Select Sum as the aggregation method and set the bottom title to “temperatures within range.”

Click Properties and edit the View Title in the General tab. Then click the tab Value Format
(see Figure 19-18). We can specify the display format for readingTimestamp—select the Time
category and H:mm:ss for the format.

And we can set the format for SeriousDeviation: Select the Number category and mark the
check box Round To The Nearest [Thousands]. We can also effectively hide the value from the
arrow—set the font size to 1 for the Delta Value on the Font tab.

Finally, click OK to save the view definition.

The 3-D Bar Chart for a Live Overview of All Temperature Sensor Clusters Let’s add a 3-D
bar chart to the third tile. This chart will have two bars for every temperature cluster: one for the
actual temperature value, and one for the actual deviation from the preset value for the cluster.
Click the third tile and make it a little larger, at the expense of the first tile with the ordered list.
Then click the 3-D Bar Chart icon.

Choose the TemperatureSensorCluster data object. On the Data Fields tab, check clusterId as
the field to group by—we want bars per temperature cluster. Select actualTemperature and
deviationFromTarget as the Chart Values. Click OK to save the view definition.

FIGURE 19-17. Creating the calculated field SeriousDeviation to use (summarized) as the KPI value

FIGURE 19-18. Setting the value format for readingTimestamp and SeriousDeviation

Chapter 19: Real Time Insight Using CEP and BAM 643

A Range Gauge to Visualize the Number of Temperature Deviations For the fourth tile,
select the Range Gauge as the view type. Then select the familiar TemperatureSensorCluster data
object. Click Next (to go to the Fields tab) and Next again to accept the default field settings.
Then click Create A Calculated Field and create a new calculated field based on this expression:

if (deviationFromTarget>2 ||-2 > deviationFromTarget) then (1) else (null)

Now return to the Fields tab and select Deviant as the KPI value with Count as the
aggregation method. Note that Count does not count “nulls,” so we are only counting the clusters
for which the deviation is larger than 2 degrees.

Click Properties. On the General tab, specify a relevant title. Set the value display ranges that
determine which value range the gauge will cover and which values are the boundaries between
the green, yellow, and red zones. The values for Low, Low/Medium Boundary, and Medium/High
Boundary are 0, 1, and 3, respectively, with 15 being the upper limit for the Range Gauge.

Click OK to complete the definition of the view.

Running the Dashboard
After the report has been saved, it is ready to be used. The Active Viewer is the read-only section
of Oracle BAM, where reports can be opened. Open the HospitalTemperatureDashboard report
in the Active Viewer (see Figure 19-19).

FIGURE 19-19. Running the Temperature Monitor report—with all systems clear

644 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 645

The report is based upon two data objects in the Active Data Cache that need to be fed from
the JMS queue that itself has its messages published by the CEP application. Therefore, you have
to make sure the following have been started to ensure the report will give you anything to
monitor:

 The WebLogic Admin server, SOA server, and BAM server ■

 The CEP server and the CEP applications TemperatureSensorSimulator and ■
TemperatureReadingsProcessor

 The Enterprise Message Source TemperatureFindingsQueue ■

NOTE
The TemperatureSensorSimulator application that runs in the CEP
server to simulate the output from temperature sensors has been
tampered with to have it randomly apply incidents to the temperature
clusters—the window or door to a room that should stay warm may
have been left open (resulting in a gradual drop in temperature), the
lid of a refrigerator was not closed properly (resulting in an increasing
temperature), or a fire may have started. Our dashboard will help us
spot these situations, as is shown in Figure 19-20.

FIGURE 19-20. Temperature Monitor dashboard with visual indications of exceptions

Chapter 19: Real Time Insight Using CEP and BAM 645

Exporting and Migrating the Report
Oracle BAM comes with a component called ICommand. It is a command-line interface on the
BAM server that supports a number of administrative operations, including the export and import
of data objects, reports, and alert definitions to and from XML files. The XML-based definitions
can be moved to different environments and imported into remote BAM server instances.

ICommand is started from the command line in the directory <Oracle Middleware Home>\
Oracle_SOA1\bam\bin. To export the metadata definition of data object TemperatureSensorCluster
to a file that can be imported into other BAM environments and include the current data contents as
well, we can execute the following command on the command line:

icommand -cmd export -file c:\temp\BamExport_DO_TemperatureSensorCluster.xml
 -name /HospitalFacilities/TemperatureSensorCluster

The essential connection details for locating and accessing the BAM server are read from the
file <Oracle Middleware Home>\Oracle_SOA1\bam\config\BAMICommandConfig.xml by
ICommand. If your environment does not use the default username, password, host, or port
number for the BAM server, you will have to update this file.

Instead of typing all the commands on the command line, we can create a file that contains a
number of ICommand statements and have that “script” executed using the following:

icommand -cmdfile c:\temp\icommand_exportDashboard.xml

The BAM ICommand Web Service offers a subset of the operations available through the
command-line interface. These include exporting reports and importing rows into data objects.
The Web Service interface is available at http://host_name:7001/OracleBAMWS/WebServices/
ICommand?WSDL.

Producing an Alert upon Fierce Temperature Deviations
When we have a strong indication of a potential fire, we want BAM to do more than just display
the dashboard—even though that provides a strong visual clue as to what might be going on. We
want BAM to raise an alert, through the web interface, by sending an e-mail and by calling a Web
Service that in turn will start paging the hospital’s fire brigade.

BAM has support for alerts that can take various actions when raised. The condition under
which the alert is activated is specified through rules. Alerts and their rules can be defined
through the Architect as well as the Active Studio.

Defining an Alert Rule
Go now into Architect. Select Alerts from the drop-down list in the upper-left corner and click
Create A New Alert. Figure 19-21 illustrates the next steps. Specify the name of the alert,
FireWarning, and then click Create A Rule. A window appears with the list of various types of
rules—some referring to a time schedule that’s used to plan certain actions to be taken
periodically. Other rules refer to changes and conditions that may be met as a result of those
changes. Select “When a data field in a data object meets specified conditions.” Click the link “this
data field has a condition of x” in the Rule Expression window to open the editor in which to
specify the data condition that this rule will be evaluating. The Alert Rule Editor that pops up
allows us to configure the expressions that together make up the filter for this rule. In this case, we
want the alert be activated when any temperature sensor cluster reports a temperature of over

646 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 647

45 degrees (Celsius, that is, over 110 degrees Fahrenheit!). We select the TemperatureSensorCluster
data object, the field actualTemperature, and the comparison operator Is Greater Than. The
threshold value we compare against is 45. Click OK to close the editor.

Click Next to go to the Rule Alert Action window. We can specify now what should happen
when this alert is triggered. We can select actions by checking the boxes for sending a message or
a report via e-mail, for launching another rule, for deleting data object instances, and for calling a
Web Service.

We will stick to sending an e-mail message for this alert. Note that the wiki has an example of
invoking a Web Service from a BAM alert.

After selecting the action Send A Message Via Email, we are invited to define the message—
using field values from the data object. We also have to specify to which user or group we want
to send the message. Note that we select users from the WebLogic Identity Store—and rely on the
e-mail address configured in the Identity Store as the destination for the e-mail.

After you have finished, click OK to save and immediately activate the alert. Alerts can also
be deactivated, in which case they do nothing at all. Figure 19-22 illustrates how to complete
defining the FireWarning alert rule.

Alerts in Action
Suppose one of the temperature clusters reports a very high temperature value—in this case in a
maternity ward. As soon as the data object for this cluster is updated with the actual temperature
value, the alert rule is verified and the alert is raised. That means that the e-mail is sent to the
indicated users or groups and the alert is also added to the Alert History, retained within the BAM
server, as is shown in Figure 19-23.

FIGURE 19-21. Creating a new alert for fire warnings and configuring the associated rule
expression

Chapter 19: Real Time Insight Using CEP and BAM 647

Integrating SOA Composites
into Business Activity Monitoring
SOA composite applications coordinate the execution of business processes or at the very least
execute crucial steps in the business processes. A lot of essential information flows through these
applications—information that could provide valuable insight for people monitoring the business
activities. It seems obvious that the composite applications have a lot to offer to BAM—details on
the progress of process instances that help to keep dashboards up to date, and information that
BAM can analyze and use to trigger an alert and undertake an action.

FIGURE 19-22. Completing the definition of the FireWarning alert rule

FIGURE 19-23. Alert History overview in Active Studio, listing the FireWarning alert that was
raised for Maternity Ward B

648 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 649

In Chapter 12 as well as in this chapter, we worked with the JMS adapter—so we know that
the SOA Suite can easily put out information on a JMS queue. And we have seen how BAM can
use an external message source to consume messages from such a JMS queue. So it should be
easy to establish the link between SOA composites and BAM.

Using JMS is certainly an option—although not the best one. We will learn in this section
how the BAM adapter in the SOA Suite provides a more-direct, better-integrated connection from
within composite applications to the data objects in the BAM server’s Active Data Cache.

In addition to information that is relevant at the business level, SOA composites generate a lot
of lower-level trace data that harbors information about the structure, performance, and
potentially fault-sensitive areas of the applications. BAM can be used, too, by system
administrators to monitor and analyze the applications and their activities themselves. As such,
BAM, and the integration from BPEL process components in particular, is a valuable complement
to the facilities for keeping track of what is or was going on, as we discussed in Chapter 16. We
will see how BPEL sensors can send fine-grained data to BAM. Subsequently, the Monitor Express
introduces an easy-to-use infrastructure for monitoring many details about BPEL process
execution through BAM.

BAM Adapter: Monitoring New Patient Appointments
As manager of the Patient Appointment Platform, Margaret wants to know as much as she can
about how new appointments are created, confirmed, and either cancelled or kept. She wants to
keep a close tab on the execution of the process as it has been designed and implemented using
SOA concepts and technology. She wants to see if the overall performance of the process meets
the business objectives and helps bolster customer satisfaction—and to find out if the process
may have some weak spot, an Achilles heel that proves to be a bottleneck when the entire patient
appointment flow is handled by the SOA platform.

What better way for her to monitor the execution of the process than through the Business
Activity Monitoring, which can provide real-time insight into data gathered directly from the
application instances running inside the SOA Suite? In this section, we will create a BAM report
that visualizes the Patient Appointment process. Every incoming appointment request is fed into
the BAM server, leading to a row in the PatientAppointment data object. When the appointment
request goes through meaningful stages—scheduled, confirmed, cancelled, completed (and in the
future, perhaps invoiced and paid as well)—the data object will be updated.

We will add some event-processing activity in the BAM server—to have it trigger an alert
when some business performance indicator is not met for a particular appointment. In this
particular case, it will detect a non-event—the absence of an expected update to a data object.

Preparing for the Integration Between SOA Suite and BAM
Before we can really get started with the integration to BAM from an SOA composite application,
there are a few steps we need to go through.

First of all, the BAM adapter is another one of the JCA connectors, like the JMS, AQ, and
Database adapters, that is managed outside the SOA Suite from the WebLogic Administration
console. We need to configure the adapter with an outbound connection pool that knows where
to find the BAM server and how to connect to it. In JDeveloper, too, we need a connection to the
BAM server. We will use this connection to browse for target data objects when we configure the
BAM Adapter Services. Instructions for configuring the BAM adapter and the BAM server
connection in JDeveloper are provided in the online chapter complement.

Chapter 19: Real Time Insight Using CEP and BAM 649

Open the SOA composite application PatientAppointmentService to which we are going to
add integration with BAM. Next, click the BAM Server connection in the Resource Palette and
from its context menu select the option Add To Application.

Preparing the BAM Side of Things
In order to specify through a BAM adapter service which data objects should be updated, we need
first to make sure that these objects actually exist by defining them through the BAM Architect.

Enter BAM Architect and create a new folder called PatientAppointmentsPlatform that will
be the container for data objects that are related to appointments. Note that we will take a
simplistic approach here, where we, for example, do not link to other information than the data
delivered from the SOA composite application.

Create a new data object called PatientAppointment and specify the following fields (see
Figure 19-24): AppointmentIdentifier, Name, Gender, Birthdate, City, State, TypeOfAppointment,
AppointmentRequestDate, AppointmentStatus, StatusTimestamp, AppointmentDateTime, and Priority.

Add a calculated field called Age that will calculate the patient’s age from his or her
birthdate. Specify the formula for this field as follows:

Year(now()) - Year(Birthdate) + (Month(now()) - Month(Birthdate))/12

FIGURE 19-24. The PatientAppointment data object in BAM Architect

650 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 651

With these preparations done, we can start on the BAM adapter service that will create and
update the data in the PatientAppointment data object.

Creating the CreatePatientAppointment BAM Adapter Service
The new PatientAppointments will be sent to the BAM Active Data Cache from within the BPEL
component PatientAppointmentService using a BAM adapter service. As soon as the appointment
identifier is reported back to the consumer of the service, the BAM adapter service is invoked to
instantiate the new PatientAppointment instance in the ADC. We need to create the BAM adapter
service, wire it to the BPEL component, and add the Invoke activity in the BPEL process.

BAM adapter services can be created in the Composite Editor or in the BPEL process editor,
just like other adapter services. The BAM adapter is always used in an outbound fashion: The
composite calls out to BAM, never the other way round—although a BAM alert can invoke a Web
Service that can be a public service exposed by an SOA composite application.

Open the Composite Editor for the PatientAppointmentService application and add a BAM adapter
service to the composite in the External References lane. Call the service CreatePatientAppointment.
Select the BAM server connection that we created earlier in the IDE and added to the application.
Click the Browse button to access the BAM server through the connection to locate the data object
that this service will be targeting. Select the PatientAppoinment object.

Choose the operation Insert—we will be using this service exclusively to create PatientAppointment
instances. Note, however, that a BAM service can also perform the Upsert operation—which does
both Insert and Update. Make sure to check the box to enable batching. By enabling batching, we
allow the SOA container to send messages to the BAM container in bursts of multiple messages—
which can be much better performance-wise than sending every little burp immediately over. At least
as important is that it means that when the BAM server is not available, the messages are retained by
the container to be fed into the BAM server when it again becomes available. When batching is not
enabled, those messages sent during downtime of the BAM server are gone and lost forever.

Finally, specify the JNDI name of the BAM adapter’s connection pool—typically eis/bam/rmi.
Then click Next and Finish to complete the wizard.

Calling the CreatePatientAppointment BAM Service from the BPEL Process
Create a wire from the PatientAppointmentService BPEL process component to the new BAM
adapter service. Then open the BPEL editor by double-clicking the component. As shown in
Figure 19-25, drag an Invoke activity from the palette and drop it on the process, immediately after
the synchronous reportAppointmentProcessIdentifier Reply activity that returns the appointment
identifier to the consumer. Associate this invoke step with the CreatePatientAppointment partner
link that was created when we wired the BPEL process to the BAM adapter service. Have a local
input variable created for the call to BAM.

Add an Assign activity to initialize the input variable for the call to the BAM service. Add
copy steps for those fields of the PatientAppointment data object that we already have relevant
values for. Include the currentDataTime for both the InitialAppointmentRequestDate and the
StatusTimestamp. Do not include a value for the Age field, because that is a calculated field.

Testing and Watching Contents in Data Object (in Architect)
At this point, we can deploy the composite application and test whether the integration of BAM has
been successful. When we call the process method of the PatientAppointmentService Web Service
as exposed by the composite application, a call should be made from within the BPEL process to
the BAM adapter service that should lead to the creation of a row in the data object. That fact can
be inspected in the BAM Architect by looking at the contents of the PatientAppointment data object,
as Figure 19-26 illustrates.

Chapter 19: Real Time Insight Using CEP and BAM 651

Sending Appointment Status Updates to BAM
Margaret feels that while we have made a good start, she would like the composite application to
provide a little bit more information about the Patient Appointment process to the BAM server.
She is primarily interested in the time it takes to get an appointment from one status to the next—
so she can try to identify bottlenecks in the process and, of course, alert staff to appointment
requests that are not serviced within the agreed response time. Therefore, she asks us as SOA
developers to extend the BPEL process with calls to the BAM server whenever the status of an
appointment changes. These calls should lead to updates of the PatientAppointment objects that
were created earlier in the same process instance.

Adding the BAM Adapter Service for Updating
the PatientAppointment Data Object
In the Composite Editor, we drag a BAM adapter from the Component Palette to the references
area. The BAM Adapter Service Wizard appears (see Figure 19-27) to have us configure this
service that will update existing rows in the PatientAppointment data object. Call the new
service UpdatePatientAppointment. Select Update as the operation this time. Select the field
AppointmentIdentifier as the identifier for the PatientAppointment in the BAM server that should
be updated.

FIGURE 19-25. Adding an Invoke of the BAM CreatePatientAppointment service to the BPEL
process

652 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 653

The UpdatePatientAppointment partner link will be invoked on several occasions during the
BPEL process (see Figure 19-28):

 Right after the scheduling service completes ■ The status goes from New to Scheduled.

 When a cancellation of the appointment is received ■ The status becomes Cancelled.

 When the patient shows up ■ The status is set to Completed.

 Upon a patient no-show ■ The status is updated to NoShow.

These invokes only need to set a few elements in the input variable: the appointment identifier,
the new status, and the current date time to set the StatusTimestamp in the data object. When the
appointment has been scheduled, the scheduled time is passed to the AppointmentDateTime field.
When the priority has been established, that fact should be forwarded to BAM as well—without
status change.

FIGURE 19-26. The call to the PatientAppointmentService is reported to the BAM data object.

Chapter 19: Real Time Insight Using CEP and BAM 653

It is time now to create that dashboard that Margaret has in mind. The SOA composite
application is delivering through the two BAM adapter services all the information we need to
provide real-time insight into the patient appointment process. Let’s go to the BAM Active Studio.

Creating the St. Matthews Appointment Dashboard
Open Active Studio and create new report (choose a style with two columns and two tiles in the
right column). Create a view type of container in the left column and select the four-tile layout for
this container. Type St. Matthews Appointment Process Monitor as the report title.

We can include many different view types in the report. We will discuss a few simple ones to
get started. We can always extend and refine based on the feedback we will get from Margaret on
our first attempt.

FIGURE 19-27. Configuring a new BAM adapter service for updating the PatientAppointment
data object

654 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 655

Live List of Appointment Inserts and Updates
Let’s start with a simple one: a live list of the most recent new appointments and status updates to
existing ones, ordered by the time of the most recent update, with the latest updates first. Double-
click the tile in the lower-right corner, select the Updating Ordered List view type, and select the
PatientAppointment data object. Check the boxes for the fields AppointmentIdentifier,
AppointmentStatus, StatusTimestamp, Priority, and Age. Specify a sort order by StatusTimestamp,
descending. Note that you toggle ascending and descending by clicking the AZ or ZA icon in the
Sorted Fields list in the Sort tab. Go to the TopN tab to specify that we only want the last 25
appointment changes to be displayed.

Go to the Properties section and set a title for the view Live Appointment Updates. Go to the
Value Format tab and select the StatusTimestamp field in the drop-down list. Select the Time
category and set the Type to the time format you prefer. Close the view editor.

FIGURE 19-28. The BAM data object PatientAppointment is updated from several points in the
BPEL process.

Chapter 19: Real Time Insight Using CEP and BAM 655

Appointment Summary per Status
The upper-right tile is reserved for a summary of the appointments, per status. Choose the 3-D bar
chart for this tile. Pick the PatientAppointment data object, specify Group By AppointmentStatus,
and then select the AppointmentIdentifier field in the Chart Values box and select the Count
summary function.

This is all it takes to create the bare-bones bar chart. We now can add a filter to base the
summary only on a subset of all the appointments (for example, only those that were received in
the last month or quarter).

We can also refine the layout of the chart. Let’s set the title to Appointment Overview (per
status). Set the vertical axis label to # appointments, and make any other refinements you deem
appropriate.

Appointments Summary
The first tile is reserved for a small summary, a quick-glance listing of pretty straightforward
numbers. The list has an entry for each distinct appointment status value. And each entry contains
the number of appointments that currently have that status, the most recent addition to that group,
and the ages of the youngest and oldest patients in the group.

The view type used for this tile is the Collapsed List. After clicking the icon for this view type
and selecting the PatientAppointment data object, you come to the Data Fields page. Select
AppointmentStatus, StatusTimestamp, AppointmentIdentifier, and Age. We will group by the
status field, so that field does not need a summary function. The others, however, do. Select the
StatusTimestamp field and check the box for Maximum. Pick Count for AppointmentIdentifier and
both Minimum and Maximum for Age. Set a proper title on the General tab in the properties
section—something like Summary of Appointments per status. We need to specify better column
headings for all fields and a nicer-looking display format for MAX StatusTimestamp. Go to the
Text & Align tab for the headings and to Value Format to set the pretty time format.

Priority Distribution Pie Chart
We focus next on the second tile in the left column. Here we want a quick overview of the priority
distribution of the appointment requests. The assumption that drives the appointment process is
that the number of high-priority appointment requests is about 10 percent. In Chapter 8, we
enlisted the Business Rule service engine to help establish priorities, based on a number of input
parameters. It is quite important to Margaret to see whether that has helped to drive down the
percentage of appointments that are assigned high priority—as those appointments get preferential
scheduling, blocking the way for lower-priority requests. A simple pie chart will be used to show
the distribution of the appointments over the three priority values: low, normal, and high.

Click the Pie Chart icon. Select the data object as before. Select Priority to group by and also
Priority as the chart value—associated with the Count summary function. Figure 19-29 demonstrates
this, and the next steps.

Set the title for this view—for example, Priority Distribution—and go to the Data Labels tab
to mark the check box Series Name. This will make sure that the value of the priority is displayed
in the pie chart.

Keeping an Eye on the Unscheduled Appointments
Appointment requests that have not yet been scheduled are not a good thing. There are bound to
be some, but their number should be kept small and manageable. Of course, the more important
KPI here is the actual time between the reception of the request and the moment of scheduling.

656 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 657

First, though, we look at a simpler metric: the number of open, unscheduled requests. We will
create a range gauge in the third tile on the left that shows the current number of new (new
means unscheduled) appointments—against the predefined range values.

Click the Range Gauge icon to set the view type for this tile (see Figure 19-30). Select the
PatientAppointment data object and then select the AppointmentIdentifier field and the Count
aggregation operator as the KPI drivers. Select them again to provide the bottom label. Type Number

FIGURE 19-29. Creating the Appointment Priority distribution pie chart

FIGURE 19-30. Configuring the Range Gauge for unscheduled appointments

Chapter 19: Real Time Insight Using CEP and BAM 657

of unscheduled appointments for the bottom title. Define a filter that only accepts rows for which the
AppointmentStatus is equal to New—as those are the appointments that we want to count.

In the General tab in the properties section, type a nicer title for the view—for example,
Unscheduled Appointments. More importantly, schedule the ranges and threshold values for the
gauge—normally depending on the KPIs agreed upon with the business. Here we use 5 as the
boundary between the green and the yellow zone, and 10 for the transition to the red zone of
imminent danger.

Time and Again: New Appointment Requests
The final tile will display a bar chart with the number of new appointment requests per quarter
time slot. This view will offer quick insight in the evolution over time: Is the pressure mounting, is
the rate of new requests constant, or are the numbers going down?

Select the Bar Chart icon, select the PatientAppointment data object, and then select
InitialAppointmentRequestDate in the Group By box. With that field selected, the Time Groups
area appears. Mark the check box Continuous Time Series. Select Minute for Time Unit and set
the quantity to 15 (minutes). Make sure the radio button Use Time Series is selected. Select the
AppointmentIdentifier as the chart value. With that field selected, select the Count summary
function.

Go to the properties, and after typing a better title on the General tab, go to the Value Format
tab (see Figure 19-31). Select the field InitialAppointmentRequestDate. Select TimeUnit in the
Category list box, and select Hour, Minute in the Type box. Thus, we specify the display format
that is used for the time displayed under the bars as HH:MM (for example, 12:15 or 3:45).

FIGURE 19-31. Bar chart with appointments count per 15-minute time unit

658 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 659

Saving and Testing the Appointments Dashboard
Save the report as StMatthewsAppointmentDashboard. Open the Active Viewer and select the
newly created report. Depending on the appointment request that your PatientAppointmentService
is and has been processing, the report will show different metrics (see Figure 19-32).

You may want to use ICommand to save the definition of the report and load into a version
control environment. From personal experience, I can inform you of the fact that report definitions
are easily inadvertently changed and even lost—so some safeguarding is worth considering.

BAM Detecting the Scheduling Non-Event
Non-events—or the absence of an expected event—can be quite telling, as we have seen earlier
in this chapter (death of sensor) as well as in Chapter 9 on the Event Delivery Network. The
Business Activity Monitoring can also be used to identify non-events, as we will see shortly. In
this case, Margaret has stated that she wants to be notified whenever an appointment request
goes without scheduling for longer than three days. It is against the performance criteria that have
been agreed upon with the business to keep patients waiting for longer than 96 hours—and
Margaret secretly considers 72 hours an attainable and more desirable target. By getting notified
after three days, she also has a window of 24 hours to prevent such appointments from actually
going over the real business threshold.

FIGURE 19-32. The St. Matthews Appointment Process Monitor report in BAM

Chapter 19: Real Time Insight Using CEP and BAM 659

You probably have long seen the non-event coming: How do we know an appointment
request has not been serviced for 72 hours? Because the scheduling event that would promote the
appointment from the “new” to the “scheduled” status never happened. If we spot that non-event,
we have trapped the appointment request that we should tell Margaret about.

The steps to set up a BAM alert rule for such a non-event are straightforward. The most
important part is the creation of a calculated field that sets the time at which the expected event
should have happened. The rule then compares this date with the current date for all
appointments that still have the status “new.” Any new appointment for which the “expected
event date” is in the past has undergone the non-event (that is, has not been scheduled while the
deadline has come and gone).

Adding the SchedulingDeadline Field
Go into the BAM Architect. Select the PatientAppointment data object and click Layout. Click the
Edit Layout button and then click the link Add A Field. Enter SchedulingDeadline as the name for
the field. Select the Calculated type from the drop-down list.

Click Edit Formula and specify the expression for calculating this field as follows:

DateAdd(InitialAppointmentRequestDate, 0,0,0,72,0,0,0)

This will calculate the value of SchedulingDeadline by adding 72 hours to the value of
InitialAppointmentRequestDate. This value can be used subsequently in the alert rule.

Creating the Alert Rule
While still in the BAM Architect, select Alerts in the drop-down list in the upper-left corner. Click the
link Create A New Alert and then click Create A Rule. The next steps are illustrated in Figure 19-33.
Select the radio button “When a data field in a data object meets specified conditions.” Select the
PatientAppointment data object and then add a new entry in the Filter Expression pane for the

FIGURE 19-33. Creating the non-event alert for not scheduling the appointment (on time)

660 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 661

row filter. This entry specifies that the value of AppointmentStatus must be equal to New in order for
this alert to trigger. The second entry makes this more specific, by filtering on rows where the value
of SchedulingDeadline is in the past. Create this entry, select the SchedulingDeadline field, and
select “is within a time interval” as the comparison operator. Then select “previous” as we look for
dates in the past. The unit can be set to Days—the issue should be resolved before the deadline is
more than one day in the past. Check the box for Active Now because we want to make “one day in
the past” relative from the current day.

Click the Frequency Constraint button to have this alert activated only once every four hours
for a particular appointment. Then click Next to go and configure the actions to be taken when
this alert is triggered, as shown in Figure 19-34.

Select the action Send A Message Via Email. Specify the text for the mail message as well as
the recipient (Margaret, of course). The message can contain dynamic values taken from the
PatientAppointment data object for which the alert triggers.

Click the OK button to create the alert rule and make it immediately active. From this
moment on, Margaret will know when an appointment goes unscheduled for more than 72 hours.

FIGURE 19-34. Specifying the action for the non-event alert for not scheduling the appointment

Chapter 19: Real Time Insight Using CEP and BAM 661

To test this alert, you could go into the BAM Architect, look at the content of the
PatientAppointment data object, and update a row to have the status New and an initial
appointment request date set to a date between 72 hours and 96 hours in the past. Then in the
Active Studio look at the list of alerts to see whether our change in the data object did indeed
activate the alert.

Fine-grained BPEL Tracking Using
BAM Sensor Actions
Chapter 16 described the various ways in which we can learn what’s going on (or has been going
on) inside the SOA Suite. It showed how we can track running instances of composites as well as
completed instances, following the message flow from component to component and depending
on the audit-level settings even within components. We can learn about the payload of the
messages—and how it changes—while flowing through the composites and through the
components.

The FMW Control lets us query instances on their state, start time, or end time, and on the
values of composite sensors. The console also provides access to the logging files where more
raw trace details can be found. Additionally, the SOA Suite exposes a Java API through which we
can query and retrieve information about composite instances.

We can extend the logging from within composites using Mediator Java callouts, human task
Java callbacks, BPEL Embedded Java, and logging statements in Business Rule and Spring
components. BPEL processes offer one further option to have their progress monitored, namely,
through sensors. Using these BPEL sensors, we can collect information about the evolution of
variable values or the time spent in scopes or activities. The sensors can publish information to a
JMS queue, have it stored in a database, or update a BAM data object, as we will now see.

Introducing the BAM Sensor Action
The sensors for BPEL processes were first introduced in Chapter 16. We have seen how sensors
can be attached to a BPEL process to report on activities and variables as well as faults. The
sensors can emit different metadata about the process instance in which they are triggered, and
they specifically report about the activity or variable they have been associated with. The
information is reported to various output channels. And we will see now how a BAM data object
can be one of those channels.

In Chapter 16, we created sensors and sensor actions that were attached to those sensors. We
ignored at that time the special sensor action called BAM Sensor Action. Now that we have been
introduced to BAM, we are ready to take on this special sensor action. In short, BAM Sensor
Action provides us with a lightweight manner to have a BPEL process insert or update a BAM data
object (lightweight in the sense that we do not need to configure a BAM adapter service to
achieve this flow of data to BAM). Additionally, we do not make changes to the composite
definition or even the BPEL process definition, because the definition of the sensors and the
sensor actions, as well as the special configuration data and the mapping from the sensor variable
and metadata to the BAM data object, are all stored outside the process in separate files. Also
note that we have access to various metadata in the BAM sensor action that we do not have
access to in normal BPEL activities—such as the time it took to complete an activity.

BAM sensor actions are typically used to gather information about the BPEL process itself and
are more for monitoring the technical aspects of the BPEL process than the business aspects of

662 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 663

it—although there is no clear distinction between the two, of course. Tracking the time it takes to
get a response from an external service or the duration of a human task is a typical example of a
metric sent to BAM from a sensor.

Note that the BAM adapter needs to be configured before the BAM sensor action can be used
(just like it needs to be in order to use a BAM adapter service).

Monitoring the Service Level of the Patient Data Service
The PatientAppointmentService is but one of many applications that heavily depends on the
PatientDataService. Various consumers throughout the hospital make use of this service—and more
seem to be on the way. St. Matthews has not been very rigorous about defining, let alone monitoring
and enforcing, Service Level Agreements. However, as we discussed in the previous chapter when
we spoke about governance, we cannot simply leave the service levels to assumptions, good
intentions, and intuitive impressions of actual performance. We need to monitor what exactly is
going on—and then start making (requests for) improvements if those are required.

In this case, instead of asking the owner of the external service we invoke from our application,
we will use the sensor mechanism linked to BAM to collect statistics about service performance
ourselves.

We need to create the data object in the BAM server that we can send the statistics to in the
BAM sensor action. Based on this object, we probably would like to create a report that visualizes
the details for the activities that we monitor in this way.

In the BPEL process component, we first add a sensor to the RetrievePatientData Invoke
activity. Then we create a sensor action that we associate with this sensor. The sensor action is
actually a BAM sensor action that performs an Upsert on a BAM data object. We select the target
data object and then create an XSL file to map the metadata available in the Activity Sensor to the
data object.

Creating the BAM Data Object BPELActivityMonitor
Go into the BAM Architect. Create a new Data Object called BPELActivityMonitor. Specify
the fields for this object, including the name of the composite application and the activity, the
application instance identifier, the duration for executing the activity, and the time at which the
activity was completed.

Creating and Attaching a BPEL Activity Sensor to the Invoke Activity
Open the BPEL Process editor for PatientAppointmentService. To activate the Monitor view mode,
click on the Monitor button in the top-right corner (see Figure 19-35). Right-click the activity
RetrievePatientData. From the context menu, select the option Create Sensor. Enter a name for the
sensor—for example, RetrieveData_Invoke_PatientDataService. Select the Completion value from the
Evaluation Time drop-down. We need to associate the sensor with a variable—even though in this
particular case we do not need any values from the variable. Select the payload from the patient
variable. Click OK to create the sensor, attached to the Invoke activity. This is half the work in the
BPEL process—creating the BAM sensor action is the other half.

Creating the BAM Sensor Action for the Activity Sensor
The BAM Sensor activity describes what to do when the sensor that the activity is associated with
is triggered. We need to indicate that when the sensor is fired, a sensor action is executed that
updates a BAM data object.

With the BPEL editor still open, in the Monitor view mode, open the Structure window from
the View menu—if it is not already open (see Figure 19-36). Select the node Sensor Actions and

Chapter 19: Real Time Insight Using CEP and BAM 663

from the context menu pick the Create BAM Sensor Action option. The dialog for creating the
BAM sensor action appears. Enter the name FeedActivityMonitor. Select the sensor for which this
will be an action. Select the BPELActivityMonitor data object and select Upsert for the operation
and _ApplicationInstanceId as the key field (used for finding the existing row to update).

FIGURE 19-36. Creating the BAM sensor action from the Structure window

FIGURE 19-35. Creating the BPEL sensor for the Invoke activity PatientDataService

664 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 665

Specify bam\SensorAction_FeedActivityMonitor.xsl for the name of the mapping file and
click the green icon to have the file created for us. Enter the name for the BAM connection
factory—the same one you used in the BAM adapter service configuration earlier in this chapter
(usually eis/bam/rmi). Click OK to close the dialog or click the edit icon behind the XSL field to
start editing the mapping.

Create the mapping from the sensor’s metadata, including the payload with the patient
variable’s contents, to the BAM data object BPELActivityMonitor. Set the name of the application
and the activity using hard-coded text nodes. Map the composite instance ID. Set the end time to
the current date time and map the durationInSeconds to the duration field on the data object.
Save the mapping definition when done.

Making Use of the Activity Sensor’s Statistics in BAM
The pieces of the puzzle are in place: The Invoke activity to the Patient Data Service that we want
to analyze has been decorated with an activity sensor that is triggered when the Invoke is
complete (note that this means that for now we will not track open, long-running instances of
service calls). This sensor is associated with a BAM sensor action that performs an Upsert on the
BPELActivityMonitor data object in the BAM server’s Active Data Cache. The mapping file makes
sure that the application name, activity name, instance ID, and total duration are set, as well as
the time of sensor action execution.

We can deploy the composite application with the sensor and sensor action definition files
inside. When we next invoke the PatientAppointmentService application, the activity sensor
starts doing its job by sending the trace information to the BAM server, the results of which are
displayed in Figure 19-37.

FIGURE 19-37. The BPELActivityMonitor collects the statistics from the BAM sensor action.

Chapter 19: Real Time Insight Using CEP and BAM 665

This information obviously begs for a nice BAM report with live counters and gauges and
other visualizations of the calls to the PatientDataService and their key characteristics, such as
average processing time, total number (per time slice), and the trend in the number (and the
performance). We could easily create such a report—the fact that the data object is fed from BPEL
sensors is not relevant at all for the report developer, and we can do the same things as with the
Temperature dashboard and the Appointment report. However, the next section introduces the
Monitor Express—a feature that perhaps will save us the work.

Tracking BPEL Process Execution Using Business
Activity Monitoring and the Monitor Express
Oracle has made life easier even than it already had become with the BAM sensor action. It can
still be a lot of work to add all required sensors and sensor actions to a BPEL process and to feed
statistics to BAM—and that is where the activity monitors come in. Through a small number of
simple, declarative steps we can add straightforward monitoring to the processes. These monitors
can count the number of executions for any activity or scope in the BPEL process, they can time
the intervals between two events in the process, and they can report the values of BPEL variables
at specific points in the BPEL process execution.

When activity monitors are added to a BPEL process, the composite application will
deploy the associated data objects to the BAM server—several data objects are generic and
apply to all BPEL processes that are monitored, and one is specific to the process for capturing
the values of BPEL variables. The monitors feed their data directly into these Monitor Express
data objects, as illustrated by Figure 19-38. The BAM samples collection contains a set of
predefined Monitor Express reports that visualize the contents of these data objects in a
dashboard that helps to track the progress of BPEL processes and helps analyze bottlenecks or
sources of unexpected faults.

FIGURE 19-38. Architecture of Monitor Express—BPEL process trace data loaded into the BAM
ADC and exposed through a dashboard report

BAM

ADC

SOA Suite

Reports

BPELProcess...

Monitor
config

666 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 667

Applying Monitors to the PatientAppointmentService
BPEL Process
We will add three types of activity monitors to the PatientAppointmentService process:

 Business Indicator ■ A monitor of type Business Indicator keeps track of the values of
one or more metrics, specified through XPath expressions against BPEL variables. Each
Business Indicator is evaluated—and reported to BAM—at specific moments, specified
through “snapshots.” Each snapshot indicates an evaluation event on an activity. That
means that we can specify for a Business Indicator to have its values reported for each
of the events or stages on an activity. The data object that records the data captured
by all metrics in all Business Indicators in a BPEL process is called BI_<Domain_
Name>_<Composite_Name>_<BPELPROCESS_Name>.

 Counter ■ Counter is attached to an activity, reporting the completion of the specified
stages in every execution of the activity to the BAM data object COUNTER, by creating a
new row with a timestamp in the SNAPSHOT_TIME field.

 Interval ■ Interval is attached to two activities; it will determine the interval between the
specified evaluation moments on these activities and report it to the BAM engine, to the
INTERVAL data object. The new row in this object may be referenced by two rows in the
Business Indicator data object, with the value for the indicator at the start of the interval
and at the end of it.

These will send their trace data to the predefined and the custom data objects in the BAM
server, to be used in either the shipped or any custom reports.

Preparing the BAM Server
An SOA composite application that is decorated with monitors also contains the required BAM
data object definitions. When the application is deployed, these data objects are automatically
deployed to the BAM server.

You may want to create these objects in advance (for example, because you want to create
reports or alert rules against them). The BAM Samples directory contains a sample Monitor
Express application. This application also contains the data objects as well as a preconfigured
BAM report against the Monitor Express objects—providing a generic overview of metrics for
BPEL processes, their instances, and the timings for their activities. This sample dashboard can be
used out of the box, tweaked to better fit your needs, or serve as inspiration for a report you
create yourself.

You can load the Monitor Express sample application, including the data object definitions,
using the ICommand command-line interface, as described in the online chapter complement.

When we start adding activity monitors to the BPEL process, two files are added to the
application: monitor.config and <BPELComponentName>.monitor. The latter contains the
configuration details of all monitor elements that have been attached to the BPEL process. The
former indicates the JNDI name of the BAM adapter (default is eis/bam/rmi) and the name of the
folder on the BAM server for the Monitor’s data objects. You should verify whether the default
settings in this file are correct for your environment.

Chapter 19: Real Time Insight Using CEP and BAM 667

ActivityMonitoring in a BPEL Process
To enable ActivityMonitoring on a BPEL process, we first need to switch to Monitor mode, just
like we have to do for creating sensors and sensor actions. The check box Enable Monitoring
should be checked (see Figure 19-39). Then you click the icon next to Enable Monitoring to bring
up a dialog that allows us to check Enable Activity Monitoring. We then also get to set the level at
which the monitoring will take place.

Adding ActivityMonitoring in the PatientAppointmentService
Let’s add ActivityMonitoring to the PatientAppointmentService—to provide us a little more run-
time insight into what is going on. We will make use of the three types of monitors available to
us. First, we use a Counter to simply count the number of calls we make to the PatientDataService
(see Figure 19-40). We can add a call to an activity in a BPEL process by selecting the option
Create | Counter from the context menu on the activity (when the BPEL editor is in Monitor
mode!). Then we add an Interval monitor that will record the time from the moment the process
receives the incoming request to the time it returns the appointment identifier to the caller. The
most important activity during that interval is the call to the PatientDataService.

The Interval is created from the context menu on the Receive activity (see Figure 19-41). The
dialog that appears allows us to select the end activity that forms the conclusion of the interval.
We can specify exactly at which evaluation moment for the begin and end activity the interval
should start and end. And we can add Business Indicators to have them evaluated at the start and
end of the interval.

Business Indicators can be created in the structure window or from the drop-down menu at
the top of the BPEL editor. We will create a Business Indicator for the priority assigned to the
appointment. We know that an appointment request comes with a priority indication from the
referring doctor. The EstablishAppointmentPriority invokes the Business Rule service component
to establish the real priority based on St. Matthews business logic. We would like the activity
monitors to report the priority both as initially received and formally established by the Business
Rule component.

FIGURE 19-39. Initial setup to enable activity monitoring on a BPEL process

668 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 669

FIGURE 19-40. Adding a Counter activity monitor to the PatientAppointmentService BPEL
process

FIGURE 19-41. Adding an Interval monitor to the PatientAppointmentService BPEL process

Chapter 19: Real Time Insight Using CEP and BAM 669

Create a new Business Indicator and set the name to AppointmentPriority (see Figure 19-42).
Create a new metric, called PriorityCode, that’s based on an XPath expression that queries the
priorityCode element in the appointmentRequestHeader element in the inputVariable. We want
this metric to be reported at two times: immediately after the start of the process and when the
call to the Business Rule component is completed. Therefore, we need to define two snapshots
for this indicator. The first is activation of the RegisterPatientData scope—the first scope after the
Receive activity (Note: It is recommended not to evaluate variables in a snapshot associated with
initial Receive activity because the variables may not have been initialized at that moment and
therefore XPath query might fail). The second is the completion of the scope
EstablishAppointmentPriority.

With these activity monitors in place, we can go ahead and deploy the SOA composite.

FIGURE 19-42. Defining the Business Indicator AppointmentPriority in the PatientAppointment
Service BPEL process

670 Oracle SOA Suite 11g Handbook Chapter 19: Real Time Insight Using CEP and BAM 671

Seeing Monitor Express in Action
Deploy the SOA composite application like you always do. The monitor instructions associated
with the BPEL process are part of the archive and will be interpreted by the BPEL service engine
that interacts with the BAM adapter. No additional configuration is required—except that the
BAM server should be up and running in order to be able to collect and expose the monitor data.

Run several instances of composite PatientAppointmentService. Then go into the BAM web
application and navigate to the BAM Active Studio. Open Report Samples/Monitor Express. See
the summary of the test runs that you just performed, which will look similar to Figure 19-43. You
could run another instance and watch the server push the new data to the browser, updating the
dashboard.

FIGURE 19-43. The sample BPEL Monitor Express dashboard report after several instances of
PatientAppointmentService have been started

Chapter 19: Real Time Insight Using CEP and BAM 671

To see the results of the Business Indicator—which are process specific and therefore not part of
the generic Monitor Express reports—go into the BAM Architect and check out the data object that was
specifically created for this BPEL process. It is called BI_DEFAULT_PATIENTAPPOINTMENTSERVICE_
PATIENTAPPOINTMENTSERVICE. This data object contains two rows for each instance of the
PatientAppointmentService BPEL process. The first one shows the value of the Business Indicator
(the appointment’s priority) at the time of instantiation, and the second one contains the value for
that same indicator after the Business Rule component has performed its magic.

Custom BPEL Activity Monitor Reports
The Monitor Express consists of three parts:

 The configuration of the BPEL process that is interpreted by the BPEL engine and ■
translated into appropriate calls via the BAM adapter to update the BAM Active Data
Cache

 The definition of the data objects that get updated from the BPEL process ■

 The sample Monitor Express dashboard report ■

The first two components are the real boon—without hardly any effort at all, we get several
useful BAM data objects that collect tons of information about running BPEL processes. The
pre-built report that ships with Monitor Express is just one very generic example of how this
information can be exposed in a dashboard.

It is very well possible for us to create our own reports using the Monitor Express data objects.
This allows us to prepare reports that are not generic for all possible BPEL process definitions, but
specifically geared toward a specific process to provide business users with meaningful insight
into that process. Such reports can, of course, include alerts that take action under certain
circumstances (for example, when a human task is taking too long to execute, an external service
is not available, or the result of a service call has some unexpected, extreme value). BAM and the
Monitor Express for BPEL can complement the exception policy framework in the SOA Suite as
well as the escalation and notification mechanisms in the Workflow Services.

Summary
This chapter introduced a wide range of subjects, most of them revolving around the central
notion of events. An event describes a change somewhere in the world, at a certain moment in
time, of a certain type, and usually with some data associated with it. Events can be extremely
fine grained, arriving at high volumes and frequencies, or come at a much slower pace with
possibly a substantial payload.

This chapter discussed the Complex Event Processor that deals with the challenge of
interpreting continuous event streams, detecting patterns and exceptions, and calculating
aggregates. It does so using Event Processing Networks that tap into JMS queues or other event
channels. These EPNs then apply CQL-based adapters that perform continuous queries on the
streams of arriving events. CEP publishes its result in the form of a higher, more advanced level of
events, over an outbound JMS channel, for example.

The Oracle BAM (Business Activity Monitoring) server is one of the potential consumers of
these promoted business events. It can absorb them into the Active Data Cache, combine them
with other data sources, and present real-time dashboards that visualize the current state of affairs
as described by the events. BAM dashboards and alerts can be used to monitor for (looming)

672 Oracle SOA Suite 11g Handbook

threshold transgressions, exceptions, and missing events, both visually and through concrete
actions such as sending an e-mail notification and invoking a Web Service.

SOA composite applications can integrate tightly with the BAM server, in several ways. One
is the use of the BAM adapter, which can be used in composites to report business events and the
actual state of data objects. BPEL process components can also make use of the BAM sensor
action in BPEL sensors to report events in the execution of BPEL process instances. Another
convenient integration between BPEL and BAM is provided by the monitors—Counter, Interval,
and Business Indicator—which allow declarative definition of non-intrusive spies to report on the
statistics of BPEL process execution. Metrics on the number of executions, the average time
required for an activity or service call to complete, and the evolution of values during process
instances are published to the BAM data objects and reported in pre-built or custom-developed
dashboards.

Chapter
20

ADF as UI Glue
(and More) in FMW

673

674 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 675

ver the past dozen years or so, Oracle has been working on components and
infrastructure for enterprise Java applications: Business Components for Java
(BC4J) for tight integration with relational databases from Java applications;
JavaServer Faces components that help create rich, visually attractive, Ajax-
enabled user interfaces; ADF faces; and the Model and Data Binding layer that

insulates the Java web application from the underlying business services through data controls on
top of various enterprise sources such as a database, content repository, BI database, Web
Service, or BAM Active Data Cache. All these capabilities together make up the Oracle
Application Development Framework (to be called ADF from now on).

ADF is the strategic framework for developing enterprise Java/JEE applications. In Oracle’s
view, that applies to the development of custom applications by its customers and also to all Java
web applications that it creates itself, to be sold as products to customers. Fusion Applications is
the pinnacle in application development at Oracle—and it is built in ADF, along with all the
other parts in Fusion Middleware. Modules in other Oracle Applications’ offerings—in eBusiness
Suite, for example—are also developed using ADF. The Fusion Middleware Enterprise Manager
console that we have used throughout this book was also developed with ADF, and the same
applies to other run-time user interfaces such as Oracle Business Intelligence, WebCenter Spaces,
Universal Content Manager, and, of course, the SOA and BPM Composer, the BPM Worklist
application, and the BPM Workspace application that we have used in Chapters 10 and 11.

ADF has a number of special areas of interaction with the SOA Suite—situations in which we
can leverage ADF to achieve some additional functionality or productivity. These include the
ability to raise events onto the Event Delivery Network from ADF Business Components (ADF
BC), the implementation of customized user interfaces for human tasks that can be embedded in
the standard BPM Worklist application as well as custom web applications, and the BAM data
control, which allows the development of custom dashboards and the integration of BPEL entity
variables with ADF BC through an SDO binding.

This chapter will introduce these special integration areas between ADF and the SOA Suite. It
will also demonstrate how ADF applications can invoke Web Services exposed by composite
applications that run in the SOA Suite. Note that given the range of topics and the sometimes
substantial number of steps required to demonstrate an integration point in a running application,
this chapter can only scratch the surface. Please take a look at the online chapter complement for
detailed descriptions, step-by-step hands-on instructions, and fine-grained screenshots.

Of course, ADF applications, like other Java applications, can leverage the Java and
WebService APIs of the SOA Suite—to have business rules applied, human tasks created or
manipulated, and composite instances searched and analyzed. Through JMS and other means,
ADF applications (again, like any Java application) can leverage complex event processing—both
as a consumer and provider of events—and feed information into Business Activity Monitor.
These APIs and interactions, however, are not within the scope for this chapter. Appendix D goes
a little into the Java and Database APIs, Chapter 12 gave some clues, and the wiki contains a
number of examples of interaction from Java (and ADF) applications to the SOA Suite and its
service engines.

Very-High-Level Architecture of ADF
ADF applications typically consist of two parts: the Model and the ViewController, implemented
in separate JDeveloper projects in a single application. The Model project usually contains the
business objects that implement the business logic and provide the business service. These

O

Chapter 20: ADF as UI Glue (and More) in FMW 675

objects frequently have interaction with enterprise resources such as databases, file systems, Web
Services, or queuing infrastructures. The ViewController is the part of the application that
provides the interface for interaction with external parties, typically end users and sometimes
other applications. The ViewController renders the user interface, injecting data that it gets
handed by the Model project through the data bindings. A page in the ViewController consists of
components that can render or paint themselves. They are, for example, a calendar, a drop-down
list, a form input field, or a button. They can make themselves look pretty on the screen and they
can typically engage in some form of interaction—click, type, or select. The data content of these
components is pulled by the ViewController from the Model, via the data bindings and data
controls. Figure 20-1 visualizes the architecture of ADF.

ADF implements its own type of decoupling: It decouples the application—web application,
desktop application, or Web Service—from the business service(s) it uses. The business services
offer data and operations—usually against enterprise resources such as a database, content
repository, files, BAM server, or Web Service (RESTful or SOAP based). These business services can
be implemented in various technologies—for example, ADF Business Components (ADF BC), JPA
using EclipseLink, and POJOs (Plain-Old Java Objects). However, regardless of the implementation
technology, all services can be described in a generic way: They offer data collections that can be
iterated over, from which records can be retrieved and removed and into which records can be
added or updated. A record is a collection of key-value pairs. Business services can also expose
operations that can be invoked to achieve a certain effect and/or retrieve information.

ADF Model is the insulation layer between applications that want to consume the business
services and those business services themselves. ADF Model wraps all business services in data
controls, abstracting them to the generic interface (just introduced) of data collections, with

FIGURE 20-1. Overview of the architecture of ADF

Mobile ADF Faces
rich client

EJB and JPA
(EclipseLink)

WebService SOA
Suite

ADF BC POJO

Web Service Desktop
JSP,

Servlet

ADF Model

View

Business services

Enterprise resources

RDBMS Content
repository

BAM
server

Portlet

676 Oracle SOA Suite 11g Handbook ADF as UI Glue (and More) in FMW 677

records that consist of attributes with values and that support a number of standard actions and
custom operations that take input parameters and may return results. Figure 20-2 shows how the
ADF Model exposes technology-neutral data controls that make collections and operations
available—based on services implemented through various underlying technologies.

Applications only have to deal with these basic elements—they do not need to know
anything about the implementation of a business control, and they communicate with the data
controls exposed by the ADF Model layer in those generic terms. The ADF Model translates these
interactions into calls to the specific business service—which can be an ADF BC application, a
JPA Entity Manager, a remote Web Service, a BAM server, or a content repository. The business
service exposed as a data control can also be a human task hosted by the Human Workflow
Services in the SOA Suite, as we will see in this chapter.

Application developers only need to understand how to interact with the ADF Model and the
data controls it offers—they do not need to know anything about how the underlying business
services are implemented. That’s decoupling for you!

The implementation of the data control can be changed—for example, switching from one
Web Service to another or from JPA to ADF BC. However, that operation is not entirely painless
and is not one frequently undertaken. Figure 20-3 shows how the data controls for patient- and
appointment-related services are visualized for the developers of the ADF application for
requesting an appointment.

FIGURE 20-2. The ADF Model provides decoupling of application from business services.

Mobile
- ADF faces mobile
- Native mobile
 client

PatientsVw find...

PatientsService
data control

PatientAppointmentService
data control

ScheduleAppointmentTask
data control

POJO

“anything Java can access”

ADF BC
EJB & JPA

(EclipseLink)

RDBMS Content
repository

BAM
server Human task

(SOA Suite
workflow
services)

WebService
- RESTful
- SOAP
- SCA Composite

ADF Model

request... cancel status getTask... claim ok

- Swing
- Office

ADF Faces
rich client

JSP,
Servlet

- RESTful
- SOAP
- Portlet

Web Service Desktop

Chapter 20: ADF as UI Glue (and More) in FMW 677

Custom User Interface to Request an Appointment
The first task we will undertake is the development of a custom web application that can be used by
general practitioners, by the staff at St. Matthews, and in the near future perhaps by registered patients
themselves to request an appointment. This user interface will invoke the PatientAppointmentService
published by an SOA composite application running in the SOA Suite. The application gathers patient
and appointment details, sends them to the Web Service, and presents the user with the appointment
identifier that is received in return.

As a second step, we will extend the application with the ability to check on the status of the
appointment and to cancel it with or without a request to reschedule. These extensions all
consume operations on the PatientAppointmentService.

Developing the Web Application Using ADF
This application makes use of the WebService data control provided in ADF. This data control
interacts with a Web Service based on the WSDL. It completely insulates the application from the
SOAP, XML, and other Web Service–specific details. When you create the application against the
data control, the work is no different than when the underlying business service would have been
a database or content repository.

FIGURE 20-3. Data controls abstracting business services away from applications

PatientsVw find...

PatientsService
data control

PatientAppointmentService
data control

ScheduleAppointmentTask
data control

ADF Model

request... cancel status getTask... claim ok

WebService
SCA composite
PatientAppointment
Service

BAM
server

DataObject patient
Appointment

ADF BC

PATIENTS

Human task
(SOA Suite
workflow
services)

678 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 679

The essence of the page on which the appointment can be requested lies in the form with
input fields that the user completes and submits (to the Web Service). This form is automatically
created when the WebService data control is dragged to the page editor. The developer can refine
the UI using the rich components, selection lists, built-in validations and derivations, and styling
mechanisms to produce an even more attractive and functional page.

Getting Started with an ADF Application
The ADF application for requesting appointments for patients is created in JDeveloper—the
development environment not only for SOA applications but also for ADF applications. We need
to go through some preparatory steps.

To begin, create a new Fusion Web application from the New Gallery called PatientAppointment
FrontEnd. Enter com.stmatthews.hospital.appointments for the application package prefix and
then click the Finish button. The new application will be created, including two projects: Model
and ViewController.

Implementing the Request Appointment Application
To complete these steps, you will need the URL for the WSDL of the PatientAppointmentService.
You can get hold of this URL in the FWM Control, when you go to the dashboard for the
PatientAppointmentService composite application and click the WSDL icon.

Begin by selecting the Model project. Open the New Gallery, open the Business Tier category
node, and select WebServices. Select the item WebService Data Control and click OK. The wizard for
creating a data control for a Web Service opens (see Figure 20-4). Enter PatientAppointmentService as

FIGURE 20-4. Creating the WebService data control for the PatientAppointmentService

Chapter 20: ADF as UI Glue (and More) in FMW 679

the name and then type or copy and paste the URL of the WSDL to the corresponding field. The
PatientAppointmentService is automatically selected because it is the only service exposed in
the contract.

Click Next. JDeveloper extracts the names of the operations that are exposed by the Web
Service. Select the operations process, getAppointmentStatus and cancelAppointment. We will
only need the operation process for now, but intend to extend the application later on with
functionality to check on the status of an appointment or cancel it. You can click Finish because
the default settings on the other pages of the wizard are acceptable.

The data control PatientAppointmentService has now been added to the Data Control palette. If
the palette is not already visible on the left side in the IDE, you can bring it up from the View menu.
The new data control has three methods on offer for binding in webpages as well as three sets of
parameters for which input forms can be created—as we shall see shortly. You should realize that
for the WebService data control the PatientAppointmentService is just another Web Service—it has
not done anything special because it happens to be a service that is exposed from the SOA Suite.
The behavior we are getting is the same for any other WSDL-based SOAP Web Service.

Select the ViewController project. Go again to the New Gallery, this time to create the webpage
that we will develop for requesting appointments for patients at St. Matthews. Open the Web
category and select the JSF node. On the right side, click item JSF Page and click OK. A simple
dialog appears for creating a new JSF (JavaServer Faces) page. The only thing you need to type or
choose is the name of the file: PatientAppointmentForm.jspx. Click OK to have the page created.

We will focus only on functionality with no regard whatsoever for look and feel. The result
will work but will be disappointing, visually speaking. So be prepared!

NOTE
Making the page better looking when it is already doing the job it is
supposed to do is much easier than creating a pretty page and trying
to wire it up to a Web Service.

On the Data Control palette, expand the node PatientAppointmentService. Expand the node
process_parameters. Drag the child node “payload” to the page and drop it in the center facet as
an ADF form. The Edit Form Fields dialog appears with entries for all first-level elements in the
request message that we need to send to the Web Service. You can define display labels—those
are shown as the prompts for the fields. Do not include a Submit button. Click OK when you have
nothing more to inspect or to add. The fields are created in the webpage (the .jspx file). At the
same time a new file is created called PatientAppointmentFormPageDef.xml. This file defines the
data bindings—the usage by the page of the parameters as well as the collections and methods
exposed by the PatientAppointmentService data control. All form fields refer in their value attribute
to a data-binding element in this page definition and thereby indirectly to an element in the XML
request message to be sent to the Web Service.

This first drag-and-drop operation gets us part of the total form we need. We need to separately
drag and drop the nested child elements to the page. Through five drag-and-drop operations, we
assemble a form that allows entry of all data required for submitting an appointment request to the
Web Service. Now we need a button to actually make the request. Select the operation node
“process(Object)” in the Data Control palette and drop it on the page as a command button. This
results in a button that is wired to submit the request to the Web Service, carrying all the data
entered in the form fields as the payload.

680 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 681

The PatientAppointmentWebService returns a response message—a simple one, but still one
with a meaningful value: the appointment identifier (which we need to enquire after the status of
the appointment request and when we want to cancel it). The last thing we will add to the page is
an element that displays this return value. Drag the String return value under the process
operation node to the page, dropping it behind the button as an output text element with a label.
These steps are visualized in Figure 20-5.

Deploying the PatientAppointmentFrontEnd
We will deploy the ADF application to the soa_server1 server, which also runs the SOA Suite. At
the top of the Application Navigator window is a drop-down list with the name of the currently
opened application—showing PatientAppointmentFrontEnd. Behind that drop-down is a drop-
down menu. Select the option Deploy in this menu. The Deployment Wizard appears. Select the
same application server connection that we use for deploying SOA composite applications. Then
we get the opportunity to indicate the location and other environment characteristics of the
PatientAppointmentService that our application accesses through the WebService data control.
For our simple development environment, we do not need to make any changes. Click the
Deploy button.

When the deployment has finished, we are ready to run the form in a browser window and
start submitting appointment requests in our own custom-developed ADF web application. The
application is available at the following URL (if you used the same names for the application and
the page as used previously):

http://localhost:8001/PatientAppointmentFrontEnd-ViewController-context-root/
faces/PatientAppointmentForm.jspx

FIGURE 20-5. Dragging the operation and result to the page and dropping them as a button and
output text, respectively

Chapter 20: ADF as UI Glue (and More) in FMW 681

Let’s enter the details for an appointment request on behalf of William Tacker. The user
interface is quite straightforward, offering the user very little in the way of easy data entry and
selections, automatic derivations, and visual adornments. Figure 20-6 shows, on the left, the
original no-thrill form; the right side shows the result of five minutes’ worth of decorating the
form.

After the user clicks the button and waits for a little while, the synchronous response from the
service comes in and the appointment identifier is displayed on the page. A new instance of the
PatientAppointmentService was created and is still running after the ADF application has received
the appointment identifier. These behind-the-scenes actions are illustrated by Figure 20-7.

Extending the Custom ADF Application: Checking
on the Status of the Appointment
Way back in Chapter 6, we implemented the PatientAppointmentService in a BPEL process. This
process can be fairly long running, and it is able to accept multiple requests during its lifetime.
Using the correlation mechanism, matching the process instance on the appointment identifier,
we can invoke operations to check on the status of the appointment and cancel the appointment.

FIGURE 20-6. Running the PatientAppointmentFrontEnd application and submitting an
appointment request

682 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 683

We will create an entirely new page, as equally unattractive and functional as the previous
one, that allows the user to check on the status of an appointment. All the user needs to do is
enter the appointment identifier and click the button.

Create a new JSF page called PatientAppointmentStatusCheck.jspx. Open the
getAppointmentStatus_parameters node in the Data Control palette and drag the payload to the
page and drop it as an ADF form. Next, drag the getAppointmentStatus operation node to the
page and drop it as a command button. Finally, drag the plannedSchedule node under the Return
node under the getAppointmentStatus operation node to the page and drop it as a form (see
Figure 20-8).

The application can be redeployed in the same way as before. When done, we can use the
new page to find out what the status is of an appointment we requested. Type the appointment
identifier and click the button. The planned schedule—if it is available—is returned from the Web
Service and displayed in the page.

ADF and Invoking Web Services
We have seen two examples of creating a custom ADF webpage bound to a Web Service—
which could be a service exposed by an SOA composite application. In general, it is quite

FIGURE 20-7. The instance of the PatientAppointmentService composite application that was
started as a result of the Web Service call from the custom ADF web application

Chapter 20: ADF as UI Glue (and More) in FMW 683

simple to make use of any Web Service and also any SOA composite application. ADF helps
us to create the form elements required to collect the data for invoking the Web Service and
displaying the response from the service. It also takes care of all the technical details for
actually making the call.

The ADF page developer hardly has to be aware of the fact that her page is based on a Web
Service and indirectly on an SOA composite. The data controls hide the Web Service intricacies
from the ViewController project and the page developer.

Our conclusion can be that creating user interfaces that provide access to SOA composite
applications is easily done using ADF. Even though this does not involve any special relationship
between ADF and the SOA Suite, it is still an extremely convenient way of creating rich, attractive
(although that still needs to be proven, of course) front-ends for composite applications. Note that
ADF applications can also easily call Web Services from (plain-old) Java classes and present a
more specific business interface to the ViewController project, possibly based on several Web
Services whose results are combined. Creating a WebService proxy is again an automated
operation in JDeveloper (leveraging JAX-WS), and publishing a POJO as a data control is a
two-click action. Finally, SOA Composite applications can easily expose services with EJB
binding instead of or in addition to a SOAP WebService binding, as we have seen in Chapter 12.
ADF applications can easily make use of POJOs to invoke such bindings.

FIGURE 20-8. Putting the PatientAppointmentStatusCheck form together using three drag-and-
drop operations

684 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 685

Creating a Custom Human Task
Form for ScheduleAppointment
Chapter 10 introduced the Human Task service component. This component makes it possible
to integrate manual operations and other tasks performed by people as an integral part of
composite applications—which is only too logical because oftentimes a process has a step
where communication, intuition, improvisation, chain of command, or fuzzy logic comes into
play and an automated service simply is not good enough.

We have seen how a task can be as simple as acknowledging the receipt of certain information by
choosing either “accept” or “reject.” Sometimes a task can be much more complex, involving quite a
bit of associated data to review or even to manipulate. And with such complex tasks, we benefit from
a user interface that presents data to provide a context and more background for the task at hand. The
user interface for the human tasks is perhaps ideally integrated with the enterprise portal or with other
web applications.

It turns out to be fairly straightforward to build a custom ADF application to provide the user
interface for the human tasks managed by the SOA Suite’s workflow services. This section shows
how to create such applications—and how to register them with the SOA Suite to have them
merged into e-mails, linked from notifications, and embedded in the BPM Worklist application.

Developing Custom User Interfaces for Human Tasks
We have seen in Chapter 10 how we can generate a (default) task form for a human task. This
generated task form lives in its own project. The form is created using ADF Faces Rich Client
components. It supports all elements in the task payload, including update of the payload when that
is allowed. The project with the generated task form is deployed as a stand-alone web application
that is linked in FMW Control with the human task it supports.

Generation gives us a form with elements that are wired to the human task and its payload.
However, what we get is also just a normal ADF Faces page that we can manipulate any way we
like. We can add layout elements, apply styles, and include illustrations. The layout of the page
can be reorganized, positioning the generated elements in a different way, using elements such as
the panel splitter, tabs, and pop-ups. We can also add new elements—potentially bound to other
data controls to provide richer context for the task.

There is another, semi-automated way of creating a task form. The context menu for Human
Task activities in the BPEL process editor has an option called Launch Task Form Wizard. This
action will also generate a task form, but will first guide the developer through a multistep wizard
that allows configuration of many aspects of the generated task form.

Instead of generating a task form and then manually refining it, we can also work from the
bottom up: Create a new ADF Faces page, using page templates and other foundational elements,
and then bind it to a Human Task component deployed to the SOA Suite that is made available
as a data control. We can use this data control to add components to the page that are wired to
elements of the task payload. When we have completed the custom task form, we can deploy it
to the WebLogic Server running the SOA Suite. In the FMW Control, we configure the Human
Task component to associate it with the custom task form. This is for the benefit of the Worklist
application, which needs to embed the custom task form when a user is acting on an instance of
a task for this particular task component.

Chapter 20: ADF as UI Glue (and More) in FMW 685

Developing a Custom Task Flow to Work on a Human Task
We will create a new, stand-alone Fusion web application called AppointmentScheduler that
contains an ADF task flow that is bound to a Human Task definition; this is illustrated in Figure 20-9.
The task flow will contain a single page that is initially populated using the data control and
subsequently refined.

Select the ViewController project. Open the New Gallery, go to the Web Tier category, and
select the node JSF. In the right pane, select ADF Task Flow Based On Human Task. The SOA
Resource Browser appears to allow selection of a Human Task definition. Toggle the browser to
the Resource Palette to use the MDS connection. Find the Scheduler composite application and
expand it. Select the ScheduleAppointment.task definition and then click the OK button.

Next, the Create Task Flow dialog appears. We can safely accept all default settings here.
Note that the name of the task flow definition file and the task flow ID will be required later on to
register this task flow as the task form for the ScheduleAppointment task in the Fusion Middleware
Control. Click OK to complete the creation of the task flow. The task flow editor appears—a pane
with a single page and a task flow Return activity. The task flow has a substantial number of input
parameters that will be populated by the Worklist application when it embeds and invokes the
task form for a specific instance of the ScheduleAppointment task. If you want to use the task
form in another context, you will have to provide the values for most of these input parameters.

Expand the data control ViewController_ScheduleAppointment node that was created when we
created the task flow based on the human task. Nested under this node, you will find a node called
Task. Drag this node to the page and drop it as Complete Task With Payload. Accept all default

FIGURE 20-9. Creating the task flow based on the human task ScheduleAppointment

686 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 687

values in the two windows that appear when you click the OK button. The page will be refreshed
with a large number of components in it, based on the task header, the actions, and the payload.
Those elements in the payload that are updateable are bound to enabled input components.

We can now start to make changes to the page. We can add images and collapsible layout
containers, and retrieve data from other data controls, such as a list of all rooms in the hospital
and a collection of all the doctors working at St. Matthews.

In this case, we make a few small changes: The address data is wrapped in an initially collapsed
panel box, the updateable description is converted to a rich text editor, the appointment date and
time can be set using a date/time component, and the room can be selected from a drop-down list.

Of course, we can do much more to the page to make it richer and more attractive—but the
focus of this chapter is on the integration between ADF and SOA Suite, not on the ADF specifics,
so we’ll leave it at that.

Deploying the AppointmentScheduler Application
After making these changes, we can deploy the AppointmentScheduler. Select Deploy from the
drop-down on the right of the application name in the Application Navigator. Pick the (default)
profile AppointmentScheduler_application1, as shown in Figure 20-10.

Select the same application server connection we use for deploying the SOA composite
application to the SOA Suite. Select soa_server1 as the target server. Click Next and then click
Finish. Deployment commences.

A pop-up window may appear regarding MDS. Select mds-soa as the repository and enter
tasks as the name of the partition. Click the Deploy button.

Registering the Custom Task Form with the Human Task Component
When deployment is done, we have a standalone web application that contains a task form that
supports processing instances of a Human Task component. However, no one knows about it—
especially not the Worklist application that is the director when it comes to presenting users with a
user interface for working on tasks. Therefore, we need to register our application and the human
task flow with the SOA Suite infrastructure. This is done in the Fusion Middleware Control, as
shown in Figure 20-11.

FIGURE 20-10. Starting deployment for the AppointmentScheduler application

Chapter 20: ADF as UI Glue (and More) in FMW 687

Open the FMW Enterprise Manager Control. Open the SOA and the soa-infra node. Select the
Scheduler Composite application, which contains the Human Task component ScheduleAppointment.
Click the Human Task component.

The configuration page for the Human Task component appears. Here we can associate the
custom task flow with the Worklist application in the context of the ScheduleAppointment task
component. The application name should be set to worklist. Set the hostname (localhost,
127.0.0.1, or whatever is the name of the host that runs the Worklist application) and the port
number (default value is 8001).

The URI is composed of the name of the application, the ID of the task flow, and the name of
the task flow definition file:

/AppointmentScheduler-ViewController-context-root/faces/adf.task-
flow?_id=ScheduleAppointment_TaskFlow&_document=WEB-
INF/ScheduleAppointment_TaskFlow.xml

Here, AppointmentScheduler-ViewController-context-root is the (JEE) name of the application that
contains the task flow, ScheduleAppointment_TaskFlow is the ID of the task flow that is based on
the ScheduleAppointment task, and WEB-INF/ScheduleAppointment_TaskFlow.xml indicates the
location and name of the task flow definition file.

The Worklist application contains an iframe that loads the task flow from the Appointment
Scheduler application, using a URL and passing enough context information that allows the
embedded task flow to interact with the human workflow service APIs regarding the correct task
instance and user context.

Working on a ScheduleAppointment Task
in the Custom Form in the Worklist Application
The custom task form that we have just created and registered is now ready for use by the BPM
Worklist application for occurrences of the human task ScheduleAppointment.

Open the Worklist application, log in as Maggie, and select an open ScheduleAppointment
task. The custom task form is opened with the details for the selected task. Maggie can benefit
from the huge (!) enhancements we have implemented compared with the original, auto-
generated task form (see Figure 20-12).

FIGURE 20-11. Registering the custom task flow as the task form for the human task
ScheduleAppointment

688 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 689

Note that we can continue to refine the AppointmentScheduler application. When we reach a
new stage, we can redeploy the application and the Worklist application will automatically pick
up the latest version of the task flow ScheduleAppointment_TaskFlow. Even though the Worklist
application relies on our custom application, the two are well decoupled, allowing changes in
one without impacting the other.

FIGURE 20-12. The customized task form for an instance of the ScheduleAppointment task

Chapter 20: ADF as UI Glue (and More) in FMW 689

Creating Real-time Dashboards Based
on BAM in Custom ADF Applications
In the previous chapter, we discussed Oracle BAM for business activity monitoring. In that
chapter, we made use of the BAM Active Studio to create reports and real-time dashboards on top
of the Active Data Cache. We can also use ADF Faces to create a custom dashboard or embed
visualizations of BAM data in a custom web application. ADF comes with the BAM data control
that connects to the Active Data Cache, consumes specific data objects, and exposes them for use
in data bindings. This means we can just as easily create a rich table or 3-D bar chart in ADF
Faces based on a relational database table exposed through ADF Business Components, based on
a Web Service or based on a BAM data object.

A special feature of the BAM data control is the Active Data Service or server push. This
means that changes in the Active Data Cache—for example, pushed through the BAM adapter
from SOA composite applications—are pushed to the View component of the ADF application
and from there even further to the browser. Just like the BAM Active Studio renders reports that
are updated in real time to represent the actual state of the data, an ADF application based on the
same BAM data objects will also have this live update functionality.

Implementing the Appointment Dashboard
as a Custom ADF Application
In the previous chapter, we created the St. Matthews Appointment Dashboard using BAM Active
Studio, based on the PatientAppointment data object in the Active Data Cache. We will discuss
next how we can use the BAM data control in ADF and the ADF Faces Rich Client components to
create a dashboard in an ADF web application. Apart from the slightly different set of components
that ADF offers for creating the user interface, this can be interesting because it allows us to
integrate the real-time visualization of data from BAM into applications that also work against
Web Services and the database to execute actions. Whereas a BAM report is a read-only
dashboard (a live indication of what is going on), an ADF application can offer not just the BAM-
based real-time insight but also the functionality to act on that information. Additionally, ADF
applications run in more browsers—such as Firefox and Chrome—than just IE 7.0 and 8.0, the
current limitation for BAM Active Viewer.

Creating a comprehensive dashboard in ADF is a challenge that is somewhat beyond the
scope of this chapter, so we will limit ourselves to a very simple example that makes clear what
the basic steps are. We will create an ADF web application, create a new JSF page, and add a
little basic layout to it. Then we will create a BAM data control for a data object that we select
from the connection to the BAM server. The creation of such a BAM data control is very similar to
the first part of the creation of a report in Active Studio, including the creation of calculated fields,
filters, and groupings. Next we can create a representation of the data from the data control using
rich components such as the table or one of the many ADF Data Visualization Components, a
large collection of charts, gauges, and other graphics.

Because we are working on a regular JSF page in a standard ADF application, we can add
many other things to the page besides the component bound to the BAM data control. And we
can wire the BAM-based component to other components. For example, a BAM-based
component could show a bar chart of appointment requests, and when we click one of the bars,
a form that is bound to a Web Service is exposed by an SOA composite that can be updated
based on that click.

690 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 691

Preparation for the BAM-Powered ADF Application
To keep things as simple as can be, we will work in a new ADF application called PatientAppointment
Dashboard. In the previous chapter, we created a new IDE connection to the BAM server. Find this
connection in the Resource Palette and add it to the PatientAppointmentDashboard application, using
the context menu on the connection.

Creating the BAM Data Control for the PatientAppointment Data Object
Open the view on the Application Properties and select the connection to the BAM server. Expand
the node for this connection. The data objects in the BAM server are listed in their folder structure.
Select the PatientAppointment object and select Create Data Control from the context menu.

The Edit BAM Data Control Wizard appears—with steps that are very similar to those you go
through when you create a new view in a report in Active Studio. We will use only a fraction of
the functionality available to us, completely by-passing parameters, filters, and calculated fields
and advanced groupings such as time series.

On the first page, specify PatientAppointmentStatusGrouping as the name for the data
control. Accept the default setting of Group Query for the query type and leave the check box
Collapsed unchecked.

Go to the Groups page and select the AppointmentStatus field as the one to group by: We
want one bar for every distinct status value. On the Aggregates page, specify count for the
appointment identifier (or the status or any other field that will always have a value). Click the
Finish button to complete the creation of the data control.

We will now make use of this data control to wire a graph to the underlying active data
source. Note once more that we can bind almost any ADF Faces component to the data control,
including components that do not support server push—the BAM data control is just as easy to use
as the WebService data control we saw earlier in this chapter and the ADF Business Components
data control that we will see next. All data controls expose data attributes, collections, and
operations to the ViewController project and allow components that work with single or multiple
values or that know how to invoke operations to be bound to those exposed elements.

Creating the Leanest Dashboard Page Imaginable
To see the BAM data control in action, we will create a JavaServer Faces page that has almost no
content—except for a bar chart based on the data exposed by the data control. Drag a Panel
Header component to the top facet and set its text to St. Matthews Appointment Dashboard. Drag
a Panel Box component to the center facet and set its title to Appointment Overview per Status.

We will create a three-dimensional bar chart that indicates the number of appointments and
appointment requests per status—such as new, scheduled, cancelled, and completed. Note that we
did the same chart using the BAM Active Studio, in the context of the BAM report (see Figure 19-32).

Select the BAM data control PatientAppointmentStatusGrouping in the Data Control palette
and expand the node. Also expand its Query child node. This node has a child node called _
AppointmentStatus. Drag this node to the Panel Box and drop it as a graph. In the Graph selector
that appears next, select the Bar Chart type. Note that we have many dozens of chart types to
choose from that each come in various configurations and themes. These charts all have support
for active data—meaning that they accept server push to update them in real time.

Next we have to edit the bar chart, to indicate which attribute from the BAM data control
indicates the value visualized by the height of the bars and which attribute describes the group or
bar value. Drag the COUNT_AppointmentIdentifier attribute to the Bars field, and drag the value

Chapter 20: ADF as UI Glue (and More) in FMW 691

tag to the X Axis field. Change the label for the first attribute to Number of Appointments. Accept
the default of “Use Attribute Value” for the value tag attribute.

We need to do a little extra tuning on the bar chart—to set the 3-D effect and define the titles
for the axes: Appointment Status for the X-axis and Number of Appointments for the Y1-axis.

Deployment and Server Configuration
Deployment of the PatientAppointmentDashboard application to the soa_server1 is done
following the same procedure we used earlier in this chapter. The dashboard in all its simplicity
can be accessed in a browser (and not just Internet Explorer) at

http://localhost:8001/PatientAppointmentDashboard-ViewController-context-root/
faces/Dashboard.jspx

The BAM-based live updated bar chart with appointments per status embedded in a custom ADF
application is shown in Figure 20-13.

Multiple Consumer Components of the Same BAM Data Control
When you are ready to take on more complex pages, which contain multiple components based
on the same BAM data control, these components must be in separate task flows that you
combine in the same page. These task flows must have their data control scope property set to
isolated (a BAM data control cannot be shared by components).

FIGURE 20-13. The ADF dashboard page with a BAM-powered bar chart

692 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 693

ADF Business Components
Feeding Events into the EDN
St. Matthews likes to think of its patients in terms of modern customer intimacy. Patients are
health consumers and as such are just a special type of customer. Modern marketing techniques
should be employed to build relations with these customers, and every contact should be
recorded in the CRM system. Advanced campaigns will be developed to attract customers to
products that are perhaps less urgent medically speaking but more profitable for the hospital.

The foundation of this customer intimacy thinking is, of course, a robust patient or customer
administration. And, of course, being all Oracle minded and looking for optimal integration with
the SOA platform, St. Matthews will develop the application for customer administration using
ADF. Initially there will be an application for internal usage—and later on a more self-service
style of patient administration is envisioned. In this section, we will create a simple Patient
Management application in the most straightforward manner using ADF: ADF Business
Components on top of database tables as the Model, and pages created using drag-and-drop from
the Data Control palette in the ViewController. Getting this very basic-looking application up and
running takes but a few minutes.

Even though the application is still simple, users will be able to look up patients as well as
update patient details. Address changes, for example, can be applied, as well as modification of
insurance details or e-mail address.

The fact that a patient has moved to a new address could be of importance—not only should all
records for the patient be updated with the latest information, but depending on where the patient is
going to live, he may qualify for a higher (or lower) priority assignment for scheduled appointments,
he should be sent information about the health partners of St. Matthews in the neighborhood, or
he triggers processes in some other way. In short: The business event PatientHasMoved should be
published on the Event Delivery Network for any potentially interested consumer.

Data changes that are processed by ADF Business Components can easily be turned into EDN
events—because the business components have a direct hook into the EDN. We will demonstrate
how the Patient business component can be made to publish the PatientHasMoved event to the
Event Delivery Network, thus ensuring that any relevant update of the patient record is brought to
the attention of registered event-consuming composite applications.

Publishing the PatientHasMoved Event
from ADF Business Components
Creation and modification of business objects—patients, appointments, invoices, employees—are
frequently regarded as business events. Not every little change needs to be broadcasted on the
EDN, of course, but changes in important attributes—such as status or address—and the creation
of essential business entities are generally events that should be published, as other parties in the
organizations may be interested in them.

Manipulation of business objects takes place in automated processes and services and through
user interfaces. Any component responsible for making these changes is also responsible for
publishing the associated business event. In an environment based on Oracle Fusion Middleware,
many of these components will be implemented using ADF. The manipulation of business objects
in these ADF-based components usually takes place in ADF BC.

Looking at these two findings—that data manipulation frequently should trigger the publication
of a business event and that data manipulation frequently takes place through ADF Business

Chapter 20: ADF as UI Glue (and More) in FMW 693

Components—it would be only too convenient if ADF BC could publish events to the Event
Delivery Network—and it can.

We will work here with ADF Business Components on top of a simple database table for
records for patients. The ADF BC objects need to implement a business service that will support
an ADF Faces web application that provides patient record query and manipulation functionality.
Later in this chapter, we will use the same business service exposed as a Web Service to provide
tight data integration capabilities with a BPEL process. At the core of the ADF BC business service
is the entity object that is mapped directly to the table. Every instance of the entity object
corresponds with a patient record in the table.

On top of this entity object is a view object—the representation of the business object that
applications will see and interact with. View objects wrap entity objects to present a data view
that is not necessarily closely aligned with the table structure in the underlying database—as are
the entity objects—but that is prepared for (re)use in applications. The view object decouples
consumers such as web applications from the database structure. View objects expose operations
such as query, navigate through recordset, create, delete, and update a row.

What I call the business service—comparable with the portType in a WSDL—is implemented
in ADF BC by the application module. The application module exposes the service interface that
clients interact with. This interface typically consists of a number of view objects and their
intrinsic operations and possibly some additional custom operations.

Requests for data manipulation, either from the user interface in the ADF Faces application or
from one of the consumers of the Web Service, are handled through the view objects and then
access the underlying entity objects. The entity objects post the DML statements to the database.
When all statements have been posted successfully and all validations have been successful, the
transaction can be committed. As part of this transaction, the entity objects may publish events to
the SOA Suite Event Delivery Network, when so configured. Figure 20-14 demonstrates this
application architecture.

The configuration of business events can be fine-tuned in several dimensions: for which DML
event should an event be published, what should be the payload of the event, and what are the
exact conditions? This is based, for example, on the old and new values of the entity under which
the event is to be published.

The main steps we go through to make this happen are as follows: In a new Fusion web
application, create an entity object called Patient that’s mapped to the database table PATIENTS,
and then create an updateable view object called PatientsVw on top of this entity object. Create
an application module called PatientsService that exposes PatientsVw. Create an ADF Faces page
with a form based on PatientsVw. So far, this is standard ADF development (see the online
chapter complement for the details).

The one step that is different here is the configuration of the Patient entity object to publish
the business events with the appropriate payload at the desired moments. We can then deploy
the application and run it. Any change in the address details of a patient made through the web
application will result in a business event appearing on the Event Delivery Network in the SOA
Suite, potentially triggering composite applications.

Preparation
Before we start developing the ADF BC objects and the web application, we need to start
JDeveloper and create a new ADF Fusion web application called PatientManagement (from the
New Gallery). When the application is created, add FranksPatientDatabase data connection to
the application.

694 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 695

Creating the ADF Business Components
Our simple and straightforward ADF application will use ADF Business Components to
communicate with Frank’s database. We need to create an entity object that is mapped to the
Patients table, a view object to expose the patient data to consumers, and an application
module to act as the overall business service.

Application Deployment to Another WLS Instance
When the application using the ADF Business Components that publish EDN events is
deployed to the same WebLogic server that runs the SOA Suite, the events will be received
into the EDN infrastructure without further ado. However, when the application is deployed to
a different WLS instance, we need to do some additional configuration steps: ADF BC relies on
two data sources being available for publishing to the Event Delivery Network. These are
called EDNDataSource and EDNLocalTxDataSource—and you will find them in the WebLogic
Server Administration Console. We need to make sure that the EDNDataSource is available in
the WLS container into which ADF application is deployed—targeting the same database as
the original data source.

FIGURE 20-14. ADF Business Components mapped to the database, exposing a business service
and publishing events to the EDN

ADF Faces web application
PatientAdministration

(SDO) Web
Service

PatientsService

Application Module
PatientsService

View Object
PatientsVw

Entity Object
Patient

SOA Suite

E
D
NADF

business
components

PATIENTS

Chapter 20: ADF as UI Glue (and More) in FMW 695

In the New Gallery, find the Business Tier category and select the child node ADF Business
Components. Select the item Business Components from Tables. Then select the database
connection to Frank’s database. Query the tables that are available from that database connection
and select the PATIENTS table to create an entity object for. Specify Patient as the name of the
entity. On the next page, configure a single updateable view object, PatientsVw, based on the
Patient entity object. Skip the page for the read-only view objects. Mark the check box for
Application Module on page four and enter PatientsService as the name of the application
module. Click the Finish button to have the business components created.

When you open the Data Control palette, you will see a data control called PatientsService with
a collection called PatientsVw1, based on the view object. The collection contains the attributes
created in the view object. It also exposes operations such as first, next, previous, and last, as well
as create, delete, find by key, and query. The collection, all attributes, and all operations are
available for binding in webpages: ADF Faces components can be added to a page and wired to
one of the elements on the Data Control palette.

NOTE
You can now run the PatientsService application module (choose Run
from the context menu) to start the ADF BC browser that makes clear
whether the business components have been configured correctly.

Creating the PatientAdministration Page
The patient records can be reviewed and manipulated in a simple webpage. This page shows a
form with all the fields in the records, along with navigation buttons and a button to save the
changes. Create a new page called PatientAdministration.jspx. From the Data Control palette, drag
the PatientsVw1 collection to the page and drop it as an ADF form, as shown in Figure 20-15.
Check the boxes to include the navigation buttons and the Submit button. Next, drag the Commit
operation from the Data Control palette and drop it as a command button.

FIGURE 20-15. Composing the PatientAdministration page through dragging and dropping
appropriately from the Data Control palette

696 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 697

You may further embellish the page—but for our purpose we are done. We have all we need
to retrieve patient data from the database, present it in the form, modify it, and save it back to the
database.

Deploy and Run
Deploy the application using the Deploy option in the drop-down menu found at the top of the
application navigator window—just as we did before. Again, use the same application server
connection that you have used to deploy SOA composite applications. It is the easiest way to get
the ADF application running and interacting with the SOA Suite’s EDN a little bit later on. You
may limit the deployment to only the soa_server1 instance. See the online chapter complement
for instructions on how to set up the data source in the WebLogic server for the ADF BC
application module as well as the associated configuration of the application module itself.

The application can be accessed using the following URL:

http://localhost:8001/PatientManagement-ViewController-context-root/faces/
PatientAdministration.jspx

The rather basic form appears, as shown in Figure 20-16, and we can inspect and modify
patient records. Keep in mind that the form is “basic” only in terms of visual attractiveness; it
does have all the fields, it supports navigation through the patients collection, and it allows data
manipulation against the underlying database. Therefore, functionally speaking, it is not that basic.

We will now extend the business components to have events published to the Event Delivery
Network when the address in a patient record is changed.

FIGURE 20-16. The PatientAdministration form in action

Chapter 20: ADF as UI Glue (and More) in FMW 697

Configuring Business Components to Publish Events to EDN
Open the Model project and select the Patient entity. Click the Business Events tab and then click
the green plus icon to create a new business event. Call the event PatientHasMoved. Define the
payload for the event by selecting the attributes Id, Address, City, Zipcode, State, and
Telephonenumber. The Id attribute should always be included; otherwise, we cannot identify the
patient to whom the event refers. The other attributes need only be included when they have
changed. Of course, you could elect to also include FirstName and LastName or other attributes
that make sense to make available in the event’s payload.

Next we need to indicate when the event is published: which operation on the Patient entity
object should be cause for sending a PatientHasMoved event to the Event Delivery Network.
Well, clearly that should be an update event, because we are after changes in address.

JDeveloper creates an event definition for the PatientHasMoved event in a new .edl file that is
written in a subdirectory called “events,” under the directory that holds the definition file for the
entity object. In the same directory, an XSD file is created that describes the payload of the
business event.

We are now ready to redeploy the application. Not much has changed, really. However,
every time we make a change in the address attributes of an existing patient record and commit
that change (note: the PatientHasMoved event is only published when the change is committed to
the database), the application publishes the event to the Event Delivery Network. And that can be
quite meaningful because now the SOA composite applications can have themselves notified
when a patient moves—at the same time as that piece of information formally enters the hospital
(or the hospital’s database).

Deploy the application in the same way as before. The EDL and XSD files are included, and
this will make the new event definition known to the SOA Suite and the EDN infrastructure. After
deployment, you can check the Business Events page (accessed from the context menu on the
soa-infra node) for the PatientHasMoved event. You will find that it has no subscriptions…yet.

Creating a SOA Composite Application
to Consume PatientHasMoved Events
We may very well claim that our PatientManagement ADF application is now capable of
publishing the PatientHasMoved event—but that should be demonstrated for real. An easy way to
provide the proof that the event appears on the Event Delivery Network when we change the
address of one of the patients is by explicitly subscribing to that event and doing something with
it. To do just that, follow these steps:

 1. Create a new SOA application called ConsumePatientHasMoved that contains a
Mediator that subscribes to the PatientHasMoved event.

 2. Drag a File Adapter Service to the External References lane: We will write all PatientHas
Moved events to a log file. This will give us a concrete demonstration of the event-
publication capabilities of the ADF BC Patient entity object, as the next figure
illustrates. Configure the File Adapter Service to write a log entry for each event to a
comma-separated log file (for example, c:\temp\patientHasMovedEventsLog.txt).

 3. Wire the Mediator to the File Adapter Service. Create the mapping from the PatientHas
Moved event’s payload to the File Adapter Service input. Note the nesting of the elements
in the event payload (for example, Address\newValue\value).

698 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 699

When the deployment for this application is complete, you could verify whether the Business
Events page in the Enterprise Manager FWM Control displays the event subscription from the
Mediator in this application on the PatientHasMoved event. You can also go straight to the
PatientAdministration form, make a change in the address details of a patient record, and commit the
change. When you do so, a few things should happen: A new instance of the ConsumePatientHas
Moved composite application should be created and executed, and a file called patientHasMoved
EventsLog.txt should appear with an entry that corresponds with the changes you made in your
browser in the ADF PatientManagement application. If you find that this indeed has happened, you
have successfully integrated your ADF application with the Event Delivery Network.

Improving the Efficiency and Elegance
of the PatientDataService Using SDO-Bound
BPEL Variables—Tighter Data Integration
for BPEL Processes
The same application module used in the previous section can also publish a generic SOAP Web
Service interface to expose operations on patient records to potentially many different clients.
And it can publish a specialized type of service interface, one that turns the application module
into a Data Access Service (DAS) that publishes Service Data Objects (SDOs).

Service Data Objects is another industry standard, created by the Open Service-Oriented
Architecture Consortium. It aims at creating a standard for interacting with business data in a
technology- and protocol-independent manner. SDO is based on the concept of disconnected
data graphs—XML representations of a data object and its children or dependencies. These data
graphs are used to transfer the business data in a technology-agnostic manner, similar to messages
to and from Web Services. SDO describes a wrapper around existing data sources that may be
based on EJB/JPA, a non-(SDO)-standardized Web Service, JDBC and SQL, RESTful services, an
in-memory data grid, Google BigTable, or any other data service or source.

Remote consumers can retrieve data as well as manipulate it according to the SDO standard,
interacting with a Data Access Service (DAS) that provides the graphs of data objects. The DAS is
somewhat similar in its role to the Entity Manager in JPA.

Through SDO, it becomes relatively easy to retrieve data: The operations to get hold of the
data are standardized, as is the format in which the data is provided along with associated
metadata that allows consumers to introspect the data graph to learn about the structure.

SDO is of particular interest to us at this stage because the SOA Suite and ADF can forge a
special bond based on SDO: ADF Business Components can easily implement a Data Access
Service and make view objects available as SDO data graphs. Any SDO-enabled tool can
leverage these services, interacting with the ADF BC business service—and indirectly the
underlying database—through a standardized, remote interface.

Additionally, the SOA Suite 11g BPEL component has functionality around SDO: a BPEL
process can have one or more variables that are directly bound to an SDO. These so-called
“entity variables” are indirectly bound to a row in the view object, and usually thereby also to an
instance of an entity object and a record in some database table.

Manipulation of the entity variable—using the same Assign operations we use for other BPEL
variables—has us directly interacting with the SDO and thereby the back-end data source.

Chapter 20: ADF as UI Glue (and More) in FMW 699

This gives us a very simple, straightforward way to work with data in a database that’s much more
direct than through the use of a database adapter.

A huge extra benefit of working with entity variables bound to SDOs is that the data graph
itself is not held within the BPEL process instance. When the instance is dehydrated, for example,
only a reference (based on the primary key) to the SDO is saved, not the data itself. When the
instance resumes and needs to access the data of the entity variable, the current state of the data
is retrieved from the DAS. Note that all of this happens automatically—we just work with an
entity variable like any regular BPEL variable.

In general when BPEL processes have frequent interaction with database adapter services for
manipulating data, especially when the same record is accessed multiple times, it is worthwhile to
consider using SDO and entity variables to make the process more efficient—both for the developer
as well as for the run-time infrastructure. The volume of state data that your process may gather
from back-end databases and hang on to can be another driver for SDO-bound entity variables,
because these reduce the state to just a reference to a data graph instead of the data itself.

BPEL Entity Variables Bound to Service Data Objects
In Chapter 12, we discussed various types of integration between the SOA Suite and Java. Probably
the most advanced integration with the world of Java-powered components was not discussed: the
binding of BPEL variables to Service Data Objects offered by a Data Access Service—in this case
implemented by an ADF Business Components application module. These entity variables are not
just populated with data from the DAS at one moment in time. Instead, they contain a reference to
the SDO that is maintained by the DAS acting against some back-end data store, which could be a
database, a file repository, or something else altogether. Any change in SDO is immediately
available in the BPEL process when it accesses the variable—no explicit refresh is required.
Additionally, updates of the BPEL entity variable are sent to the DAS to be applied to the SDO
(and the underlying data store). Again, no explicit action is required on the part of the BPEL
process. Although this all happens transparently, it is still nice to know that the SDOs can have a
complex, nested structure of extensive data graphs—and that the communication between the
Data Access Service and its clients uses deltas to communicate only the changes in the graph
instead of the entire structure.

Our very first SOA composite application in this book—well, not counting the HelloWorld
process in Chapter 3—was the PatientDataService of Chapter 5. This composite application used
the database adapter to retrieve and update patient information and create new patient records.
We will now create a new implementation of this composite application: a PatientDataService
that does not rely on the database adapter and indirectly on knowledge about database objects,
but instead calls an SDO-enabled service—backed by ADF Business Components—to perform
operations on data. The composite application does not know that ADF BC is used for the
implementation of the DAS, and it is also unaware that further down the DAS has a relational
database underneath it. For all it knows or cares, there could be an in-memory grid or an SaaS-
based data cloud such as BigTable—which can be located anywhere.

The Implementation of DAS- and SDO-based Entity Variables in BPEL
We will slightly extend the ADF BC application PatientManagement that we created in the
previous section to demonstrate the integration with the Event Delivery Network. We will use the
same objects as before, and this time also expose them as a Web Service with support for SDO.
This application is deployed to WebLogic as a stand-alone application that offers Web Services.

700 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 701

The SOA composite application PatientDataService is revisited. We will add an ADF BC
reference to the composite, configured to interact with the PatientManagementSDO service. This
ADF BC reference is wired to the BPEL process Patient Data Service, to provide the source for an
entity variable bound to an SDO exposed by the PatientManagementSDO service.

At first we will use an entity variable for creating a new patient record in the database without
using a Database Adapter Service. The entity variable is bound to the SDO that the ADF BC
reference makes available. We set the patient attributes on the entity variable from the request
message. Then we can use the Create Entity activity to persist the SDO to the Data Access Service.

Updating patient records is even more interesting, because we will then encounter another
benefit of SDO-backed variables: If the underlying Data Access Service were to modify or enrich
the record during creation or update—which could happen in the view object, the entity object,
and also through database triggers—then the changes in the SDO are immediately available in
the BPEL process. When we are using the database adapter, these changes applied by database
triggers and other business logic are not pushed back to the BPEL process, but now they are.

Making ADF BC Expose an SDO-Enabled Web Service
In the previous section, we developed the PatientManagement application. This application
consisted of two projects: Model (with ADF BC) and ViewController (with the ADF Faces web
application that used the ADF BC objects). We will focus now on the Model project. An easy way
to get going is to create a new Fusion web application called PatientManagementSDO with empty

Service-Enabled Entities
One of the potential consumers of an SDO service published by an application module is
an entity object in a remote ADF BC application. An entity object (usually mapped to a
table or view in an underlying database) can also be based on a Service Data Object. These
service-enabled entities are useful to make data services available to the (local) web
application through the familiar data controls that are used to bind data and operations in
ADF Faces components—even when those data services originate with some remote SDO
provider. This provider cannot directly be used to create data controls from, so the service-
enabled entities act as the intermediary—potentially also transforming the service interface
from whatever is on offer remotely to what best suits the needs of the local application.

To create an entity object that is based on an SDO and not on a database table or view,
we can create a new entity object (from the New Gallery) and select Service Interface
instead of Database Schema Object in the first step of the wizard. We then need to provide
the URL for the WSDL of the remote SDO provider. JDeveloper will retrieve and parse the
WSDL and then present a list of the service-enabled view instances on offer from the
remote provider.

We pick the view instance we want to base the entity object on and then select the
attributes from the remote view that should be in the entity object. If necessary, we can
make changes to the attribute definitions.

View objects can be based on these service-backed entity objects, just like more regular
database object–backed entity objects. View links can be created between VOs defined
against EOs on database objects, and VOs on top of service-backed EOs. Some restrictions
apply to the creation of entity-backed VOs that use multiple EOs based on a service interface.

Chapter 20: ADF as UI Glue (and More) in FMW 701

Model and ViewController projects. Then remove both projects from this application and open
(a copy of) the Model project from the PatientManagement application. Alternatively, you can
create the PatientManagementSDO application from scratch with a single project called Model.

Select the application module PatientsService. Go to the tab Service Interface and click the
green plus icon. The Create Service editor appears. On the first page, enter PatientsService as the
Web Service name. Accept the default value for the target namespace. Skip the second step,
because for now we will not expose any custom methods (we will do so later on).

On page three, select the view object usage PatientsVw1 as the one that is to be exposed.
Check the Enable check box for all basic operations. Click Next, inspect the summary, and click
Finish.

JDeveloper will now create a number of files, including a WSDL for the PatientsService with a
supporting XSD document as well as the JAX-WS annotated Java interface and implementation
class.

Preparing for Deployment of the ADF BC Application
Before we can deploy the application, we need to configure some values. See the online chapter
complement for the specifics, apply all changes, and deploy the PatientManagementSDO
application.

When the deployment is complete and successful, we can test the Web Service that this
application exposes. Note that even though this service supports SDO, it can also be used by
clients that are not aware of SDO. The service has a normal WSDL and XSD.

The Web Service is published at http://localhost:8001/PatientsServiceSDO/PatientsService.
This URL takes you to a test page where you can try out all operations in the service interface.
This page also contains the URL for the WSDL that we need when configuring the ADF BC
reference.

Infusing the PatientDataService
Application with SDO Interaction
We will enhance the PatientDataService composite application with SDO interaction. This
application exposes two Web Services—one to create new patient records and one to retrieve
patient details. Each of them is implemented using a BPEL Process component that interacts with
a Database Adapter Service. The Database Adapter Services connect to Frank’s Patients
database—one to insert directly into a table and the other one to invoke a PL/SQL package.

We will introduce an ADF BC reference connecting to the DAS published by the ADF BC
application module as a more straightforward and potentially leaner-yet-richer way of interacting
with the back-end data store.

Creating the ADF BC Binding
Open the PatientDataService composite application. Drag the ADF BC Service Adapter from
the Resource Palette to the References lane. The ADF-BC Service editor appears, as shown in
Figure 20-17.

Enter PatientsServiceSDO as the name of the reference. Copy the URL for the WSDL for the
PatientsServiceSDO—http://localhost:8001/PatientsServiceSDO/PatientsService?WSDL—to the
WSDL URL field. When you tab out of this field, JDeveloper will fetch the WSDL document and
parse it to extract the PortTypes.

702 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 703

An important and nontrivial field in this dialog is the Registry field. This field specifies the
key used by the SOA infrastructure to look up the ADF BC application that exposes the SDO
service in order to invoke it using RMI rather than SOAP over HTTP. The value you need to set is
PatientApp_JBOServiceRegistry. This value is composed from the name of the enterprise
application, as specified in the deployment profile, with the standard suffix _JBOServiceRegistry.

Click the OK button to complete the reference definition.

Connecting the ProcessNewPatient BPEL Component
to the PatientsServiceSDO Binding
Wire the BPEL Process component ProcessNewPatient to the PatientsServiceSDO reference. Then
double-click the BPEL component to open the editor.

Open the structure window and expand the Variables node. Select the child Variables node
under the Process node and then click the green plus icon to create a new variable.

In the Create Variable dialog that appears, mark the check box Entity Variable. Select the
PatientsServiceSDO as the partner link that provides the SDO backing for the entity variable. Select
the radio button Element in the Type radio group. In the Type browser, select the patientsVwSDO,
which can be found in the inline schema in the PatientsService.wsdl that is imported from the
PatientsServiceSDO.wsdl that describes the partner link. Figure 20-18 illustrates the variable definition.

Create a second new variable (not an entity variable) called Patient_temp that is based on the
same element used for Patient_Entity. This new variable will be used to gather the data that is
then moved into the entity variable.

Open the scope InsertNewPatientRecord. Add a Transform(ation) step in which the inputVariable
is transformed to the Patient_temp variable.

Add a Create Entity activity immediately after the Transform activity. Set the name of the
activity as CreateEntity_Patient. Select the Patient_Entity as the target entity to initialize. Set the
From field to the following expression:

bpws:getVariableData('Patient_temp','/ns7:patientsVwSDO')

FIGURE 20-17. Adding the ADF BC reference to the composite

Chapter 20: ADF as UI Glue (and More) in FMW 703

This extracts the value from the Patient_temp variable and pastes it into the Patient_Entity
variable.

Remove the existing Transform and Invoke activities used in conjunction with the Database
Adapter Service. Also remove the local scope variables associated with the Invoke activity. At this
point, we can deploy the application to the SOA Suite—in the same way as before (the fact that
we now have an SDO interaction inside does not alter the deployment process).

Running the SDO-Enabled PatientDataService Application
When we test the PatientDataService application—more specifically, its ProcessNewPatient
service—what we expect to get is a new record in the PATIENTS table that is created by the ADF
BC application that gets invoked from the BPEL process when the Create Entity activity causes the
SDO dependency to be established. This shows that we can make an SOA composite application
interact with the database without using the database adapter, but instead using an SDO powered
by ADF Business Components.

An Entity Variable Has a Live Connection with the SDO
The ADF BC service can do more or less the same thing as the database adapter did—mapping
one-on-one to a database table or view. However, it is easy to add functionality in the ADF BC
objects: to calculate and derive values; to refine, enrich, and correct; to validate and to propagate
to other targets besides the database; and to do specialized logging. Additionally, the entity
objects can be configured to “refresh after insert and update” in order to capture any changes to
the data that may be made by database triggers.

FIGURE 20-18. Creating the Patient_Entity entity variable

704 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 705

So the data pushed to the ADF BC service from the BPEL process’s entity variable can
undergo some processing before it gets to the database. That has some obvious advantages, but
also may (or should) make you fear that even before the insert of the patient record is completed,
the data in the BPEL process is out of synch. Thanks to SDO, you need not fear. The entity
variable in the BPEL process does not contain the patient data, but only a reference to the SDO.
When the data is enriched in the ADF BC service, those refinements are immediately available in
the BPEL process, as soon as we access the entity variable.

To see this in action, look in the online chapter complement where we will add some small
refinements to the PatientsVw view objects to manipulate the first name, last name, and city
attributes during the execution of the Create or Insert operation.

What we achieve is pretty interesting: The BPEL process causes a new patient record to be
created through a simple Create Entity activity. The ADF BC service does the hard work—including
the application of a number of refinements on the data. These modifications are immediately
available back in the BPEL process: When we work with the entity variable Patient_Entity after the
Create Entity activity, we have access to all changes made inside the ADF BC service.

Implementing the Retrieve Patient Operation
In the previous section, we used the SDO-bound entity variable to implement an elegant patient-
creation service. We will see next how simple it becomes to perform data retrieval based on the
same mechanism. Additionally, we will see how we can add a custom Java method to the ADF
BC application module and to the service interface and subsequently invoke that method from
the BPEL process.

Adding a findPatientIdentifier Operation to the ADF BC Web Service
Open the editor for the application module PatientsService and select the Java tab. Click the edit
icon in the upper-right corner and then check the box Generate Application Module Class.

Open the PatientsServiceImpl class that is generated. Add a custom method called
findPatientIdentifier with the following code that retrieves the primary key value for firstName
and lastName:

 public Long findPatientIdentifier(String firstName, String lastName) {
 getPatientsVw1().setWhereClause("first_name ='"+firstName
 +"' and last_name ='"+lastName+"'");
 getPatientsVw1().executeQuery();
 if (getPatientsVw1().getEstimatedRowCount()>0) {
 return ((oracle.jbo.domain.Number)getPatientsVw1().first()
 .getAttribute("Id")).longValue();
 }
 else return null;
 }

Go to the Service Interface tab for the application module and click the edit icon in the
Service Interface Custom Methods header. Move the findPatientIdentifier method to the selected
box and then click the OK button.

We can now redeploy the ADF BC application. The Web Service published by this application
has been extended with a new operation, called findPatientIdentifier. We will use this operation in
the BPEL process to retrieve the patient identifier that will be used for binding the entity variable.

Chapter 20: ADF as UI Glue (and More) in FMW 705

Implementing the RetrievePatient BPEL Process
The BPEL Process component PatientDataService (in the SOA composite application with the
same name) is called to retrieve details on a patient. The request contains either the patient
identifier or the first and last name of the patient. In the latter case, the patient identifier is
first retrieved—currently using a Database Adapter Reference that calls a PL/SQL function.
Another Database Adapter Reference is then used to retrieve the patient details based on the
identifier.

We will make two changes to this process:

 Use the findPatientIdentifier operation added in the ADF BC service to get hold of the ■
patient identifier.

 Use an entity variable and the Bind Entity activity to initialize the entity variable with a ■
reference to the Patient SDO.

The two Database Adapter References can subsequently be removed—along with their
associated variables, Assign steps, and Invoke activities. Here are the implementation steps:

 1. Open the Composite Editor for the PatientDataService application. Wire the PatientData
Service BPEL component to the PatientsServiceSDO reference.

 2. Edit the PatientDataService BPEL component as shown in Figure 20-19. Add an Invoke
activity called Invoke_FindPatientIdentifier to the flow for the case that the request does
not contain the patient identifier. Configure it for the PartnerLink PatientsServiceSDO and
the operation findPatientIdentifier, which is based on the new custom method that we
have just added to the Service Interface.

 3. Remove the existing Invoke activity (which calls the Database Adapter Reference
RetrievePatientIdentifier). Edit the Assign activities before and after the Invoke step
to set the input for findPatientIdentifier and copy the output to the BPEL variable
patientIdentifier.

 4. Add a new variable to the BPEL process called Patient_Entity. This variable is an entity
variable (so check the box) based on the PartnerLink PatientsServiceSDO. This variable is
based on the element patientsVwSDO.

 5. Add a Bind Entity activity right below the Flow activity. Set the name to Bind_PatientEntity.
Choose the Patient_Entity variable as the variable to bind. The value for the key of this
variable is derived from the patientIdentifier variable, which is set in the Flow activity (see
Figure 20-20).

 6. Add a Transform activity called PopulateOutputVariableFromPatientEntity. The source
variable is Patient_Entity, and the target is the BPEL variable outputVariable. Specify the
name of the XSL Mapper file as PopulateOutputFromPatient_Entity. Edit the mapper file,
mapping from source to target.

 7. We should remove several activities that are left over from the old database adapter–
based approach: Remove the Assign_PatientIdToInput, Invoke_RetrievePatientRecord,
and Assign_PatientRecordToOutputVariable activities.

706 Oracle SOA Suite 11g Handbook Chapter 20: ADF as UI Glue (and More) in FMW 707

Deploying and Running the Composite PatientDataService
Deploy the PatientDataService. Test the Web Service exposed by the PatientDataService application
and choose the operation “process” on the client interface. Enter the first name and last name for
one of the patients in the PATIENTS table and click the button Test Web Service. The response
provides some details for the patient—not queried through the database adapter but elegantly
provided by the SDO service.

FIGURE 20-19. Configuring the Invoke_FindPatientIdentifier activity

Chapter 20: ADF as UI Glue (and More) in FMW 707

The composite application has swapped two database adapter references for a “regular” Web
Service call and a Bind Entity activity, and still has immediate access to data originating from the
database. In fact, we have a live wire to the SDO data service: The entity variable is bound to the
SDO. This gives us access to the patient data in the BPEL process.

Live Wire from BPEL Entity Variable to SDO
But wait, there’s more: This “live wire” also means that when we change contents of the entity
variable Patient_Entity with simple Assign statements, these changes are pushed to the SDO Data
Access Service, implemented by the ADF BC service, and thus all the way to the database! An
assign in BPEL on the Patient_Entity has now become more or less equivalent with an update on
the PATIENTS table.

Summary
The Application Development Framework (ADF) is primarily intended to provide a user interface
for people to use to perform tasks in business processes. Pages in ADF web applications are
typically created using ADF Faces—a rich client component library that renders a modern, Web
2.0, fully Ajax-enabled interface. These components frequently work in conjunction with ADF
Model data controls that supply the components with collections of data records and operations
on these records and their attributes. The data controls in ADF Model encapsulate underlying
business services, which can range from Web Services, Plain-Old Java Objects (POJOs), and ADF
BC, to content management systems, BAM servers, and BI servers.

ADF applications can thus leverage SOA composite applications by wrapping the functionality
provided by the services exposed by the composite applications in data controls and binding these
to the webpages. In this way, the ADF application can, for example, trigger a business process
from a webpage or retrieve required data from composite services.

The composite applications themselves make use of ADF to provide the user interface for
human tasks. Many BPEL processes and BPMN processes require contributions from end users;
these are implemented in the composite applications through human tasks that are exposed

FIGURE 20-20. Adding a Bind Entity activity, tying the Patient_Entity entity variable using the
patient identifier

708 Oracle SOA Suite 11g Handbook

through the BPM Worklist application. This application uses ADF task flows specifically created
for the task at hand to present the users with a customized task UI.

ADF applications can hook into the SOA Suite’s Event Delivery Network, through ADF BC
entity objects that can publish data manipulation as events to the EDN. There is no built-in facility
for ADF applications to subscribe to events on the EDN, but using a composite application with a
Mediator that subscribes to the desired event, a JMS adapter to publish a message on a queue for
each event that is consumed, and a JMS queue listener class in the ADF application, it is fairly
straightforward to get it to work.

The previous chapter introduced the BAM server and the reporting facilities it provides. This
chapter demonstrated how through the ADF BAM data control we can add BAM-based active
data visualizations—tables, charts, trees, and so on—to regular ADF web applications. This
allows for a potentially powerful combination of real-time operational insights and the ability act
through the other (non-BAM) parts of application.

The final integration between the SOA Suite and ADF discussed in this chapter is the Service
Data Object (SDO) binding that we can create between an ADF BC application module that is
published with an SDO-enabled service interface and variables in a BPEL process. The SDO-
based entity variables in BPEL processes allow direct, lean, and real-time integration from the
variable to the ViewObject row. This SDO-based link provides an alternative for the use of the
database adapter, which can especially be helpful for chatty BPEL processes that almost require a
stateful conversation with a database.

Chapter
21

The Bigger Picture: SOA
for User Interfaces, SaaS,

and the Cloud

709

710 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 711

he most visible part of most applications is the user interface—that tip of the
iceberg that takes care of the interaction with us human users. This is despite the
fact that the bulk of the functionality of most applications is in the services that
perform the actual work, leveraging enterprise resources such as databases and
various calculation engines. Chapter 10 (on human tasks) and Chapter 11 (on

BPM) as well as the previous chapter (on using ADF to create advanced user interfaces) discussed
the human-oriented interface that facilitates the interaction between users and (service-oriented)
applications. We will take that discussion a little further in this chapter, when we look at the
application of the concepts and principles of SOA—decoupling and focusing on reuse with agility
as the main objective—to user interfaces.

We will briefly discuss mash-ups and portals, Portlets, and task flows. Our primary technology
focus in this discussion is Oracle Fusion Middleware and ADF and WebCenter in particular,
although most considerations apply more generally.

A growing number of applications will be consumed in or deployed and exposed in a SaaS
(Software as a Service) manner, depending on your perspective. A SaaS application is offered
remotely with regard to the users, as a more or less standard application for potentially large
numbers of users who may belong to multiple distinct organizations. Usage of SaaS applications
can be free, although customers are normally charged based on their usage metrics. SaaS
applications will typically expose both a user interface as well as a programmatic interface
through Web Services.

SaaS applications (running in the cloud) will somehow need to integrate with other SaaS
applications and with non-SaaS applications running inside the organizations using them. We
will look at typical requirements for SaaS applications and briefly look at what we can do to make
them fit into the local SOA landscape of and work together with locally controlled applications.

Given the scope of these topics, we will only be able to scratch the surface. However, this
chapter should provide you with insights in how the objectives, concepts, and ways of working
for SOA and the SOA Suite, as discussed in the previous chapters of this book, by and large, can
and perhaps should be applied to development of user interfaces to support human activities. The
impact of SaaS-style deployment of applications—both on the user interface of SaaS applications
as well as on the service-based interface—will be outlined, and we will discuss some generic
considerations and guidelines. The online chapter complement provides more detail, suggestions,
and references.

Integration at the User Interface Level
In all the discussions and examples in the book so far we have worked on the assumption that our
SOA composite applications as well as the Oracle Service Bus perform all the integration that
may be required for our user interfaces. The user interface is then created on top of the services
provided by the SOA infrastructure.

This user interface could be a monolith, a conglomerate of pages and components that each
use one or more of these services. The fact that services represent a heterogeneous environment
with databases, content management stores, external Web Services, and other enterprise stores and
facilities is hidden from the view of the application and its developers. This approach is indicated
as option I in Figure 21-1.

However, there are other approaches for creating a user interface on top of the services in a
SOA environment that should be considered, especially because they promote the same principles
that form the foundation of SOA to the development of user interfaces.

T

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 711

Alternative Methods for User Interface Integration
In the approach we have assumed thus far, we use SOA composites and the Oracle Service Bus
to bridge the gaps between technology platforms for us, to gather data from various sources and
make them available in an uniform way to composite services.

An alternative approach is one in which the user interface itself is where the integration takes
place—option II in Figure 21-1. For example, JavaScript widgets can be combined together in rich
webpages. These widgets present data and operations to the end users and typically communicate
with RESTful services to retrieve data and propagate manipulation of data. The widgets can be
developed in separate files that can be assembled into what is sometimes called a mash-up: a simple
HTML document that loads one or more stylesheets (CSS) as well as the widgets from their respective
JavaScript files. Note that some of the widgets loaded may be located at remote locations. Google
Maps is an example of such a remote widget that can be assembled into a mash-up. In this approach,
some of the services exposed by our SOA infrastructure should be published in a RESTful way, with
simple (non-SOAP) HTTP bindings, and usually with JSON as the format for data exchange. We have
seen in Chapter 13 how the Oracle Service Bus can help us expose these RESTful services.

FIGURE 21-1. Three architecture styles for user interface applications

Browser

SOA Suite

Browser

Web
appli-
cation

SOA Suite

RESTful

X

Browser

Y Z

Web
application

Maps, search, GeoCoding,
flickr, E-mail, VoIP, …

I II III

SOA Suite

UI
comp

UI
comp

UI
comp

Web application
RESTful RESTful

712 Oracle SOA Suite 11g Handbook The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 713

A third approach—option III in Figure 21-1—also does integration at the user interface level,
but does so on the server side. In this approach, user interfaces are composed from multiple UI
components that each represent an area in a page with a special focus or supporting a specific
task. These UI components are typically reusable, encapsulated, and with well-defined interfaces,
developed independently according to loosely coupled release schedules, very similar to how we
have defined services in this book. Some of these UI components are just the front-end for a
single composite service; others combine several composite services into a report or complex
page. The components are assembled together at design time and/or run time.

Portlets for UI Integration
Portlet is a category of UI components that can be seen as a “service with a UI.” Portlets are
designed, developed, and even deployed in very much the same way as “normal” Web Services.
They can be invoked remotely by a portal or other type of framework capable of consuming
Portlets. Such calls are usually done via HTTP and based on the Portlet’s contract specification
expressed using WSRP (Web Services for Remote Portlets). The WSRP specification defines a Web
Service interface for interacting with presentation-oriented Web Services.

The contract for a Portlet—and in fact most reusable, stand-alone user interface components—
describes the parameters that can be passed to the Portlet (when initiating the Portlet) as well as
which types of events are published by the Portlet and which it will consume. In addition, the
contract may indicate which style class attributes have been used for the key elements in the UI.
The page consuming the Portlet can use these style class names in a custom CSS stylesheet to
apply its own styles to the content returned by the Portlet.

Note that Portlets can be developed in various technologies, including Java, .NET, PHP, and
PL/SQL. As long as they support the WSRP standard, such Portlets can be consumed into web
applications with portal facilities, across technologies, as well as distributed locations. The portal
that integrates various remote Portlets into a single webpage has a role very similar to the Enterprise
Service Bus that integrates various (non-UI) Web Services into a (non-UI) composite service. Like
Web Services, Portlets are exposed from their own, potentially remote, run-time environments. They
can be published under a certain SLA, available only to authorized consumers.

Portlets will use their own, local resources to provide data and services. Portlets may use
databases, content management servers, and Web Services to implement the functionality they
provide. Consumers of the Portlet typically do not need to be aware of resources consumed by a
remote Portlet.

SOA Suite 11g does not publish or consume Portlets itself. However, the WebCenter
Framework—another component in Oracle Fusion Middleware—contains facilities both for
publishing and consuming Portlets. Webpages in ADF applications can consume one or more
Portlets. In fact, using these WebCenter Portlet producers that make Portlets available for
embedding in an ADF Faces page, we can create pages and entire applications that are nothing
more than the assembly and wiring of external Portlets. Such a page is very similar to a composite
service, integrating and wiring UI components together rather than programmatic services
components.

Portlets require similar run-time administration and design-time governance as “simple”
(non-UI) services. For example, identifying the existing Portlets available for reuse by new user
interfaces is similar to finding out about services available for reuse. Deciding on the Portlets that
are to be developed in order to support the expected reuse scenarios as well as managing the life
cycle of those Portlets is required for Portlets just as much as for non-UI services.

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 713

ADF Task Flows: The Advanced Alternative to Portlets
ADF has its own concept of a stand-alone, encapsulated, reusable, service-like UI component: the
(bound) task flow. A task flow can be developed, tested, and distributed as a stand-alone component.
A task flow can be embedded in another task flow as well as directly in a webpage. A task flow
usually provides its consumer with a UI that may consist of a single page fragment or multiple
(multistep) fragments. A task flow can contain Java classes, make use of ADF BC against database
objects, or invoke Web Services. Usually, a task flow is implemented as a self-contained unit that
takes care of its own resources.

The contract of a task flow consists of input parameters that the consumer can specify to
configure the behavior of the task flow. Additionally, task flows can produce events to report
special conditions to the consuming page, and it may subscribe on events that the consuming
page—or other task flows consumed by that same page—produce. The communication between
consumer and task flow after the initial instantiation of a task flow is through events—somewhat
similar to the communication with a running BPEL process instance from other components or
from outside the composite application.

Page fragments in a task flow can make use of specific (CSS) style class names that the
consumer can provide the style definition for. For example, a task flow may set a specific style
class called dateField on every inputDate component that it contains. This allows the consumer
to apply a special styling to all date fields in the whole application, both the part developed from
scratch as well as the parts assembled from embedded task flows.

Task flows can be developed as stand-alone ADF applications. They can be deployed as a
ADF Library, a special type of JAR file. This JAR file can be imported into one or potentially many
ADF applications that want to reuse the task flow. After the ADF Library is imported into an ADF
application, each task flow in that library can be embedded into every page in that application (or
even several times into the same page).

WebCenter Services A very good example of reusable task flows that play a role very similar
to reusable (web) services in an SOA environment is provided by WebCenter Services. This
WebCenter component adds over a dozen reusable functional extensions to ADF applications,
in areas such as Web 2.0, social networking, and collaboration. The WebCenter Services are
implemented as task flows that can be embedded into the pages of the application—for example,
to add document-browse and document-management functionality, tagging and linking support,
discussion forums, and wiki integration.

One of the WebCenter Services is the Worklist service. This is a task flow that uses a connection
to the SOA Suite’s Human Workflow Services to retrieve all currently outstanding tasks for the user.
These tasks are listed as a series of links that take the user right into the Worklist application from
which the task can be handled.

Here we see a good example of the UI service (the Worklist service task flow) that itself uses
a service (the Human Workflow service) of which the consuming page does not need to have
knowledge. Well, that is, the connection to the Human Workflow service needs to be configured
when the first occurrence of this task flow is added to the application.

Publishing ADF Portlets The manual creation of a Portlet requires knowledge of the JSR-168 or
JSR-286 specification. These are produced by the JCP (Java Community Process) to lay down the
requirements for standards-compliant Portlets. In addition, if the Portlet that is to be created should
be accessible from distant locations, it should be published with a WSRP definition alongside of it.

714 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 715

To deploy the Portlet and make it available to external consumers, a WSRP-enabled Portlet
container infrastructure is required.

When you want to create Portlets developed using ADF, you have two options. The open-
source way has you use an open-source Portlet container and manual development of the
Portlets. Note that Portlet development using vanilla ADF can be challenging, because a number
of limitations apply to applications that need to be Portlet-enabled.

WebCenter Framework adds the JSF Portlet Bridge to ADF applications, which makes publishing
Portlets based on ADF applications a purely declarative exercise. With this bridge, the limitations on
the development of the applications largely go away. An ADF-based Portlet is created by publishing
a task flow as a Portlet. A Portlet can be exposed by a WebLogic Server that has both the ADF and
WebCenter Framework libraries installed. An ADF-based Portlet can be consumed by any WSRP-
enabled portal framework.

Figure 21-2 shows an ADF application that reuses Taskflows from local ADF Libraries at
design time and invokes remote Portlets at run time as well. These Portlets have also been
implemented through ADF Taskflows. They have been independently deployed and have been
configured for their own access—apart from the consuming application—to enterprise resources,
such as Database and SOA Suite.

Comparing Portlets and Task Flows At least when applications are developed using ADF
there seems to be two options for “SOA style” development of user interfaces. We can make use
of the native ADF mechanism of the task flow as the encapsulated, reusable user interface
component. Alternatively, we can go with the standards-based mechanism of the Portlets.

FIGURE 21-2. Web application assembly using both a remote Portlet and a local task flow

Portlet

SOA Suite

Portlet

Task
flow

ADF library

Task
flow

SOA Suite

Web
application Task

flow

Web application

Task
flow

Task
flow

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 715

Both options are similar in that they are stand-alone, reusable units with clear interfaces and
an encapsulated implementation that can be developed, tested, and distributed in isolation. There
are very clear distinctions that we should look at when choosing either approach. Note, though,
that we can combine task flows and Portlets to create a “composite user interface application.”

Portlets can be used across technology stacks. That means, for example, when Portlets are
implemented in the .NET stack, they can be consumed in an ADF application and, conversely, an
ADF task flow–based Portlet can be consumed by any WSRP-enabled portal framework. If you
are creating integrated user interfaces in more than one user interface technology, Portlets are
your only option because task flows are a proprietary, ADF-only feature.

NOTE
Using IFrames, you could find a way to embed an ADF page in a non-
ADF HTML application, but without any of the event interaction and
UI integration that real Portlets would give you.

In order to publish Portlets developed in ADF, you need a license to use WebCenter
Framework with the JSF Portlet Bridge. For consuming Portlets into an ADF application, you
also need WebCenter Framework.

Integration of Portlets happens at run time. That means it carries a little extra overhead
compared to integration of native ADF task flows (although less than half a second per full page
request). The fact that integration is done at run time makes it very easy to deploy new versions of
Portlets without impact on the consumers (provided, of course, that the contract does not change).
ADF task flows are integrated at design time—from the distributed ADF Libraries—and are
deployed as part of the application that consumes them. Task flows do not run independently in
their own server environment; they are merged with the consuming application. Portlets can be
consumed from remote servers—task flows clearly are local. Note that by creating separate WLS
shared libraries for the task flows, and subsequently creating library references in the weblogic-
application.xml file to these libraries, it becomes possible to separately deploy the task flows and
the applications that consume them.

The interaction patterns supported by task flows are more refined than those available with
Portlets. This distinction depends on the version of the Portlet specification applied. Task flows
can both publish and consume fine-grained contextual events with a complex, strongly typed
payload. They also support navigation listeners, parent task flow actions, and other interaction
facilities.

Task flows are better integrated into the IDE—it is easier to embed and configure a task flow
into an ADF application than to integrate a Portlet. In addition, task flows can share the transaction
used by the “rest of application” as well as ADF data controls—although from a perspective of
decoupling, which is not something to be done lightly.

Task flows inherit the ADF skin in use by the consuming application—so they adapt their look
and feel. Also, task flows have a very special characteristic: They can be extended and customized
by the consumer. ADF customization is a generic mechanism through which application artifacts
such as JSF pages can be customized for different situations. This same mechanism can be used
to customize a task flow that is reused from an ADF Library. Customizing task flows breaks
encapsulation, and should therefore be applied with great care and restraint. However, at times,
it may make the difference between reuse or rebuild.

716 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 717

Presentation Services
Increasingly, customers of an application will request to not only have access to the application
via a user interface, but via a programmatic interface as well. Oracle, for example, has addressed
this requirement by creating a Web Service for every task flow in Fusion Applications. Task flows
implement a workflow with associated operations that presents certain records and supports
specific manipulations. Every task flow has a Web Service counterpart that supports those same
operations as well as data retrieval and manipulation. Note that these services could be the
foundation for the task flows themselves.

In general, services consumed by applications to support user interfaces are somewhat special.
A user interface has a user waiting for its response. The interaction with the end user is usually
bound by specific response times—typically sub seconds—and performance requirements. The
service response times in business process execution are usually not as critical as those for services
directly supporting end-user applications.

This means we might put additional work in reducing the overhead for user interfaces to get
responses out of our services. Several aspects should be considered. First of all, you get the best
performance for an action if you do not have to perform that action at all. The overhead of
invoking a service from the application via the service bus will be incurred for every call, so we
should try to limit the number of calls per browser request. The easiest way of doing this is to
provide composite services that expose exactly the information required for a certain page.
Instead of letting the application invoke multiple services to get all the pieces required, we can
work with “presentation services” that make the exact data in the correct format available to the
application. This can be compared with database views or ADF BC view objects that are created
for similar purposes. Figure 21-3 shows various types of presentation services that provide
tailor-made support for user interfaces.

Another way of reducing the response times suffered by the web application invoking the
services is by shaving time off the service calls. This could, for example, be achieved by not
making the service calls through SOAP/HTTP/XML all the time, but using other bindings such as
the EJB binding, JMS adapter and queue interaction, or socket or direct binding. Additionally,
perhaps the services should not be run as SOA composite applications. Perhaps the services
should be implemented using Servlets, PL/SQL packages, RSS feeds, and so on.

Depending on the application architecture that is adopted in the organization, the presentation
services may need to directly support special clients such as JavaScript programs that require
access to RESTful services that accept simple HTTP requests and want JSON objects in response.

Run-time Assembly of the User Interface
Most user interfaces are designed at design time, by developers and according to functional
specifications. However, many portal frameworks allow online maintenance by application
administrators or end users. At run time, through the browser interface, the arrangement of the
Portlets can be changed. New Portlets can be added and existing ones removed or reconfigured.

Oracle WebCenter Framework offers the Composer component. Composer allows an ADF
application to be editable at run time (sometimes called “designtime@runtime” by Oracle).
This means, for example, that authorized users can rearrange containers on the page and add
new Portlets, as well as add new task flows to the page. When pages are editable, they can
be switched to edit mode, where changes can be designed and applied. The definition of the
page is partly created at design time and deployed to the run-time container, and partly created
at run time and stored in and interpreted from MDS.

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 717

One similar example of run-time assembly occurs for human tasks when the Worklist
application embeds—using an iFrame and a remote task flow call—a specialized task flow as
the user interface for the service. That, too, is a mechanism we can make use of for our own
applications.

Software as a Service and SOA Across the Cloud
The cloud is that somewhat intangible, omnipresent realm of services at the infrastructure,
platform, and software level that exists “somewhere out there.” IT facilities (such as server capacity
and storage), application server environments, and ready-to-use business applications can be
utilized from the cloud, like water and electricity. Cloud-based services are provided from a
centrally managed 24/7 environment, are highly scalable, benefit from the economies of scale, are
paid for per real usage (typically without large investments up front), and thus offer a lot of benefits
to organizations with IT requirements. Additional benefits are typically the quick implementation,
rapid availability of new functionality, and a user community to share experiences with.

Not only customers of cloud-based services such as IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and SaaS (Software as a Service) benefit from said characteristics.
Providers of such services also experience cost savings, easier entry levels for new customers
(with less sales effort), and a global market with a potentially much larger customer base.

FIGURE 21-3. Presentation services

SOA Suite

WS EJB

PL/SQL

PL/SQL

EJB

OSB

Presentation
service

EJB

RESTful
service

Web application

UI
comp

UI
comp

UI
comp

718 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 719

Amazon, for example, has grown its cloud services—IaaS and PaaS—into substantial business
units based on the experience and cost efficiency it gained with establishing and managing its
own IT infrastructure that runs 24/7, servicing a global audience of tens of millions of users.

This chapter focuses primarily on software as a service and does not further discuss
infrastructure and platform as a service. However, IaaS and PaaS provide fine opportunities for
organizations to deploy their own applications “in the cloud.” Some of the topics discussed in
this chapter with regard to SaaS application will then also apply to those cloud-deployed custom
applications.

SaaS applications relate to SOA in multiple ways. In order to replace some homegrown,
locally deployed functionality in an enterprise with one or more SaaS modules, the organization
needs to have adopted a loosely coupled application architecture—such as SOA advocates and
SOA technology enables. In order to expose functionality from the cloud in “the SaaS way,” an
implementation based on the principles and technology of SOA seems advantageous. And very
importantly: Successful adoption of SaaS applications and services by organizations that
themselves have embraced SOA can only be achieved by providing multiple service-oriented
facilities.

It is likely that the SaaS functionality will have to be exposed with a user interface that can be
integrated into the unified UI in the consumer's infrastructure, as discussed in the previous
section, for example, through Portlets or JavaScript widgets. And the functionality also has to be
published through a programmatic interface that can be bound to the local SOA infrastructure,
with RSS feeds, RESTful services, and SOAP WebServices along with an event handling
mechanism.

Concerns, Risks, and Challenges
Even though few would deny the potential benefits of cloud-based solutions, many have voiced
concerns over certain aspects of the “as a service” approach. Although some concerns seem to be
somewhat emotionally driven, others have merit and need to be addressed. We will see how this
leads to a number of special requirements for SaaS applications, some of which are of immediate
relevance from the perspective of SOA and the use of SOA Suite.

Out of Control
Part of cloud-based services is obviously relinquishing some control over components in the
organization’s IT infrastructure to the service provider. That means, for example, that the
performance and plain availability of the SaaS application is no longer controlled by the local, in-
house IT department but by the provider. Usually, a Service Level Agreement (SLA) will formally
define the quality of service provided by the provider as well as financial penalties in case those
levels are not met. Furthermore, cloud service providers benefit from economies of scale that
allow for around-the-clock professional staff and enterprise-level facilities to monitor systems and
handle or even prevent failures, which may be out of reach for many organizations that may
consume the cloud services. Cloud-based infrastructures typically have satisfactory response
times compared to in-house infrastructures, so handing over control to a better-equipped, more-
professional IT organization may not be such a bad deal after all. There will be, however, some
overhead incurred from cross-cloud communication that should be taken into account.

However, you are not just handing over daily control over your application in the case of a
SaaS application—you leave your data in the hands of the cloud provider as well. The good news
is typically the very low cost of storage space in a cloud-based scenario, compared to investing in
an on-site SAN. The potential risk you may need to address is the fact that you may not at all

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 719

times have access to what is essentially a core asset of your organization: your data. As long as
you can get access to that data, at any moment in time and in more ways than only through a
user-oriented interface, that should not have to be a problem. Of course, there is the small matter
of availability, especially in the light of catastrophes befalling the cloud service provider. What
are the risks of a long-term failure (the aftermath of a power outage, earthquake, or plane crash)
or even permanent failure (for example, when the provider goes bankrupt)?

Additionally, what will be the physical, geographical location of your data and what could be
possible consequences of that locality? Your data may be subject to legislation that you did not
necessarily want to be governed by—for example, with regard to your customers’ confidentiality.

Security is an aspect closely related with the previous consideration. What is the level of
security guaranteed by the provider, and how can you be sure of it? And it is not just the location
of the data when in storage; it is the security of that data in transit. When you’re leveraging a
cloud-based service for what could also be an on-site, behind-the-firewall intranet back-office
application, data is moving across the Internet to a remote location beyond the firewall where it
did not have to go. This poses an extra security risk that needs to be justified and addressed.

A certain lock-in with the SaaS provider will be inevitable. However, it may be wise to keep
open as much as possible the options of moving from one provider to another. What, for
example, would be the consequences for your business if the functionality provided by the SaaS
application would overnight no longer be available to you, even if you had a dump of all data in
the system? That’s where open standards come into play—make these an important selection
criteria when choosing a provider of cloud services.

Cloud Service Is an Off-the-Shelf, Standard Offering
Most organizations feel that they are special. No one is exactly like them. That led in the past
frequently to custom development of entire applications. The trend in recent years has somewhat
shifted to the use of commercially available “off-the-shelf” applications, which are frequently
implemented with a customized configuration and/or complemented with custom-developed
extensions to address the organization’s specific characteristics.

A concern regarding SaaS applications is that they are not only obviously standard—many
organizations (potentially thousands) use the same cloud-based instance of a single application—
but probably not easy to configure for the specific needs of the organization, nor are they easy to
extend with custom application components.

Integration with Other Systems and Infrastructure
It is unlikely that the only application used by an organization is a single SaaS application. It
seems much more realistic, and increasingly so, for organizations to use a mix of onsite standard
and custom(ized) applications and cloud-based SaaS applications. And those SaaS applications
may be offered by different providers, each running its own cloud.

This obviously raises the topic of integration. What if more than one application works with
the same data? Where is that data held? How are changes managed? And how are business events
originating in the cloud-based application made available to the local, onsite event handlers
such as the SOA Suite's Event Delivery Network as well as other SaaS applications used by the
organization? Another aspect is the user interface. Many organizations want their users to work in
a portal-like environment where all applications are visually integrated into a single user interface.
The applications share a number of facilities, including Single Sign-On against the local identity
infrastructure, and are capable of passing context information back and forth among each other for
mutual alignment.

720 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 721

Additionally, when an application sends out an e-mail to a customer, that e-mail probably
must come from the organization’s e-mail server, not some SaaS provider’s domain. And a batch
print job should end up on a printer on the site of the SaaS consumer, not the provider. In short,
cloud-based applications should be able to make use of services on offer within the consumer’s
infrastructure.

Consuming Cloud-based Software Services
Services provided by cloud-based SaaS applications can come in various forms. Some of
the most common ways of consuming these services are listed here:

The SaaS offering can be run as a stand-alone application in an isolated browser ■
window. Examples of full-blown SaaS applications capable of running in stand-alone
mode are SalesForce.com, AMIS APS, Connexys Recruitment solutions, Google
Health, and Oracle CRMOnDemand.

A SaaS application (or part of it) can also be visually embedded into another SaaS ■
app or a local custom app, typically using an iFrame inside the embedding web
page; when only a part of a SaaS application’s page is embedded, this is frequently
done using a technique called Web Clipping, which is, for example, supported by
the standard WebClipping Portlet in Oracle WebCenter.

Instead of leveraging the SaaS application’s user interface, the consuming application ■
can instead utilize RSS feeds and RESTful services, or make use of JavaScript libraries,
images, or gadgets published by the SaaS application. Examples of these services that
are consumed on the client slide, from within the browser, are Google Maps, the
SlideShare presentation widget, social networking gadgets based on the OpenSocial
API, and the reCaptcha gadget.

A more formal, standardized, and potentially rich form of user interface integration ■
involves the consumption of a Portlet. An example is the Oracle CRMOnDemand
top-sales Portlet or the Task List Portlet exposed by the SOA Suite.

Applications can consume Web Services (RESTful or SOAP based) exposed by ■
the SaaS application, either directly or preferably via an enterprise service bus,
and then use that service to create application logic or a custom user interface.
Note that some SaaS applications do not have a user interface at all and are only
available as a Web Service. Examples include Geo Coding, translation such as
Babel Fish, currency exchange rates, weather forecasts, stock prices, and sending
SMS messages.

Specific forms of consumption of cloud services may leverage cloud-based ■
infrastructure, such as storage, encryption, VoIP, and e-mail; examples include
Amazon EC2 for storage, Google’s Gmail, and Oracle BeeHive.

The wiki and online chapter complement provide some examples of these various SaaS
consumption patterns.

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 721

Requirements for SaaS Applications
The concerns and risks discussed in the previous section come into play in several situations.
When your organization is considering the use of an SaaS application or some cloud-based
service, the concerns listed before might be used to compare various SaaS offerings and to
compare them with on-premise solutions, either commercial off-the-shelf or custom-developed
solutions. When your organization is involved in offering applications or other IT services, and
you are already doing so from the cloud or considering going there, these considerations may be
useful to decide on the functionality and architecture required for such SaaS-style offerings. This
section will briefly introduce a number of facilities that your applications ideally should offer, in
order to address concerns from your (potential) customers. Figure 21-4 illustrates some of the
facilities that are required in order to achieve “cross-the-cloud” integration between (web)
applications and SOA infrastructures.

NOTE
It would seem that many if not all applications would benefit from
having the suggested characteristics, even when SaaS deployment is
not relevant. Or, perhaps, the onsite IT infrastructure is a cloud of sorts
and therefore even on-premise applications should be considered
SaaS applications in most cases.

FIGURE 21-4. SOA across the cloud—facilities for integration between local and cloud-based
SaaS application

Enterprise service bus and
event handling infrastructure

WebService API
Events

Web application

“Portal”

Event
handler

Web application

Portlets

deep
link

Event
producer

Infra service
consumer

E-mail

Print

CMS

Search

Business
rules

Inject (infra)
services

R
eg

is
te

r
po

rt
le

ts
 a

nd
 d

ee
p

lin
ks

Bulk export
and import

RSS

722 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 723

Web Service API
In addition to the user interface, every task, report, and operation supported by the SaaS application
should be accessible through a WebService API. This allows customers of the application to create
their own user interfaces that can be integrated into their enterprise portals and workflow systems
and that can be developed for alternative channels and devices. It also makes it possible to integrate
the SaaS application into the enterprise service bus of the consuming organization, making
programmatic access possible. Oracle Fusion Applications as well as SalesForce.com are examples
of SaaS applications with Web Services for all functionality available through the user interface.

In addition to regular (SOAP) Web Services, this service API could also publish RSS feeds for
specific types of events as well as RESTful services that are easier to integrate through client-site
widgets and gadgets.

Bulk Data Import and Export
To reduce the dependency on the SaaS provider and mitigate some of the perceived risks, it
should be possible for SaaS consumers to get an export of all their data. In order to start using the
SaaS application, or when dealing with substantial changes in the organization (such as mergers,
acquisitions, or even legislation), bulk imports or updates into the cloud-based data store are
highly desirable.

Dependency Injection of Services
Oftentimes, SaaS applications have a need to perform fairly generic actions, such as authenticating
users, handling e-mail, printing (in batch), sending out alerts to human operators, executing
enterprise-wide searches, maintaining calendars, managing documents in a content management
system, logging business events of interest, performing organization-specific validations and
calculations, and keeping track of the presence of users of the application. Most enterprises have
their own specialized infrastructures for performing these tasks. SaaS applications typically should
use these specialized, locally available services (or perhaps acquired from some other cloud),
instead of their own cloud-based facilities.

This means that consumers of SaaS applications should be able to inject their implementation
of the required services into the SaaS application. The SaaS application then should call out to the
injected services to send the e-mail, authenticate the user, or print the report.

NOTE
This requires of the SaaS customer that local services are exposed
to the SaaS application, using the interface prescribed by the SaaS
application. The Oracle Service Bus is an obvious medium for
exposing such services.

Event Subscription for Remote Listeners
In Chapters 9 and 19 we discussed Event-Driven Architecture, the SOA Suite Event Delivery
Network, and complex event processing. Identifying business events and ensuring that these get
published to a central event handler that manages subscriptions from all interested parties is
crucial in successfully adopting EDA. This will only work when all potential event producers
take their responsibility and publish their events.

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 723

SaaS applications are potentially the source of events and should therefore publish these
events to the central event handler in the infrastructure of the SaaS consumer. Of course, the SaaS
application has no way of knowing beforehand how to contact the event handler for each of its
consumers. SaaS consumers, therefore, need to be able to register event handlers with the SaaS
application. These handlers are implemented as Web Services that are invoked by the SaaS
application when an event of the type they have registered for occurs.

The WebService API we discussed before should also provide interfaces for the publication of
events onto the cloud. The SaaS application could be interested in business events that originate
outside its own scope. In that case, the SaaS consumer should be able to publish such events
through Web Service calls.

Visual User Interface Integration
Ideally, end users need to make use of as few different user interfaces as possible. It is best if all
user interfaces required for an individual user to perform his or her tasks are integrated into a
single UI, such as a portal or dashboard. Even the user interfaces required to access remote SaaS
applications should be integrated into this single UI. Note that this does not mean that all users
would use the same, single UI—only that a user should not have to access many different ones.
Of course, the various components, gadgets, and widgets brought together in this single interface
should interact: When a selection is made in one, this should be passed as an event to another
one to have it synchronized.

The most obvious way to integrate remote user interfaces into a local interface is through the
use of Portlets. SaaS applications should therefore typically publish their user interfaces in the
form of Portlets that can be consumed into enterprise portals by SaaS customers. As an additional
option, the SaaS applications could publish various gadgets that can be consumed on the client
side and/or RESTful-style services that rich-client components can consume to produce the
SaaS-based user interface components.

Note that when ADF is used, integration of remote user interface components can be achieved
through task flow calls with the remote-app-url attribute set, in the same way the BPM Worklist
application does with task flows especially created and registered for a specific human task. The
UI rendered by the called remote task flow is embedded in an Iframe in the consuming page.

Registering Portlets with the SaaS Application Although it seems most logical for Portlets
exposed by the SaaS application to be consumed in a local portal-like application, there may be a
requirement for the reverse situation as well: If the SaaS application, for example, does CRM, with
the focus on customers, orders, and marketing activities, and it wants to provide users, if so
desired, with additional product details about the products purchased by a customer, it could
allow registration of a Product Details Portlet. Such a Portlet would have to be exposed by the
SaaS customer and it would have to accept the input parameters as specified by the SaaS
provider. After this registration, whenever a user of the SaaS application desires more information
about the product ordered by a customer, the SaaS application will consume the Product Details
Portlet that was registered to provide these details.

Deep Link Navigation Business users typically will use enterprise applications to perform tasks
that are part of business processes. Some of these tasks are performed in local applications, and
some in SaaS applications. When the user accesses a task he is about to process, frequently from
some form of to-do list, he prefers to be taken directly to the page that implements the user
interface for that task, with the page initialized for the appropriate task detail context. This

724 Oracle SOA Suite 11g Handbook Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 725

requires applications to support the notion of deep link navigation—URL requests that directly
access pages in the application that are initialized in the appropriate context as indicated by
request parameters.

SaaS applications should allow such deep link navigations from the applications used by their
customers. Conversely, they may allow their customers to register deep link navigation paths that
enable the SaaS application to access pages that, for example, provide additional details
regarding the data currently in focus in the SaaS application.

Joining Clouds (the Internet Service Bus)
Organizations may very well make use of multiple SaaS applications. And each of these applications
comes with similar challenges, such as dependency injection and event handling, as discussed
before. One SaaS application used by an organization may provide the service that is to be injected
into another SaaS application used by that same organization. And events produced by one SaaS
application on behalf of a customer may have to be published into another cloud application used
by that customer.

The enterprise service bus, as shown in Figure 21-4, is part of the SaaS customer’s infrastructure.
However, organizations that only use SaaS applications (or want to) are probably not interested in
having to implement a local enterprise service bus in order to link together all SaaS applications
they consume. Ideally, such a service bus would also be available in the cloud. And it would be
useful to have an industry standard for SaaS applications to have them all implement a similar
interface for injecting dependencies, registering event listeners, accepting deep link navigation,
and so on.

Customization
One of the concerns discussed before is the potential one-size-fits-all nature of SaaS applications.
To address that concern, typically a SaaS application, even though a single instance, is accessed by
all users, should allow for customizations for various organizations, user groups, and/or customers.
Organizations that use the SaaS application should be allowed to give their own look and feel to the
application—both the user interface as well as the service interface. Note that these configurations
should be possible to make via a self-service interface by the customers themselves.

Here are some typical customization hooks that an SaaS provider—and perhaps any
application development team—may consider adding:

 Allow the upload of a customer-specific logo; also allow the definition of customized ■
styles and the upload of a CSS stylesheet that defines a customer-specific look and feel.

 Enable customers to define their own business terminology to be used for prompts, titles, ■
messages, button labels, and other boilerplate text elements.

 Have customers edit the context-sensitive help to align with their organization’s ■
procedures.

 Allow items that are not relevant to a particular customer or user group to be hidden by ■
the customer.

 Enable customers to add new items to satisfy their specific requirements—for example, ■
to record address elements or product properties that very specific to their geography or
business processes.

Chapter 21: The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud 725

 Enable customers to determine the composition of the dashboards in the application: ■
which elements are shown, which are hidden, what is the order of the components is.

 Use application settings or preferences to govern many aspects of the application’s ■
behavior, such as default values, date and number display formats, and currencies and
units used. These preferences can be set per customer.

 Enable domains with allowed values used for drop-down lists and radio groups to be ■
customized by organizations.

 Have organizations configure their own business rules. ■

 Allow SaaS consumers to configure RSS feeds for their own needs—for example, by ■
specifying filters.

 Enable customers to modify the XSD used for the WebService API and the payload for ■
the events published by the SaaS application.

Note that customization can be done at various levels: Customization can be applied per
SaaS customer—at the organization level—and could additionally be supported for specific
departments or roles within those customer organizations. Finally, customization can be
facilitated for individual users; typically it is then called “personalization.”

Customization and Personalization in ADF
ADF has special built-in support for both customization and personalization. Many ADF Faces
components can be configured in some way—for example, the collapsed state of collapsible
panel boxes, the position of a panel splitter, the default selected tab, the state of accordion items,
or the width and visibility of columns in a table. ADF supports the “cross-session state persistence”
mode in which these configuration settings of the ADF Faces components are remembered for the
end users.

Additionally, on top of a regular ADF application, developers can create customizations:
modifications with regard to the base application that are associated with a specific context. This
allows us to easily create versions of a page for specific industries, countries, and user roles, for
example. At run time, the relevant customization context is determined and the specific
customizations are applied on top of the base page before the result is rendered to the browser.
Among the features that can be easily be customized in this way are the sequence and visibility of
fields and other components on the page, the validation rules to be applied to input items, the
style class, and other display characteristics of components.

We can safely conclude that ADF can easily satisfy the customization requirements for SaaS
applications.

Summary
Integration is one of the important objectives sought after through SOA and the SOA Suite. It has
been a recurring theme in most of the chapters in this book. This chapter discussed integration,
too, although in two new ways. First, we looked at integration at the user interface level.

Instead of programmatic integration at the level of SOA composite applications and the
enterprise service bus, we discussed user interface integration. Both client-side integration—for
example, with rich user interface widgets leveraging REST-style services—and Portlet-based

726 Oracle SOA Suite 11g Handbook

integration results in a seamlessly integrated user interface based on a services infrastructure that
may not be integrated at all. Presentation services can be used to support these integrated user
interfaces. Given the special response time requirements from presentation services, we may need
to consider services specifically tailored to support application pages. And these services—for this
same reason—may well need to be exposed via protocols with less overhead than SOAP.

Integration across the cloud was the second major topic in this chapter. With organizations
increasingly making use of cloud-based services, integration between the applications used by an
organization suddenly may involve SaaS applications that run on the cloud. For the integration of
user interfaces, for programmatic integration, and for the implementation of business processes,
this means that remote and local components need to work together. A number of facilities
required for seamless integration across the cloud were discussed, including a WebService API,
event listeners (and their registration), deep link navigation, Portlets, and the injection of infra
services.

Appendix

Migration from SOA
Suite 10g to 11g

727

728 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 729

any organizations have adopted Oracle SOA Suite 10g in the recent past, using
BPEL Process Manager, the Enterprise Service Bus, Human Workflow services,
and/or Web Services Manager. Such organizations typically have made
considerable investments in their environment, the SOA applications, and the
skills required to develop the applications and administrate the infrastructure.

With SOA Suite 11g, these organizations may feel like they are up against the “dialectics of
progress.” They were the first to adopt Oracle’s SOA offerings and as a result they now have to
make additional investments to upgrade to this latest release, even though it may seem the
upgrade does not have immediate benefits. However, much of the investment is not lost, but can
simply be applied to SOA Suite 11g. And these early adopters are best equipped to appreciate
many of the improvements available in Oracle SOA Suite 11g over the previous releases of the
SOA Suite. Finally, Oracle has provided various tools that support the migration. As a result, it
may not be as earth-shattering, risky, or costly as it appears from a distance. On the other hand,
migration is not something that can be done overnight in a few hours.

This appendix helps you by providing some best practices and tips and tricks to perform the
migration from 10g to 11g. Note that the book’s wiki contains a supplement to this appendix with
additional (technical) details on the migration to Oracle SOA Suite 11g.

Overview of the Migration
The migration to SOA Suite 11g involves several aspects:

 The skills, processes, standards, guidelines and best practices need to be revised and ■
refined. Many of the adopted ways of working, the existing knowledge, and the
(automated) procedures and scripts currently used around SOA Suite 10g no longer
apply—in exactly the same way at least—to the 11g release. The introduction of
composite applications as a means to bundle multiple components together, for
example, will impact both design and development of applications. The integrated
console and end-to-end message flow trace will strongly influence daily operations
and administration of the run-time environment.

 The tooling and infrastructure are upgraded. The 11 ■ g run-time infrastructure is composed
of Oracle WebLogic Server instead of OC4J. JDeveloper needs to be upgraded from
10g to 11g. This aspect also includes the security framework and identity and access
management tools.

 Also, the components that are used from Oracle SOA Suite but not implemented as ESB
or BPEL processes, need to be migrated to the new infrastructure. The most important
of these components are EJBs and Web Services that run on OC4J and are invoked from
ESB and BPEL 10g processes. These projects need to be migrated to JDeveloper 11g and
WebLogic Server and will then be used from SCA Composites.

 The BPEL and ESB applications developed on 10.1.3 and currently running on OC4J need ■
to be migrated to SOA composites according to the SCA standard. This can be a one-to-
one migration, meaning a BPEL 10g service is migrated to a single 11g SOA composite
containing that same BPEL component or an ESB project is migrated to an 11g Composite
application with a single Mediator component derived from the ESB service. However, it
could also involve the migration of several BPEL and ESB 10g projects into a single SOA
composite in 11g.

 Any long-running (and still open) BPEL process instances need to be migrated. ■

M

Appendix: Migration from SOA Suite 10g to 11g 729

 Human task display forms generated in 10 ■ g using JSPs and the .tform specification file in
11g need to be replaced with rich webpages created using ADF Faces 11g Rich Client.

 Client applications that hook into the services running on Oracle SOA Suite and the ■
client applications using Oracle SOA Suite’s API’s such as the TaskQueryService need to
be revised, as these services are accessed differently in 11g.

 Ant build scripts used for ESB 10 ■ g and BPEL 10g projects need to be “updated.”

 New features in SOA Suite 11 ■ g are adopted for development, deployment, and
administration.

Some of these different aspects will be addressed in the following sections. Before we dive
into the nitty-gritty details, we quickly recap some of the most striking changes when moving
from SOA Suite 10g to 11g that need to provide the business case for embarking on the migration
in the first place:

 The SCA-based architecture and the notion of composite applications that may contain ■
several (private) service components exposing one or more services

 New service components: BPMN and Spring Java ■

 Support for Service Data Objects (SDOs) through ADF Business Components and BPEL ■
entity variables

 The User Messaging Service (UMS) for sending and receiving notifications via e-mail, ■
instant messaging, and Voice over IP (VoIP)

 The Event Delivery Network for highly decoupled publish/subscribe-style component ■
interaction

 (Somewhat) integrated Oracle Service Bus 11 ■ g, which can be used to implement an
enterprise service bus to connect SOA composite applications to other business domains
and external business partners

 Business rules as stand-alone service components with an enhanced editor in JDeveloper. ■

 The run-time SOA Composer, which allows run-time editing of Domain Value Maps and ■
business rules.

 MDS (Metadata Services) repositories, which allow sharing of common artifacts such as ■
XSD documents and event definition files (EDLs).

 Integrated security through the WSM policies managed from the EM Console and ■
integrated with WebLogic Server’s platform security.

 Composite-level, cross-component, policy-based, fault-handling framework. ■

 End-to-end tracing of messages, across all composites and components. ■

 Fusion Middleware Enterprise Manager Control as the integrated management console ■
for all components and composites as well as for administration.

 SOA Suite 10 ■ g uses OC4J as its underlying infrastructure, and WebLogic Server 11g is
the foundation for SOA Suite 11g. Therefore, any changes and advantages introduced by
WLS over OC4J will automatically apply when migrating to SOA Suite 11g.

 Improved human workflow, including ADF Faces 11 ■ g Rich Client as the development
framework for the user interface for human tasks.

730 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 731

In the next sections, we will first discuss the migration of the run-time environment—the
application server and the SOA Suite run-time engine—and the additional software components
running on OC4J, such as EJBs and WebServices.

We also discuss the adoption of SCA and the concept of composite applications, and how this
will impact our BPEL processes and ESB services when we migrate them. Subsequently we describe
in detail the migration of these BPEL and ESB components into composite applications. The online
complement to this appendix discusses additional advanced topics, including migration of OWSM
and adapter configurations.

Run-time Environment
The migration of the run-time environment is, in reality, a fresh install of Oracle SOA Suite 11g
instead of an update of an existing 10g instance. Oracle SOA Suite 10g runs on Oracle Application
Server, based on the OC4J container, whereas the 11g release runs on WebLogic Server. The 11g
environment cannot be created by somehow migrating the existing infrastructure. Follow the install
instructions as discussed in Chapter 3 and documented on Oracle Technology Network (OTN) in
the installation guide for a fresh install.

Oracle SOA Suite uses a database as a dehydration store, among other things, to store process
instance data. You may need to upgrade the database when moving from 10g to 11g, because
Oracle SOA Suite 11g requires a later version of the RDBMS than is needed for SOA Suite 10.1.3.
Also, different database schemas are used in 11g compared to the previous SOA Suite version; for
example, MDS is new in Oracle SOA Suite 11g. The new database schemas are installed as part of
the fresh 11g installation by the Repository Creation Utility. Afterwards—when you have phased
out 10g—you can remove the 10g schemas.

Software Running on OC4J
Oracle SOA Suite components use other components—outside SOA Suite—to “get the job done.”
When these artifacts run on OC4J, they also need to be migrated to WebLogic Server and JDeveloper
11g. The most prominent examples will be EJB Sessions Beans and Web Services that run on OC4J
and are used from BPEL 10g processes. An example could be an EJB project providing financial
services that are exposed as a Web Service using JAX-WS. The next section discusses some migration
issues for such projects.

Web Services
In general we have the following options when designing Web Services:

 Top-down or contract first ■ In this scenario, you first design the WSDL (contract). You
can then use tooling to create skeleton code. This skeleton code can be elaborated so the
service is fulfilled. The WSDLs and XSDs are fixed. When you change these contracts,
you need to modify the code and possibly regenerate the “skeletons.”

 Bottom-up ■ In this scenario, you start from working code. You use tooling to generate
the Web Service artifacts such as WSDLs and XSDs. These contracts are partially not
under your control because they are automatically generated. When the code changes,
you need to regenerate the WSDLs and XSDs, possibly changing the service interface.

Appendix: Migration from SOA Suite 10g to 11g 731

 Meet-in-the-middle ■ In this scenario, you create both WSDLs and XSDs and the code.
You then use tooling to create the “glue in between,” such as JAXB mappings and JAX-
WS annotations. This is the most flexible approach but also the most time intensive (in
the beginning at least).

So why is this important for migration to 11g? Well, if you use a bottom-up approach for Web
Services, the tooling (JDeveloper and OC4J in this case) has an effect on the generated WSDLs
and XSDs. So when you’re using other tooling such as JDeveloper 11g and WebLogic Server,
there is a slim chance these artifacts will be generated a little bit differently, thus making service
interfaces change and break interoperability. And that’s exactly what happens.

Migrating EJBs That Expose Web Services to SOA Suite 11g
One such case where the preceding happens and manual intervention is needed involves EJB 3
Session Beans that are exposed as Web Services using JAX-WS annotations. In case these Web
Services are used by ESB or BPEL 10g components, we will need to verify interoperability after
migrating to SOA Suite 11g. When you use the EJB 3 Session Bean Wizard in JDeveloper 10g and
select the option to create a Web Service interface, a separate Java interface containing JAX-WS
Web Service annotations will be generated. This option is not available in JDeveloper 11g. The
alternative is to right-click an EJB Session Bean and select the Generate Web Service option,
which will give the same result.

Most migration activities are “automagically” performed when the 10g workspace is opened in
JDeveloper 11. This includes the updating of the workspace and project files and the conversion of
existing deployment plans, among other things.

When you deploy the project to a WebLogic Server, such as the integrated WebLogic Server,
the project seems to deploy and run just fine. However, if you expand the deployment in the
WebLogic Server Administration Console, no Web Services will be listed, only EJBs.

We will need some simple manual steps to correct this, as discussed later. After we have
applied the corrective changes and redeployed the project, the Administration Console of
WebLogic Server will show both the EJB and Web Service. In the project properties dialog, replace
the JDeveloper 10g JAX-RPC project libraries with the (newer) JAX-WS Web Services libraries.
Remove the Java interface containing the JAX-WS Web Service annotations. These annotations,
which were generated in JDeveloper 10g, need to be (partially) moved to the EJB 3 Session Bean
implementation class. This means adding an “@WebService” annotation to the EJB 3 Session Bean
consisting at least of the following arguments: name, serviceName, and portName. You can
possibly check the existing WSDL of the Web Service generated with JDeveloper 10g that runs on
OC4J to obtain information such as name, namespace, and port name. Use these values in the
@WebService annotations of the project in JDeveloper 11g. This lessens the chance that the Web
Service project’s clients “break” due to different endpoint locations, namespaces, port names,
endpoints, and so on.

You can also use additional JAX-WS annotations to influence the endpoint, operations, and
interface of the Web Service. These can be standard JAX-WS annotations or WebLogic Server–
specific JAX-WS annotations. In the latter case, be aware of interoperability issues because these
annotations are not portable to other JEE run-time infrastructure environments. The JAX-WS stack
in some versions of WebLogic Server—and more specifically the JAXB implementation—does not
support Collection-like types such as java.util.Map and java.util.Collection as return or input
types of Web Service operations. When these types are used, deployment fails with the messages
“java.util.Map is an interface, and JAXB can’t handle interfaces” and “java.util.Map does not have
a no-arg default constructor.” A workaround would seem to replace these types with concrete

732 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 733

implementations that have a no-argument constructor (for example, java.util.HashMap). Although
deployment then succeeds, the information contained in the map is lost at run time when requests
and responses are (un)marshalled. Another workaround is to replace these types with an array or
two-dimensional array.

This is a typical case of migrating Oracle Fusion Middleware components to 11g, where
almost everything is done automatically, whereas the final steps need some manual coding or
configuration to make everything work or to make it work as you want to.

Moving from Different Standards
and Technologies to SCA
Oracle SOA Suite 11g is based on the Service Component Architecture (SCA) standard. SCA defines
composites that expose services. Those composite services are assembled out of components. Not
every component in itself needs to be “published” as a service, meaning you do not need to expose
low-level Mediator services and adapter functionality as a separate external service. It can be a local
component to a composite and therefore invisible to other service composites. This promotes much
better integration and encapsulation of low-level functionality. You only need to expose those
artifacts that are reusable. This is referred to as encapsulation.

Historical Proliferation of ESB and BPEL Components
Oracle acquired the BPEL PM product in 2004 through its acquisition of Collaxa. At that time
there was no Oracle ESB, meaning that all adapters such as the database, file, and FTP adapters
were directly integrated in (and part of) BPEL processes. A few years later the Oracle ESB product
was introduced, and it was advocated to place all adapters in the ESB instead of BPEL PM. This
results in better separation of concerns (infrastructural adapters versus process logic). A bit of a
downside, however, is that placing adapter functionality in the ESB layer can result in lots and
lots of ESB projects in a real-life SOA environment. There may be tens or even hundreds of BPEL
processes. Most of these processes will be using ESB projects that act as wrappers to technology
adapters and contain logic for routing and/or transformation. This can result in “over-servicing”
because lots of these ESB projects are not reusable, but rather “local” to a BPEL process.

When using SCA for service assembly, you can migrate these “local” ESB projects to “private”
components inside a composite, thereby reducing the number of services (and artifacts) and
hiding software within composites that are on their own account no services at all.

Reusability Is the Key!
So, in what cases do we do a “plain” one-on-one migration of a single ESB 10g or BPEL 10g project
to a single SCA composite, and when do we elect to redesign the composite applications? That
really depends on one thing: reusability! Chapter 14 discussed SCA and the design of composite
applications. Also remember from the previous section that SCA can be used to encapsulate “fake”
services that are not meant to be reusable. The rule of thumb when migrating a 10g artifact is as
follows (note that artifact denotes an ESB 10g project, a BPEL 10g component, and so on):

 Is the artifact by itself reusable? If so, migrate it on a one-on-one basis to a stand-alone ■
SCA composite. This could mean that a reusable ESB 10g component is migrated to a
SCA composite containing a single Mediator. This Mediator component has (almost)
the same implementation as the ESB 10g project, meaning the same transformations,
(content-based) routings, and so on. A reusable BPEL process also results in a stand-alone

Appendix: Migration from SOA Suite 10g to 11g 733

composite application that contains a single BPEL process component with its services
exposed at the composite level.

 Is the artifact not intended to be generally reusable and only used by a single other 10 ■ g
artifact such as a BPEL process? If that is the case, the artifact should be migrated into the
same SCA composite that contains this single consumer of the artifact.

Using this simple guideline, you will probably migrate your heterogeneous 10g artifacts—ESB
and BPEL—to fewer SCA composites that more closely resemble “real” services and that contain
more than one BPEL or Mediator component.

We will dive into some specific migration considerations concerning SOA components in
subsequent sections.

Using Partitions to Organize the Composites
As of SOA Suite 11g Patch Set 2, we can also use the partitioning mechanism provided by SOA
Suite 11g to organize composites similarly to how we used to do in SOA Suite 10g, with ESB
systems, ESB service groups, and BPEL domains. Note that organizing the composites into partitions
is a manual operation following the migration of the 10g artifacts, not something taken care of by
the automated migration process. Also note that in 11g, partitions do not have the exact same role
as BPEL domains and ESB systems in 10g. In 11g they provide naming containers and support some
bulk management operations such as shutting down all composites in the partition. There is no
partition-level authorization or logging. Partitions do not have specific configuration settings, as is
the case for BPEL domains and to some extent for ESB systems in 10g.

Migrating ESB and BPEL 10g Projects
The migration of your SOA Suite 10g projects to 11g can be done in an automated fashion using
either JDeveloper 11g or Ant scripts. They both do the migration to 11g but only JDeveloper can
also upgrade your Workspace and Projects files. Ant, on the other hand, has the advantage that
it can combine one or more BPEL projects into one SOA composite application. If you don’t
need to automate this migration in a build tool and if you don’t need to combine BPEL projects,
then you should use JDeveloper 11g for your migration. Manual migration might be a viable
alternative when you want to make sure you have a clean environment and want to know
exactly what is going on. The downside of the manual approach is that it will probably take
much more time.

Before you can start the automated migration, you need to do the following:

 Upgrade your ESB and BPEL projects to (JDeveloper and) SOA Suite 10.1.3. Note that ■
there is no supported migration path from SOA Suite 10.1.2 to 11g in JDeveloper; you
will have to perform an upgrade from 10.1.2 to 10.1.3 first.

 Expose the service of the ESB routers that are used by other BPEL or ESB projects as ■
“formal” Web Services. Even though SOA Suite 10g can internally invoke these ESB
services, the 11g migration wizard needs to read the formal WSDLs for creating the
composite references.

 Remove the mcf attributes of the jca:address element in all the adapter WSDLs. These ■
attributes are only used by JDeveloper 10g.

When you are performing these migration steps, SOA Suite 10g and the external Web
Services must be running.

734 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 735

Upgrading SOA Suite 10g Projects Using JDeveloper 11g
Open the ESB or BPEL 10g workspace—or a single project—in JDeveloper 11g. This will
automatically start the migration process. After JDeveloper asks you if you want to migrate these
projects and you have replied in an affirmative way, JDeveloper will make a backup of your 10g
workspace and projects before continuing the migration.

An output window will display the results of the migration, as shown in Figure A-1.
Check the migration overview for warnings and errors, and then click the link to open the log

file for detailed information, as shown in Figure A-2.
This log tells us that the BPEL project has a partnerLink warning. This means that in the

composite there is a reference with no binding. You will need to resolve such errors before you
can actually deploy your newly created SCA composites.

Upgrading SOA Suite 10g Projects Using Ant
The Ant migration script will also make a backup of your 10g project before the migration start.
The Ant upgrade script will not copy the workspace or project files. It will only copy all the BPEL
or ESB projects files to a new folder.

Before you can start the Ant migration, you need to check whether your own JDeveloper 11g
R1 with the SOA Suite extension is installed correctly. Check whether your jdeveloper\bin folder
contains the following files:

 soaversion.cmd ■ This file is used for setting the environment variables.

 ant-sca-upgrade.xml ■ This file does the migration.

FIGURE A-1. Migration results in JDeveloper 11g

FIGURE A-2. The detailed migration log

Appendix: Migration from SOA Suite 10g to 11g 735

If you do not encounter these files, you need to (re)install JDeveloper 11g’s SOA Suite
extension.

Next, check whether the soa-infra-wls.ear is located in the jdeveloper/soa/applications folder. If
it is not, copy this EAR from the SOA Suite 11g server installation (Oracle_SOA1/soa/applications)
to your local jdeveloper\soa\applications folder.

To start the Ant migration, you need to open a cmd console in Windows or a terminal session
in Unix. You need to execute the following command in Windows:

set ORACLE_HOME=C:\oracle\MiddlewareJdev11gR1PS1\jdeveloper
cd %ORACLE_HOME%
bin\soaversion.cmd

To test Ant and the build script, you can execute the following statement:

ant -f %ORACLE_HOME%\bin\ant-sca-upgrade.xml

Figure A-3 shows the output that is generated by the Ant script.
Now that you have tested that the Ant script is working, we will continue by migrating a

real-life 10g project. We will start with an ESB 10g project and continue with two BPEL 10g
projects that will be migrated to one SCA composite application. We finish by making new
workspace and project files.

Migrating an ESB 10g Project to an 11g Composite Application
Locate the ESB project in the projects/10.1.3/Employee/EmployeeService folder. The ESB project
will be migrated to projects/11gR1. This is a simple ESB project that contains a database adapter
that retrieves an employee record from the employee table of the HR demo schema. The ESB
project contains a router that exposes the adapter to the outside world. Because this is a (highly)
reusable service, we choose to migrate it to a separate SCA composite instead of merging it into
another composite.

There is no need to create the same project folder structure under the 11gR1 folder; Ant will
do this for us. The Ant migration script will use the appName parameter for the folder name
(appName is the workspace folder) under the target folder. Inside this appName folder, Ant will
create a project folder with the same name as in 10g, as shown in Figure A-4.

FIGURE A-3. Output from running the Ant migration script

736 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 737

Note that the Ant target has to be a Mediator when you want to upgrade your ESB 10g project
to a SOA composite 11g application. The next code snippet demonstrates how Ant is used to
upgrade an 10g ESB service to an 11g Composite application with Mediator component.

ant -f %ORACLE_HOME%\bin\ant-sca-upgrade.xml mediator
-Dsource C:\projects\10.1.3\Employee\EmployeeService
-Dtarget C:\projects\11gR1
-DappName Employee

The CMD console displays the output of the migration (see Figure A-5). This output is also
located in the JDeveloper upgrade folder jdeveloper/upgrade/logs. Always check this log file for
possible warnings and/or errors.

In this case, there are no errors when performing the ESB migration.

Migrating and Merging One or More BPEL Projects to One Composite
The BPEL Ant migration is a little bit different from the ESB migration. First, the BPEL upgrade will
back up your source project and delete some files from your source project (see Figure A-6).

FIGURE A-4. Project structure after migration using Ant

FIGURE A-5. The output log of the Ant migration

Appendix: Migration from SOA Suite 10g to 11g 737

The BPEL Ant upgrade script can merge two or more BPEL projects into a single composite
application. In this test case, EmployeeInfo and EmployeeSalaryApproval will be migrated to one
composite application, as shown in Figure A-7. Both BPEL projects have a reference to the ESB
project we just migrated into a 11g composite application with Mediator component.

If you want to upgrade your BPEL project to 11g, you need to use BPEL as the Ant target. For
migrating and merging two or more BPEL projects to one composite application, you need to use
a colon (:) in Unix or a semicolon (;) in Windows between the different BPEL projects and enclose
the source input variable with double quotes, as shown here:

ant -f %ORACLE_HOME%\bin\ant-sca-upgrade.xml bpel

-Dsource "C:\projects\10.1.3\Employee\EmployeeSalaryApproval;c:\projects\10.1.3\...

...Employee\EmployeeInfo"

-Dtarget C:\projects\11gR1

-DappName Employee

FIGURE A-6. The Ant BPEL upgrade will make a backup and delete the BPEL folder in the 10g
project.

FIGURE A-7. The result of the migration; the two BPEL projects are under the project folder.

738 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 739

The BPEL 10g project listed first in the “source” parameter will be used as the project name
under the Employee application, and both projects will be added under this folder.

Note that SOA Suite 11g cannot handle such subfolders very well. For example, if you want to
change your composite by adding a new wire between a BPEL component located in a subfolder
and a Web Service reference, JDeveloper will look for the WSDL in the wrong path. To solve this,
copy the subfolder contents to the main project folder and change the composite.xml accordingly.
Copy the BPEL componentType files of the subfolder and project folder, and finally remove the
subfolders.

Another issue in this scenario is that the client partnerLink service of the first BPEL project will
only be migrated to a composite service; the other client partnerLink service will be ignored. If
the second BPEL process should have its client partnerLink exposed as a SOAP Web Service at
the composite level, too, you need to manually correct the migration outcome.

The next step in the Ant migration is to add a workspace file and the project files.

Making an Application Workspace and Creating Project Files in JDeveloper 11g
The Ant migration script does not create the necessary JWS and JPR files, unlike the migration
performed by JDeveloper. These files can also be created in JDeveloper 11g by simply creating a
new SOA application, as shown in Figure A-8.

On the next page, enter the project name as EmployeeService and click Next. On the third
page of the wizard, make sure you choose the Empty Composite Template.

JDeveloper 11g detects the composite.xml, and the pop-up shown in Figure A-9 appears.
Choose to reuse this composite.xml.

FIGURE A-8. New SOA application dialog box

Appendix: Migration from SOA Suite 10g to 11g 739

The resulting workspace and composite are shown in Figure A-10.
You can do the same for the BPEL composite. If this composite needs to be in the same

application, you only need to create a new SOA project this time, in the same JDeveloper application.
As can be seen Figure A-11, the two BPEL projects are merged into one composite application.

Comparing 10g and 11g Project Files
The following mapping exists between the composite and 10g files. Especially for the migration, it
is extremely useful to know which project artifacts end up where:

 *.bpel files ■ ‡ composite.xml (BPEL main project file)

EmployeeSalaryApproval.bpel ■ ‡ EmployeeSalaryApproval.bpel

EmployeeSalaryApproval.bpel ■ ‡ composite.xml

FIGURE A-9. The composite.xml file that was the result of the migration is detected; elect to
reuse this file.

FIGURE A-10. The composite.xml created by the migration in the newly created JDeveloper
application and project

740 Oracle SOA Suite 11g Handbook Appendix: Migration from SOA Suite 10g to 11g 741

 bpel.xml ■ ‡ xxx.componentType (partnerLinks references)

bpel.xml ■ ‡ EmployeeSalaryApproval.componentType

 esb file ■ ‡ composite.xml (ESB main project file)

EmployeeService.esb ■ ‡ Composite.xml

 *.esbsvc ■ ‡ *.mplan (ESB Router to Mediator files)

example_employee_Employee.esbsvc ■ ‡ example.employee.Employee.mplan

 Adapter WSDL files ■ ‡ Adapter XX.jca

EmployeeAdapter.wsdl ■ ‡ EmployeeAdapter_db.jca

AQ_Queue.wsdl ■ ‡ AQ_Queue_aq.jca

JMS_Queue.wsdl ■ ‡ JMS_Queue_jms.jca

By default, XSLTs and XSDs are migrated, respectively, to the xsl and xsd folders that are part
of the SOA composite 11g root folder.

FIGURE A-11. The composite.xml file resulting from the migration of two BPEL project into a
single composite application

Appendix: Migration from SOA Suite 10g to 11g 741

Summary
Organizations that have adopted SOA Suite 10g will probably think about migration to the SOA
Suite 11g release. Many rewards can be reaped from such a migration. Undoubtedly, SOA Suite
11g will offer potential benefits due to the many enhancements over the 10g release. However, it
depends on the specific situation of an organization whether and which of these potential rewards
are relevant and outweigh the effort required by and risks posed by the migration.

Migration from SOA Suite 10g to the 11g release is not to be undertaken lightly. Even though
the migration process is relatively straightforward, it certainly is not trivial. It requires some
(substantial) effort, in several areas. Migration will impact the run-time infrastructure, the currently
deployed applications, the procedures and automated scripts for building, deploying, administering,
and testing, and possibly the consumers of the services. During the migration, care must be taken to
prevent (prolonged) periods of downtime. The developers and administrators of SOA applications
will experience considerable changes, too. Although this forces a relatively short learning curve on
them, they will soon benefit from richer functionality and higher productivity.

The most notable differences are the new underlying infrastructure (WebLogic Server versus
OC4J) and a new paradigm of designing services (SCA composites with integrated components
versus separate ESB and BPEL components).

The online complement for this appendix discusses several detailed scenarios for specific
components and artifacts that may not be relevant in all situations. Among the topics discussed in
this online extension are the following:

 Domain Value Maps ■

 Custom XPath and XSLT functions ■

 Advanced BPEL characteristics, fault policies, unit test suites ■

 Oracle Web Services Manager (OWSM) ■

 Technology adapters (WebService, JMS, AQ, and Database) ■

This page intentionally left blank

A
abort instances, 548
abstract service interface, 103
abstraction

in services layer, 29
SOA principles, 25

accepting new patients
complex task routing, 330–336
implementing as multitask process, 348–352

access
authorization, 487
best practices for security, 488–491
database from BPEL, 134
Enterprise Manager, 72–73
management with FMW, 497
monitoring to BPEL component, 516–518
properties in BPEL processes, 578
restricting secretaries through limited privileges,

333–334
SOA-DIRECT for SOA composite application,

439–440
accounting in business architecture view, 8
acquisitions

moving to SCA, 732
Oracle, 54–57

actionable e-mail, 319–320
actionable notifications, 320–321
actions

associating sensor with BPEL sensors, 533–534
business rule architecture, 249
creating decision table, 261–262
custom sensor, 385
fine-grained BPEL tracking using sensor, 661–665
IF/THEN rules, 237–238
policy-based fault-handling framework, 538

Report, 435–436
retrying inbound and outbound adapter, 546

Active Data Cache (ADC)
configuring in BAM Architect, 636–640
defined, 635

Active Studio, 640–643
activities

Assign and XPath, 126–132
BPEL ingredients, 115
BPEL process, 177–178
Catch and Throw, 179–183
essential BPEL, 123–126
Flow, 154–156
flow for parallel execution of BPEL, 154–156
instance attributes in BPMN, 364–365
monitoring. See BAM (Business Activity Monitoring)
Receive, 161–162
Receive and Pick, 163–164
Scope and Sequence, 153–154
Terminate, 176

adapters
BAM, 648–651
CEP application, 623
database. See database adapters
EJB, 409–414
File Adapter Service. See File Adapter Service
Java integration, 383–384
modifying properties, 577
preparing temperature sensor simulator, 621–622
replacing properties for technology bindings,

562–563
retrying inbound and outbound actions, 546
run-time management of configuration, 576–577
sending appointment status updates to BAM,

651–653
SOA Suite 11g, 61–62
Technology Adapter, 288

Index

743

744 Oracle SOA Suite 11g Handbook Index 745
ADC (Active Data Cache)

configuring in BAM Architect, 636–640
defined, 635

address correlation, 173–174
address element, 97–98
ADF (Application Development Framework)

BAM and, 635
custom human task form, 684–688
custom UI, 677–683
customization and personalization of SaaS, 725
defined, 57, 66
exposing SOA as EJB, 415–416
Java integration with, 384
real-time dashboards based on BAM in custom

applications, 689–691
SDO-bound BPEL variables for tighter data

integration, 698–707
summary, 707–708
task flows, 713–715
very-high-level architecture, 674–677

ADF-BC (Business Components)
creating ADF binding, 701–703
defined, 62
feeding events into EDN, 692–698
making ADF expose SDO-enabled Web Service,

700–701
administration. See management
AdminServer, 71–72
Advanced Queuing (AQ). See AQ (Advanced

Queuing)
agents and gateways pattern, 495–496
aggregates

CEP, 614
instance monitoring with metrics, 522–526

agility, 575
AIA (Application Integration Architecture), 67
alerts

BAM and CEP, 645–647
custom Java action to send e-mail, 542–543
e-mail sent for failing instances, 544
for scheduling non-events, 659–661

algorithm, Rete, 250
allocation

business rules for task, 337
custom task, 339

ALSB (AquaLogic Service Bus), 427
AmberPoint, 57, 80
analysis

business process, 343
decision table, 264–266

Another Neat Tool (Ant). See Ant (Another Neat Tool)
ANSI/IEEE Std 1471-2000, 23
Ant (Another Neat Tool)

command line building and deployment, 556–557
including testing in automatic deployment, 575
MDS resources through, 599–600
upgrading SOA Suite 10g projects using, 734–739

any element, 98–100

anyType type, 99–100
APIs (application programming interfaces)

BAM, 635
invoking SOA Suite from Java, 386
Java and WebService for Human Workflow

Services, 337–338
requirements for SaaS, 722

append, 130–131
Application Development Framework (ADF). See ADF

(Application Development Framework)
Application Integration Architecture (AIA), 67
application (service) components layer, 28
applications

auxiliary BPMN for processes, 354
composite. See composite applications
creating CEP, 623–625
governance, 36
Oracle integration, 57–60
preparing CEP simulator, 621–623
requirements for SaaS, 721–725
rethinking notion of, 31–32
SCA way of designing and developing, 471–477
workspace in JDeveloper, 738–739

appointment priority
in BAM dashboard, 655
business rule service component in BPEL

process, 266–268
creating business rule, 257–258
decision table, 261–262
decision table analysis, 264–266
deploying and testing composite, 268
determining, 257
editing decision table at run time through

Composer, 268–269
extending task with notification and group

assignment, 315–321
factoring in original referral priority, 263
implementing ArbitrateHighPriority, 306–315
low priority case, 263–264
obesity rule, 262–263
operations on decision table, 266
OSB message enrichment with code, 444
preparing bucket sets, 258–261

appointment process
consuming asynchronous event, 164–173
correlation and asynchronous service calls,

173–174
flow for parallel execution of activities,

154–156
handling exceptions in, 179–184
invoking asynchronous service, 158–162
invoking synchronous Web, 157
request messages in running instances, 163–164
requesting details from instance, 175–176
scope and sequence, 153–154
sending notifications from, 162–163
start of, 151–153
undoing scope results, 184–186

Index 745
appointment requests

automated unit testing, 569–575
in BAM dashboard, 657
content-based routing for external, 210–212
custom UI for, 677–683
dynamically distributing over log files, 221
File Adapter Service for reading files with,

191–196
Mediator to process doctor’s incoming, 197–202
for new patient, 336
sending to patient service, 205–210
status via e-mail, 446–453
status via REST, 453–456
via Web application, 227–229

appointment type
creating business rule service component, 235
decoupling business logic for deriving, 248
deploy and run composite application with

business rule, 244
deriving, 235
handling new codes, 246–247
implementing Decision Service component,

236–239
integrating business rule in the composite, 240–243
leveraging business rule’s logic for content-based

routing, 244–246
run time ahead of design time, 248
testing appointment type business rules, 239–240

appointments
creating dashboard, 653–658
domain value map for types of, 222–225
eAppointment pilot project, 42–43
external parties and service, 437–446
implementing dashboard as custom ADF

application, 689–691
in information architecture view, 11
monitoring new with BAM adapter, 648–651
scheduling, 323–330
sending invoices to patients who had, 429–437
sending status updates to BAM, 651–653

approving treatments, 354–359
AQ (Advanced Queuing)

defined, 47
publishing database events via AQ, 288–289
vs. EDN, 286

AquaLogic Service Bus (ALSB), 427
Architect

configuring ADC in, 636–640
defining alert rule, 645–646

architectural point of view
of BPM, 344–346
canonical data model, 35–36
components and relationships, 23–24
events and EDA, 37–38
governance, 36
layering enterprise architecture, 28–34
principles of SOA, 24–28
of St. Matthews, 6–13

architecture
ADF, 674–677
BAM, 634–636
business rule, 249–251
CEP, 619–620
EDA. See EDA (Event-Driven Architecture)
Human Task Service, 303–305
OSB, 427–428
OWSM, 499–500
SOA integration at UI level, 710–711

archives
deployment profiles, 553–555
instances, 548

Arrow view, 641–642
assert fact action, 250
assertions

automated unit testing, 571–572
defined, 569–570

assets
governance. See governance
life cycle for SOA, 591–592
OER, 603
in OSR, 601
registration and publication, 590–591
reuse, 26

assigning
BPEL variables, 125–126
groups, 315–321
roles, 511
in XPath, 126–132

asynchronous adaptation, 34
asynchronous communication, 25
asynchronous events, 164–173
asynchronous services

correlation and calls, 173–174
invoking, 158–162
PatientDataService as, 133–134
vs. synchronous services, 116

atomicity of services, 27
attaching configuration plans

on command line, 568
upon deployment from JDeveloper, 565–567

attributes
configuring BAM data object, 639
instance activity in BPMN, 364–365
message, 104–105

auditing
custom logging, 536
ESB, 34
FMW, 497
instance inspection, 526
security, 488

authentication
with agents and gateways pattern, 495–496
defined, 486
identity administration, 485, 505–507
transport vs. message security, 491–495
WS-Security, 507–510

746 Oracle SOA Suite 11g Handbook Index 747
authorization

defined, 487
events and, 278
identity administration, 485
WS-Security, 511–514

automated service tasks, 367–368
automated unit testing, 568–575
autonomy of components, 25

B
B2B adapter, 62
BAD (Business Agility through Decoupling). See also

decoupling, 4
BAM (Business Activity Monitoring)

acquisition of, 55
adapter, 648–651
business scenarios for, 633–634
CEP and, 615
defined, 38
detecting scheduling non-event, 658–661
fine-grained BPEL tracking using sensor actions,

661–665
integrating with SOA composites, 647–648
producing alert upon fierce temperature

deviations, 645–647
product architecture, 634–636
real-time dashboards in custom applications,

689–691
reporting on temperature sensor readings,

636–645
sending appointment status updates to, 651–653
server, 63–64
in SOA Suite, 616–617
SOA Suite 11g adapters, 62
SOA Suite 11g installation, 71
St. Matthews appointment dashboard, 653–658
summary, 671–672
tracking BPEL process execution using, 665–671

bar charts in dashboard reports, 642
basic queuing vs. business queuing, 286
batch processing

in OSB, 456
vs. straight-through processing, 344–345

BEA, 55, 80
best practices for applying IT security, 488–491
BI (Business Intelligence), 615
Bind Entity activity, 178
bindings

ADF and BPEL entity variables to SDOs, 699–701
applying OWSM policies, 501
creating ADF BC, 701–703
fault, 538
fault policy to application, 540–541
inbound ADF, 415–416
inbound EJB, 414
Java integration with ADF, 384
leveraging outbound EJB, 409–414

replacing properties for technology adapter,
562–563

template, 601
in WSDL contracts, 107–108

biometrics, 618
black box testing, 569
blueprints, 67
bottom-up Web Services design, 730
BPA (Business Process Analysis) Suite

defined, 67
tools to facilitate BPM, 346–347

BPD (business process diagram), 347
BPEL (Business Process Execution Language)

accessing database from, 134
Assign activity and XPath in, 126–132
BPMN and, 353–354
choosing between OSB, Mediator and, 457–459
creating and running “HelloWorld,” 76–77
creating the RetrievePatientRecord database

service, 142–145
custom sensor action, 385
deploying and running composite application,

145–147
EDN in, 293–295
Embedded Java, 384–385
entity variables bound to SDOs, 385–386
essential activities, 123–126
extending PatientDataService process, 139–141
fault policies and catch activities, 542
fine-grained tracking using sensor actions,

661–665
human task callbacks, 339
implementing BPM through, 347–352
implementing composite PatientDataService,

117–120
industry standards, 49
ingredients, 115–117
introduction, 114–115
invoking Mediator from, 408–409
migrating 10g projects, 733–740
monitoring access to component, 516–518
moving to SCA, 732–733
PatientDataService as asynchronous service,

133–134
PatientDataService as SCA composite

application, 132
PatientDataService in more detail, 120–123
promotion from CEP to EDN, 631–632
publishing EDN events from, 289–292
referencing DVM in, 580–581
SDO-bound BPEL variables for tighter data

integration, 698–707
Select service to retrieve patient identifier, 134–138
sensors, 532–536
service orchestration, 52–53
summary, 148
wiring Database Adapter Service to component,

138–139

Index 747
BPEL (Business Process Execution Language) processes

accessing properties in, 578
adding human task to, 324–325
calling BAM adapter service from, 650–651
consuming asynchronous event, 164–173
correlation and asynchronous service calls,

173–174
decoupling PatientAppointmentService, 229–231
Embedded Java in, 397–399
embedding Java logic in, 394–399
flow for parallel execution of activities, 154–156
handling exceptions in, 179–184
implementing RetrievePatient, 705–706
integrating ArbitrateHighPriority into, 310–312
integrating business rule service component in,

266–268
invoking asynchronous service, 158–162
invoking synchronous Web, 157
other activities, 177–178
overview, 150–151
receiving request messages in running instances,

163–164
requesting appointment details from instance,

175–176
scope and sequence, 153–154
sending notifications from, 162–163
start of appointment process, 151–153
summary, 186
tracing progress using BPEL sensors, 532–533
tracking process execution, 665–671
undoing scope results through compensation

handlers, 184–186
vs. Mediator, 192–193
wiring PDF generator to SchedulingService, 404

BPEL Process Manager, 60
BPEL4People, 311
BPM (Business Process Management)

from architectural point of view, 344–346
business processes layer, 30–31
Composer. See Composer
defined, 16
design guidelines, 346
dynamic management with Composer, 581
implementing through BPEL and Human Task,

347–352
overview, 342–344
revising business process, 373–378
summary, 378–379
tools to facilitate, 346–347
Workspace, 371–372

BPMN (Business Process Model Notation)
auxiliary applications for processes, 354
BPEL and, 353–354
designing Treatment Approval workflow using,

354–359
implementing Treatment Approval process,

362–371
industry standards, 49

introduction, 353
run and track business process, 371–373
simulating execution of business process, 359–362
in SOA Suite 11g, 60
tools to facilitate BPM, 346–347

bucket sets
defined, 257
preparing, 258–261

bug fixes, 581
building composite applications

from command line, 555–558
from JDeveloper, 553–555
overview, 552–553

bulk attachment, 515
bulk data import and export in SaaS, 722
bulk instance deletion, 548
Business Activity Monitoring (BAM). See BAM

(Business Activity Monitoring)
Business Agility through Decoupling (BAD). See also

decoupling, 4
business architecture view

defined, 6
of St. Matthews, 7–10

Business Components. See ADF-BC (Business
Components)

business domains, 429–437
business entities, 601
business events. See also events

according to SCA, 467
human task callbacks, 339
promotion from simple, anonymous signal to,

627–632
Business Indicator activity monitor

adding to PatientAppointmentService, 667–669
defined, 666

Business Intelligence (BI), 615
business logic

decoupling for deriving appointment type, 248
defined, 234
leveraging business rule for content-based

routing, 244–246
rationale behind, 248–249
rules. See business rules

business objects
as business events, 692–693
defined, 363

business point of view, 19–23
Business Process Analysis (BPA) Suite

defined, 67
tools to facilitate BPM, 346–347

business process diagram (BPD), 347
Business Process Execution Language (BPEL). See

BPEL (Business Process Execution Language)
business process layer, 30–31
Business Process Management (BPM). See BPM

(Business Process Management)
Business Process Model Notation (BPMN). See BPMN

(Business Process Model Notation)

748 Oracle SOA Suite 11g Handbook Index 749
Business Process Workspace, 354
business processes

in business architecture view, 7
defined, 343
definitions vs. instances, 120
dynamic management with BPM Composer, 581
guided, 355
management. See BPM (Business Process

Management)
business queuing vs. basic queuing, 286
business rules

architecture, 249–251
creating AppointmentPriorityRuling, 257–258
creating Business Rule service component, 235
creating library for, 252–254
in decision tables. See decision tables
deploy and run composite application with, 244
editing in Composer, 374–375
handling new AppointmentType codes, 246–247
implementing Decision Service component,

236–239
implementing EvaluateTreatmentApproval

Request, 367
integrating DeriveAppointmentType, 240–243
integrating service component in BPEL process,

266–268
leveraging logic for content-based routing,

244–246
rationale behind, 248–249
in revising business processes, 373
run time ahead of design time, 248
for task allocation, 337
testing, 239–240

Business Rules engine, 60
business services

in ADF architecture, 675
creating e-mail, 449
defined, 18
OSB, 420
in OSR, 601
of SOA, 19–23

C
caching service results, 426, 452–453
callbacks, human task, 339
calling

AcceptNewPatient service component, 350–352
asynchronous services, 159–162
BAM adapter service from BPEL process, 650–651
correlation and asynchronous service calls,

173–174
cancellations, 164–173
canonical data model

for external appointment requests, 212–213
of SOA, 35–36

canonical messages, 221–222
canonical value dictionaries, 226
case management, 345–346
catch activities

defined, 179–183
fault policies and, 542

catchAll, 180
central library

adding formulas to, 255
of system parameters, 252–255

CEP (Complex Event Processing)
alert upon fierce temperature deviations, 645–647
BAM and, 633–634
defined, 38, 67
EDA and, 292–293
getting started with, 621–622
harvesting data rich business areas, 617–619
installation, 71
integrating with SOA composites, 627–632
monitoring temperature sensors, 620–621
product architecture, 619–620
publishing non-events, 299
reporting on temperature sensor readings,

636–645
in SOA Suite, 616–617
summary, 671–672
TemperatureReadingsProcessor application,

623–625
test run: pin pointing malfunctioning sensor,

625–626
change events

consuming, 277–283
publishing database events via AQ, 288–289
publishing patient details, 287

changes
composite application, 581–584
dynamically adjusting application behavior,

575–581
handling with SOA, 21–22
SOA implementation, 39

channels, 295
charts

adding 3D bar chart to dashboard report, 642
for performance monitoring, 525

CIA (confidentially, integrity, and availability), 489
class registration with SOA Suite, 385
classification, 489–490
Client partner link, 120
client roles, 123
cloud-based services, 717–725
codes

creating Java, 397
enrichment of OSB message with priority, 444
handling new AppointmentType, 246–247
implementing Java for generating PDFs, 401–402

Collaxa, 54, 80
collections, 140

Index 749
command line

attaching configuration plans on, 568
building and deploying from, 555–558
exporting and migrating BAM report, 645
importing metadata into MDS repository, 600
including testing in automatic deployment,

574–575
MDS resources through WLST and Ant, 599–600

commercial off-the-shelf (COTS) application
in information architecture view, 11
in technical architecture view, 12–13

communication
about faults, 183
in business architecture view, 7
in business SOA, 20
decoupling, 25
ESB, 33–34
JMS, 387–388
message definition, 103–105
new patient via JMS to finance department,

391–392
Receive and Reply activities, 124

comparing 10g and 11g project files, 739–740
compatibility and versioning, 584
compensation handlers

in BPEL, 179–184
defined, 179
undoing scope results, 184–186

compiling from JDeveloper, 553–555
Complex Event Processing (CEP). See CEP (Complex

Event Processing)
complex outcomes, 323–330
complex task routing, 330–336
components

according to SCA. See SCA (Service Component
Architecture)

ADF business feeding events into EDN, 692–698
applying OWSM policies, 501
autonomy, 25
BAM, 634–636
BPEL, 150
CEP, 619–620
dashboards in, 523–524
implementation with BPEL. See BPEL (Business

Process Execution Language)
integrating OSR with SOA Suite, 602
key SOA Suite 11g, 60–61
Mediator. See Mediator
migration from SOA Suite 10g to 11g, 728
modifying properties, 577
relationships and, 23–24

.componentType extension, 463–464
composability of services, 28
Composer

BPM process, 354
design at run time through rules and DVM in,

580–581

editing decision tables at run time through,
268–269

handling new AppointmentType codes with,
246–247

online redefinition of BPM processes, 374–376
run-time UI assembly, 716–717

composite applications
according to SCA. See SCA (Service Component

Architecture)
adding JMS in, 388–391
applying monitors to, 666–669
automated unit testing for, 568–575
BAM integration with, 647–648
BPEL processes in. See process-oriented BPEL
building. See building composite applications
changes, 581–584
creating and running “HelloWorld,” 75–79
creating to consume ADF published events,

697–698
dashboards in, 523–524
deployment. See deploying composite

applications
developing with EJB Adapter reference, 411–413
dynamically adjusting behavior, 575–581
ingredients of, 61
inspecting, 504–505
instance monitoring. See instance monitoring
integrating business rule in, 240–243
integrating CEP with SOA, 627–632
integrating OSR with SOA Suite, 602
migrating ESB 10g project to, 735–736
migrating or merging BPEL projects to, 736–738
modifying properties, 577
Monitor Express in action, 670–671
PatientDataService as, 132
reusing shared artifacts in, 596–597
running with business rules, 244
securing, 504
sensors, 531–532
using partitions to organize, 733
using SOA-DIRECT to access, 439–440

composite services
BPEL ingredients, 115
creating and running “HelloWorld” of

applications, 75–79
implementing PatientDataService, 117–120
industry standards, 49–53

composite.xml file, 464–467
composition, ESB, 34
computer performance analysis, 619
concat, 129–130
Conditional Branch, 454
conditional flows, 368–370
conditions

creating decision table, 261–262
decision table, 257
policy-based fault-handling framework, 537

750 Oracle SOA Suite 11g Handbook Index 751
confidentiality

in hard IT security, 487
with transport security, 514–516
with WSS, 492

confidentially, integrity, and availability (CIA), 489
configuration

ADC in BAM Architect, 636–640
analyzing SCA around EDN and events, 293–295
business components to publish events to

EDN, 697
business service with virtualization layer, 439
consuming and publishing events in mplan, 294
EJB Adapter reference, 409–414
Enterprise Manager, 64
group vote for PatientAccountManagers, 332
inbound Database Adapter Service, 228
JMS Adapter, 388–391
log files, 528
noShowDeadline Property, 578
OWSM policy, 499
routing rule, 199–201
run-time management of adapter, 576–577
ScheduleAppointment task parameters, 323–324
server for real-time dashboard deployment, 691
service result caching, 453
SOA Suite 11g, 70–77
SSL/TLS in WebLogic Console, 515
temperature aggregate processor with CQL

query, 624
configuration plans

applying during deployment, 565–568
creating, 559–565
reapplying, 577

conflict resolution, 265–266
connections

entity variables to SDO, 703–704
IDE to MDS repository, 594
SOA Suite 11g, 74–75

consoles
creating Invoice Business Service in OSB,

430–432
Enterprise Manager. See Enterprise Manager
exporting composite application from, 568
inspecting properties through, 579
OSB, 427–428

constraints, XSD, 93
constructions, complex mapping, 203–204
ConsultPreparationInstruction Web Service, 157
consumers

decoupling with ESB, 33–34
defined, 23–24
listening in on events, 283–284

consuming cloud-based SaaS, 720
consuming events

according to SCA, 467
asynchronous, 164–173
BPEL extensions for, 294
with CEP, 615

CEP in SOA, 627–632
creating composite application for ADF, 697–698
in Mediator mplan configuration, 294
patient change, 277–284

consuming Portlets, 712
containers, 523–524
content-based routing

dynamically distributing appointment requests
over log files, 221

enriching messages with referral identifier,
215–220

for external appointment requests, 210–212
leveraging business rule’s logic for, 244–246
OSB, 424
routing rules with filter expressions, 212–215

continuous data stream analysis. See CEP (Complex
Event Processing)

Continuous Query Language (CQL). See CQL
(Continuous Query Language)

contracts
breaking WSDL, 132
Portlet, 712
services and events layer, 28–30
for simple Web Service, 108–110
standardizing, 25–26
Web Services design, 730
WSDL, 102–103

control
in business architecture view, 8
data. See data controls
over cloud-based services, 718–719

conversion, 225–227
copying

in Assign activity, 128–131
patient identifier values, 141

correlation
for appointment cancellations, 171–172
asynchronous service calls and, 173–174
defined, 163
message exchange with JMS, 393
for PatientAppointmentService, 164–171

correlation set, 165
costs

moving to business SOA, 20–21
reducing through strategy, 10
trends in healthcare, 5

COTS (commercial off-the-shelf) application
in information architecture view, 11
in technical architecture view, 12–13

Counter activity monitor, 666, 667–669
coupling

event, 37
loose. See loose coupling
in SCA, 53

CQL (Continuous Query Language)
in CEP architecture, 620
configuring temperature aggregate processor

with, 624

Index 751
defined, 614–615
detecting non-events with query, 624–625
in SOA Suite, 616

Create Entity activity, 178
creating

ADF business components, 694–695
AppointmentPriorityRuling business rule,

257–258
BAM adapter service, 650
BAM data objects, 637–638
bucket sets, 258–260
central library of system parameters, 252–254
configuration plans, 559–565
custom human task form in ADF, 684–688
custom Java action to send e-mail alert, 542–543
custom UI in ADF, 677–683
dashboard report in Active Studio, 640–643
decision tables, 261–262
e-mail service, 449–450
EJB Session Bean, 410–411
HandleDoctorsAppointmentRequestFromDB, 228
“HelloWorld” of service composite applications,

75–79
Invoice Business Service, 430–432
Mediator, 198
PatientAdministration page, 695–696
picky subscriptions with filter expressions,

284–287
process simulation, 359–361
RetrievePatientRecord database service, 142–145
roles, 511
shared artifacts, 595–596
Spring Context service component, 402–404
St. Matthews appointment dashboard, 653–658
TemperatureReadingsProcessor application,

623–625
vs. redeployment or revision, 584
XML documents, 92
XML schema definitions, 97–100

credentials, 72
custom adapters, 621–622
custom ADF application. See ADF (Application

Development Framework)
customer service, 618–619
customization

BPEL activity monitor reports, 671
class registration, 385
designing into composite applications, 577–581
human task forms, 684–688
Java action, 542–543
logging, 536
policy assertions, 503
SaaS, 724–725
sensor action, 385
shared artifact, 597–598
task allocation and escalation mechanisms, 339
UI, 677–683
using configuration plans, 559

D
DAS (Data Access Service)

defined, 698
implementation of entity variables in BPEL, 699–700
infusing PatientDataService with SDO

interaction, 701–703
dashboards

BAM. See also BAM (Business Activity
Monitoring), 63–64

creating real-time in custom applications, 689–691
creating St. Matthews appointment, 653–658
instance monitoring, 522–526
Monitor Express in action, 670–671

data
bulk export and import in SaaS, 722
harvesting business areas, 617–619
SDO-bound BPEL variables for tighter

integration, 698–707
XML binding, 91

Data Access Service (DAS). See DAS
(Data Access Service)

data controls
in ADF architecture, 675–677
creating ADF, 678–680
creating BAM for data objects, 690
creating PatientAdministration page, 695
multiple consumer components of same BAM, 691

data level authorization, 514
data objects

adding BAM adapter service for updating, 651–653
in BAM, 617
BPELActivityMonitor, 662
configuring BAM, 637–639
creating BAM adapter service, 648–650
creating BAM data controls for, 690
defined, 363
holding process with Process, 363–364
SDOs. See SDOs (Service Data Objects)

Database Adapter Service
appointment requests via Web application,

227–229
decoupling, 229–231
updating patient details, 281
wiring to component, 138–139

database adapters
access from BPEL process, 134
creating RetrievePatientRecord, 142–145
Select service to retrieve patient identifier, 134–138
SOA Suite 11g, 62

database events, 288–289
database views, 338
debatching, 192
decision making with SchedulerService, 323–330
Decision Service

adding formulas to central library, 255
business rule architecture, 249–251
creating AppointmentPriorityRuling business

rule, 257–258

752 Oracle SOA Suite 11g Handbook Index 753
Decision Service (Cont.)

creating business rule service component, 235
creating decision table, 261–262
decision table analysis, 264–266
decision table at Starbucks, 256–257
decoupling business logic for deriving

appointment type, 248
deploying and running composite application

with business rule, 244
deploying and testing PatientAppointmentService

composite, 268
deriving appointment type, 235
determining appointment priority, 257
editing decision table at run time through

Composer, 268–269
factoring in original referral priority, 263
handling new AppointmentType codes, 246–247
implementing DeriveAppointmentType Decision

Service component, 236–239
integrating business rule service component in

BPEL process, 266–268
integrating DeriveAppointmentType business

rule in the composite, 240–243
leveraging business rule’s logic for content-based

routing, 244–246
low priority case, 263–264
obesity rule, 262–263
operations on decision table, 266
overview, 234
preparing bucket sets, 258–261
rationale behind business rules, 248–249
run time ahead of design time, 248
setting up central library of system parameters,

252–255
in SOA Suite 11g, 60
summary, 270
system parameters and global formulas, 251
testing appointment type business rules, 239–240

decision tables
analysis, 264–266
creating, 261–262
creating AppointmentPriorityRuling business

rule, 257–258
deploying and testing PatientAppointmentService

composite, 268
determining appointment priority, 257
editing at run time through Composer, 268–269
factoring in original referral priority, 263
integrating business rule service component in

BPEL process, 266–268
low priority case, 263–264
obesity rule, 262–263
operations on, 266
preparing bucket sets, 258–261
at Starbucks, 256–257

decoupling
in ADF, 675
business logic for deriving appointment type, 248

database adapter service, 229–231
defined, 17
with EDA. See also EDA (Event-Driven

Architecture), 272–274
with OSB. See OSB (Oracle Service Bus)
policy-based fault-handling framework, 537
SOA from business perspective, 19
tactical SOA, 21–22
two-way services using Discussion Forum,

296–299
deep link navigation, 723–724
default behavior in case of unavailable remote

services, 538–539
default channel, 295
default namespaces, 97
default versions, 582
defense-in-depth, 489
definitions

“accept new patient” task, 331–332
alert rule in BAM Architect, 645–646
BPEL process, 115
business process instances vs. business

process, 120
canonical data model, 35–36
component according to SCA, 463
creating BPMN process, 356–357
creating process simulation, 361
EMS, 638–640
event, 274
human task, 303–304, 306–308
message flow for proxy service, 441–443
proxy service RequestAppointmentForPatient, 441
sharing, 594–595
tasks with complex outcomes, 323–330
XSD, 93–102

dehydration, 120
deleting composite instances, 547–548
delivery, EDN. See EDN (Event Delivery Network)
dependencies

managing XSDs and XML, 101–102
OER, 604

dependency injection
in SaaS, 722
Spring Context service component, 405

deploying composite applications
ADF, 680–681, 696
ADF BC, 701
to another WLS instance, 694–695
applying configuration plan during, 565–568
BPEL, 145–147
with business rules, 244
central library of system parameters, 254–255
from command line, 555–558
DoctorsAppointmentRequestsProcessor,

204–205
“HelloWorld,” 77–78
InsuranceComposite, 507
from JDeveloper, 553–555

Index 753
overview, 552–553
PatientAppointmentService, 268
PatientDataService, 706–707
pre- or post-deployment operations, 553
real-time dashboard in custom, 691
ScheduleAppointment task, 326–329
in SOA, 131
through Enterprise Manager, 558

deployment
custom task form, 686
including testing in automatic, 574–575
shared artifact, 595–596
test suite, 573–574

deprecated state, 591
DeriveAppointmentType Decision Service

creating business rule service component, 235
implementing, 236–239
integrating business rule in composite, 240–243
testing business rules, 239–240

design
BPM guidelines, 346
customization into composite applications,

577–581
of SCA applications, 468–471
Treatment Approval workflow using BPMN,

354–359
XSD, 93–102

design time
autonomy, 25
CEP at, 620
Fusion Middleware, 66
OSR, 602
run time ahead of, 248

design time at run time (DT@RT), 66
detection, BAM, 658–661
detectors, temperature. See temperature sensors
development

ADF. See ADF (Application Development
Framework)

life cycle for SOA assets, 591
of SCA applications, 471–477

dictionaries
business rule, 249
canonical value, 226
function in rule, 251

discoverability, 26
Discussion Forum, 296–299
distribution, dynamic, 221
DIY (do-it-yourself) service registry, 600–601
do-it-yourself (DIY) service registry, 600–601
doctor identifiers, 202
DoctorsAppointmentRequestsProcessor application

creating configuration plan, 561–565
creating test suite for, 570
implementing message rejection handler,

545–546
testing, 204–205

document-centric processes, 344

document-style Web Services, 104–105
documentation, 68
documents

associating XML with XSDs, 100–101
in business processes layer, 30
implementing Java code for generating PDF,

401–402
SOAP, 106
XML, 92

Domain Value Maps (DVMs). See DVMs (Domain
Value Maps)

domains, business, 429–437
downloading

JDeveloper, 74
SOA Suite 11g, 69

DT@RT (design time at run time), 66
duplication, 592
DVMs (Domain Value Maps)

design at run time through, 580–581
moving to canonical messages using, 221–222
value mapping, 222–225

Dynamic Routing, 454

E
e-mail

alerts sent for failing PatientAppointmentService
instances, 544

creating and integrating custom Java action to
send alert, 542–543

decoupling through publishing, 275
handling tasks through actionable, 319–320
injecting the “send email alert action” in fault-

policies.xml, 543–544
requesting appointment status via, 446–453
SaaS and integration, 720
sending task notifications, 317–319

EAI (Enterprise Application Integration), 46
eAppointment project

defined, 42–43
XML and Web Services, 86–91

eBusiness Suite adapter, 62
Eclipse IDE

CEP architecture, 619–620
for OSB, 455

EDA (Event-Driven Architecture)
CEP, 292–293
creating picky subscriptions with filter

expressions, 284–287
decoupling two-way services using Discussion

Forum, 296–299
defined, 16, 37–38
EDN in SCA and BPEL, 293–295
event awareness, 28
introducing EDN, 274–277
overview, 272–274
publishing database events via AQ, 288–289

754 Oracle SOA Suite 11g Handbook Index 755
EDA (Event-Driven Architecture) (Cont.)

publishing EDN events from BPEL components,
289–292

publishing non-events in EDN, 299–300
publishing patient details change events, 287
summary, 300
synchronizing patient data with EDN, 277–284

editing
business rules in Composer, 374–375
decision tables at run time through Composer,

268–269
DVMs, 225
filter expressions and routing rules, 244–246
Mapper editor, 143
routing rules, 214
splitting/merging service composites, 474–477
XML documents, 92

EDL (Event Definition Language), 274
EDN (Event Delivery Network)

adding JMS in SOA composite application,
388–391

ADF business components feeding events into,
692–698

introducing, 274–277
promotion from CEP to, 628–630
publishing non-events in, 299–300
in SCA and BPEL, 293–295
SOA Suite 11g, 62–63
synchronizing patient data with, 277–284
vs. JMS and AQ, 286

efficiency, 458
8i RDBMS, 47
EJB (Enterprise Java Beans) Service Adapter

defined, 62
exposing SOA composite applications as, 414–416
Java integration with, 384
leveraging outbound binding, 409–414
migrating those that expose WS to SOA Suite

11g, 731–732
Electronic Patient File, 12
elementary services

in business SOA, 19–20
defined, 18
in services layer, 29

elements
associating XML with XSDs, 100–101
binding, 107–108
managing XSDs and XML dependencies, 101–102
PartnerLinkType, 123–124
portType, 103
SOAP, 106
uniquely identifying XML, 94–97
variable, 122
XML schema definitions, 97–100

Ellison, Larry, 57
Embedded Java

in BPEL, 384–385
in BPEL processes, 394–399
custom logging with, 536

embedding ADF task flows, 713–715
embedding Portlets, 712
emergency room, 618
Empty activity, 177
EMS (Enterprise Message Source), 635, 638–640
emulation, 569
encapsulation, 25, 732
encryption, 492–495
endpoint settings

creating configuration plan, 559–561
location, 174
run-time management of, 576–577
virtualization, 33

enforcement, 501–502
enrichment

adding appointment identifiers to logging,
207–210

CEP, 613
composite instance audit trail, 528–536
message with referral identifier, 215–220
OSB, 423
of OSB message with priority code, 444

Enterprise Application Integration (EAI), 46
enterprise architecture

layering, 28–34
view of St. Matthews, 6–13

Enterprise Manager
authentication using WS-Security, 507–510
authorization using WS-Security, 511–514
configuration, 64–65
deploying through, 558
integrity and confidentiality with transport

security, 514–516
monitoring access to BPEL component, 516–518
OWSM policy administration and monitoring,

502–503
SOA Suite 11g installation, 72–73
verifying deployment in, 567–568

Enterprise Message Source (EMS), 635, 638–640
Enterprise Repository, 67
Enterprise Service Bus (ESB). See ESB (Enterprise

Service Bus)
enterprise services, 29–30
entity objects, 693–697, 700
entity variables

ADF and BPEL bound to SDOs, 699–701
BPEL bound to SDOs, 385–386
defined, 122
live connection with SDO, 703–704

EPN (Event Processing Network)
preparing temperature sensor simulator, 622
for TemperatureReadingsProcessor, 623–624

ESB (Enterprise Service Bus)
consuming cloud-based SaaS, 720
defined, 33–34
development of, 55
enterprise level decoupling with OSB. See OSB

(Oracle Service Bus)
Mediator vs. Oracle Service Bus, 190

Index 755
migrating 10g projects, 733–740
moving to SCA, 732–733

escalation, custom task, 339
ethics committees, 375–376
Event Definition Language (EDL), 274
Event Delivery Network (EDN). See EDN

(Event Delivery Network)
Event-Driven Architecture (EDA). See EDA

(Event-Driven Architecture)
Event Engine, 635
event handling

BPEL, 115
cancellations, 164–173
getAppointmentStatus, 175–176
onMessage, 163

Event Processing Language (EPL), 614–615
Event Processing Network (EPN)

preparing temperature sensor simulator, 622
for TemperatureReadingsProcessor, 623–624

events
according to SCA, 467
ADF business components feeding into EDN,

692–698
architecture and, 37–38
awareness of services, 28
human task callbacks, 339
OER, 604
ongoing, 612–613
processing and monitoring in SOA Suite, 616–617
processing complex. See CEP (Complex Event

Processing)
in services layer, 30
subscriptions for remote listeners in SaaS,

722–723
Excel, 339
exception handling

BPEL, 179–184
in composite execution, 536–537
policy-based framework, 537–544
rejected messages, 545–546
SOA composite application, 473–474

exchange patterns, message, 220
exclusive gateways, 357
Exec tag, 397
execution

business process, 344
business rule, 250
flow for parallel BPEL activity, 154–156
Mediator, 190–191
responding to exceptions in composite, 536–537
simulating business process, 359–362
tracking BPEL process, 665–671

exporting
BAM report, 645
bulk data in SaaS, 722
composite application from running SOA

Suite, 558
composite applications from console, 568

MDS resources from FMW Control Console, 599
MDS resources through WLST and Ant, 599–600
OSB project and resources, 445–446

expressions
cache token, 453
Expression Builder, 129
filter. See filter expressions

extensions
Assign activity, 126
BPEL activities, 177–178
BPEL for consuming and publishing events, 294
BPEL variable, 126–128
custom ADF application, 681–682
event-based patient data service, 295
JDeveloper, 74
PatientDataService process, 139–141
publish/subscribe in SCA specifications, 294–295
task with notification and group assignment,

315–321
WS-Human Task and BPEL4People, 311

External Data Source, 637
external parties, 437–446
external partners, 11–12
external relations, 8–9
externalizing security

with agents and gateways pattern, 495–496
defined, 488–489

F
F&A (finance and administration), 11
facilities, 8
facts, 249–250
failing instances, 544
Fault Management Framework, 183–184
fault policies

message rejection handler, 545–546
policy-based fault-handling framework, 537–544

fault-policies.xml, 543–544
faults

BPEL handlers, 115
catching, 179–183
defined, 103
handling in SOA composite applications,

473–474
security violations, 510
using replay to return to beginning of scope, 172

faulty temperature sensors. See temperature sensors
federation, identity, 486
File Adapter Service

Mediator to call Spring component and,
406–408

processing doctor’s incoming request files,
197–202

for reading files with requests, 191–196
routing for external requests, 210–212
for writing records to log file, 196–197

756 Oracle SOA Suite 11g Handbook Index 757
filenames

dynamically distributing requests over log
files, 221

extracting doctor identifier from, 202
Mapper, 200
in Mediator, 193

files
composite application, 61
log. See log files
SOA Suite 11g adapters, 62

filter conditions, 199–201
filter expressions

business rule logic for routing, 244–246
creating picky subscriptions with, 284–287
routing rules with, 212–215

filtering, CEP, 613
finance and administration (F&A), 11
finance department

JMS Adapter to integrate with Java, 387–394
sending invoices to patients, 429–437

Financial Cross Check, 366–367
flexibility

in business rules, 249
between OSB, Mediator and SCA, 458
service component, 472

FlowN activity, 177
flows

adding parallel, 375–376
ADF task, 713–715
designing Treatment Approval, 357–359
implementing conditions on conditional, 368–370
message. See message flows

FMW (Fusion Middleware)
alternate ways for publishing events, 295
exporting MDS resources from, 599
Fault Management Framework, 183–184
instance monitoring. See instance monitoring
security in, 496–499
security in OSWM, 499–504

FMW (Fusion Middleware) and SOA Suite 11g
2009 and beyond, 57–60
adapters, 61–62
BAM server, 63–64
design time, 66
EDN, 62–63
“HelloWorld,” 75–79
history of, 46–47
industry standards: 1998-now, 48–54
infrastructure and WebLogic Server 11g, 64–65
key components, 60–61
migrating from SOA Suite 10.1.3, 79–80
not invented here: 2001-2008, 54–57
OSB, 63
overview, 46
related suites and products, 66–68
SOA Suite 11g installation, 68–75
summary, 80–81

FOD (Fusion Order Demo), 75
for your information (FYI) participants

adding, 332
new patient acceptance, 331

formats for JMS Adapter, 390–391
forms

custom UI in ADF, 677–683
PatientAdministration page, 695
task. See task forms

formulas
in central library, 255
global, 251

frameworks, ADF. See ADF (Application Development
Framework)

FTP (File Transfer Protocol) adapter, 62
functional changes, 581–584
functional coupling, 24
functions

in business rule architecture, 251
chaining, 202
extracting values from BPEL variables, 129–130
Java integration with, 385
mhdr:getProperty function, 202–203
OSB, 421–427
referencing DVM in BPEL and Mediator, 580–581
testing business rules, 239–240
XPath in BPEL, 132

Fusion, 58–60
Fusion Order Demo (FOD), 75
FYI (for your information) participants

adding, 332
new patient acceptance, 331

G
Gap Analysis, 264–265
gateways

agents and gateways pattern, 495–496
designing Treatment Approval, 357
in OWSM, 503

generic e-mail service, 449
getVariableData, 129–130
global formulas, 251
global settings, 453
globals, 251
governance

implementation, 590–592
introduction, 589
MDS and SOA Suite 11g, 592–598
MDS repository administration, 598–600
with OSB, 426–427
overview, 588–589
service composite, 472
service inventory for gathering and publishing,

600–606
of SOA, 36
summary, 606–607

Index 757
granularity

of SCA service components, 471–477
of services, 27

graphical user interface (GUI) layer, 31
groups

assignment, 315–321
in BAM, 636
vote configuration, 332

GUI (graphical user interface) layer, 31
guided business processes, 355

H
handlers, compensation. See compensation handlers
handling events. See event handling
handling exceptions

handling rejected messages, 545–546
policy-based fault-handling framework, 537–544
in process-oriented BPEL, 179–184
responding to exceptions in composite

execution, 536–537
in SOA composite applications, 473–474

handling tasks, 319–320
happy flows, 357–359
hard-coded values, 251
hard IT security, 487
hardening, 487
harvesting

data rich business areas, 617–619
Harvester, 604–605

headers, 202
healthcare providers, 12
healthcare trends, 5
“HelloWorld”

creating and running, 75–79
temperature sensor simulator, 621–623

HIS (Hospital Information System), 10–11
history

CEP, 613
complete, open and integrated: 2009 and

beyond, 57–60
industry standards: 1998-now, 48–54
middleware in Oracle, 46–47
not invented here (2001-2008), 54–57
OSB, 427–428
of St. Matthews, 5

Hospital Information System (HIS), 10–11
hospitals

collaboration, 12
organization, 7–8
trends, 5

hot-pluggable, 60
human-centric processes, 344
human intervention fault policies, 539–540
human resources management, 7
Human Task Service

advanced features for, 336–339
architecture of, 303–305

complex task routing, 330–336
exploring in detail, 305–306
extending tasks with notification and group

assignment, 315–321
implementing BPM through, 347–352
implementing the ArbitrateHighPriority task,

306–315
introduction, 302–303
Mediator and, 321–322
registering custom task with, 686–687
SchedulerService, 323–330
summary, 340

human tasks
forms. See task forms
implementing Financial Cross Check, 366–367
implementing Request Treatment Approval,

365–366
integrating BPMN with, 353
promotion from EDN to, 630–632

Human Workflow Service
Java and WebService API for, 337–338
in SOA Suite 11g, 60

I
IaaS (Infrastructure as a Service), 717–718
IAM (Identity and Access Management), 488, 497
ICommand, 645
IDE (integrated development environment)

connection to MDS repository, 594
JDeveloper, 66

idempotency, 27
identified state, 591
identifiers

adding appointment to logging, 207–210
enriching messages with referral, 215–220
extracting doctor from filename, 202
handling cancellations, 164–173

identity administration
BAM, 635–636
defined, 484–486
FMW, 505–507
FMW products, 497

Identity and Access Management (IAM), 488, 497
identity federation, 486
identity stores, 514–515
IdentityService, 507
IEP (Intelligent Event Processing), 613
if-then-else syntax, 638
IF/THEN rules

business rule architecture, 249
defined, 237–238

IFrames, 715
impact analysis in OER, 604
implementation

in ADF architecture, 675
appointment request in ADF, 678–680
ArbitrateHighPriority task, 306–315

758 Oracle SOA Suite 11g Handbook Index 759
implementation (Cont.)

best practices for security, 488–491
BPM through BPEL and Human Task, 347–352
of DAS- and SDO-based entity variables in BPEL,

699–700
dashboard as custom ADF application, 689–691
DeriveAppointmentType Decision Service, 236–239
EDA considerations, 38
governance, 590–592
invoice service, 429–430
Java code for generating PDFs, 401–402
message rejection handler, 545–546
PatientDataService composite, 117–120
RequestAppointmentStatusPerEmail proxy

service, 450–452
retrieve patient operation, 704–707
SchedulerService, 158–159
of SOA, 38–42
Treatment Approval process, 362–371
Web Service, 110–111

importing
bulk data in SaaS, 722
metadata into MDS repository, 599–600

inbound adapter actions, 546
inbound ADF binding, 415–416
inbound Database Adapter Service, 228
inbound e-mail transport, 446–450
inbound EJB binding, 414
inbound File Adapter Service

creating, 191–196
linking to Outgoing Log File Services, 197–202
linking with Mediator, 197–202

industry standards
development of middleware, 48–54
SOA implementation, 42

information architecture view
defined, 6
of St. Matthews, 10–12

information management, 8
information technology (IT)

business services and, 20
security. See IT (information technology) security
tactical SOA, 21–22

infrastructure
cloud-based services and, 719–720
migration from SOA Suite 10g to 11g, 728
SOA implementation, 38

Infrastructure as a Service (IaaS), 717–718
initiation, 569
injection

dependency in SaaS, 722
dependency in Spring Context, 405
“send email alert action” in fault-policies.xml,

543–544
inputVariable

defined, 120
extending, 127–128

inspection
BPEL sensor output, 535–536
configuration plan, 561
instance monitoring, 526–528
property, 579
security violation, 510
SOA composite application, 504–505

installation
CEP, 620
OSB 11g, 428
SOA Suite 11g, 68–75

instance monitoring
dashboards and aggregate metrics, 522–526
enriching composite instance audit trail,

528–536
inspection, 526–528
managing composite instances, 546–548
policy-based fault-handling framework, 537–544
rejected messages, 545–546
responding to exceptions in composite

execution, 536–537
summary, 549

instances
activity attributes in BPMN, 364–365
application deployment to another WLS, 694–695
business process definitions vs. business

process, 120
correlation for PatientAppointmentService,

164–171
creating new process from Workspace, 371–372
receiving request messages in running BPEL,

163–164
requesting appointment details from

PatientAppointmentService, 175–176
stale, 583
tracing composite, 473

insurance companies
in business architecture view, 8–9
in information architecture view, 12
security and, 482–483

InsuranceComposite
applying security using JDeveloper, 518–519
authentication using WS-Security, 507–510
authorization using WS-Security, 511–514
inspection, 504–505
integrity and confidentiality with transport

security, 514–516
monitoring access to BPEL component, 516–518

integrated development environment (IDE)
connection to MDS repository, 594
JDeveloper, 66

integration
ArbitrateHighPriority into BPEL process, 310–312
BAM with SOA composites, 647–648
of BPMN with human tasks, 353
CEP with SOA composites, 627–632
cloud-based services and SOA, 717–725
custom Java action to send e-mail alert, 542–543

Index 759
DeriveAppointmentType business rule, 240–243
Java in composite applications, 382–386
between OER and JDeveloper, 604
Oracle, 57–60
OSB MEPs, 424
OSR with SOA Suite, 602
SDO-bound BPEL variables for tighter data,

698–707
SOA at UI level, 710–717

integrity
with transport security, 514–516
with WSS, 493

Intelligent Event Processing (IEP), 613
interceptors, policy

defined, 500
enforcement, 501–502

interfaces
analyzing service according to WSDL, 103–108
changing composite application, 581
custom UI for appointment requests, 677–683
GUI layer, 31
IdentityService, 507
OSB, 427
rethinking applications, 31–32
services and events layer, 28–30
SOA integration at UI level, 710–717
standardizing, 25–26
in technical architecture view, 13
visual UI integration in SaaS, 723–724

internal care cluster, 8
Internet service bus, 724
interoperability

intrinsic, 24
security in OWSM, 503–504

Interval activity monitor, 666, 667–669
intrinsic interoperability, 24
inventory, service

defined, 29
for gathering and publishing, 600–606

invoicing, 429–437
invoking

ADF and Web Services, 682–683
asynchronous service, 158–162
asynchronous services, 132–133
BPEL event publishing, 290
compensation handlers, 184–185
creating and attaching BPEL activity sensor, 662
extending PatientDataService process, 139–140
Mediator from BPEL, 408–409
PatientDataService from SOA Console, 145
Portlets, 712
SchedulerService, 161–162
SOA Suite from Java, 386
synchronous Web, 157
Web Services from Java and PL/SQL, 111

IT (information technology)
business services and, 20
tactical SOA, 21–22

IT (information technology) security. See also security
agents and gateways pattern, 495–496
best practices for applying, 488–491
IT in world of services, 484–488
SOA and, 483–484
transport vs. message, 491–495

J
Java

Ant, 556–557
Embedding activity, 177
history of middleware, 47
human task callbacks, 339
invoking Web Services from, 111
security policy frameworks in FMW, 498
security with FMW, 497
service interactions with callouts, 454
WebService API for Human Workflow Services,

337–338
Java Connector Architecture (JCA) adapter, 385
Java in composite applications

embedding logic in BPEL processes, 394–399
exposing SOA composite applications as EJB,

414–416
integration in various ways, 382–386
leveraging outbound EJB binding, 409–414
loosely coupling Java applications with JMS

Adapter, 386–394
Spring Context for custom Java service

components, 399–400
summary, 416–417
using Spring Context service component,

401–409
Java Keystore (JKS), 514–515
JavaScript widgets, 711
JAX-WS, 731
JCA (Java Connector Architecture) adapter, 385
JDeveloper

application workspace and project files in, 738–739
applying security using, 518–519
attaching configuration plan upon deployment

from, 565–567
compiling, building, and deploying from, 553–555
creating and editing XML documents in, 92
defined, 54, 66
implementing PatientDataService, 117–120
installation, 74
integration between OER and, 604
MDS and, 593–594
migrating SOA Suite 10g projects using, 734
migration from SOA Suite 10g to 11g, 730–731
OWSM policy administration and monitoring, 502
running “HelloWorld,” 76
testing business rules, 239–240
Web Service implementation, 110–111

JKS (Java Keystore), 514–515

760 Oracle SOA Suite 11g Handbook Index 761
JMS (Java Message Service)

creating CEP application, 623–625
Java integration with, 383
loosely coupling Java applications with, 386–394
mapping to BAM data object, 639
preparing temperature sensor simulator, 621–623
publishing database events, 288–289
vs. EDN, 286

K
key performance indicators (KPIs). See KPIs (key

performance indicators)
keys, 453
keystores, 514–515
KPIs (key performance indicators)

in appointment dashboard, 655–657
BAM, 633–634
in business architecture view, 7, 10
dashboard report in Active Studio, 641–643

L
languages, programming. See programming languages
layers

adding virtualization, 437–446
defense-in-depth, 489
enterprise architecture, 28–34
hard IT security, 487

legal services, 8
life cycle management

applying configuration plan during deployment,
565–568

automated unit testing for composite
applications, 568–575

building and deploying composite applications,
552–553

building and deploying from command line,
555–558

changing composite applications, 581–584
compiling, building, and deploying from

JDeveloper, 553–555
creating configurations plans, 559–565
deploying through Enterprise Manager, 558
dynamically adjusting application behavior,

575–581
pre- or post-deployment operations, 553
service composite, 472
for SOA assets, 591–592
summary, 584–585

live connections, 703–704
load balancing, 425–426
local MDS repository, 597–598
local optimization, 502
log files

adding appointment identifier to, 207–210
dynamically distributing appointment requests

over, 221

File Adapter Service for writing records to, 196–197
instance inspection, 526–528

logging
custom, 536
monitoring access to BPEL component, 516–518
policy, 528–530
security, 488

logic, business. See business logic
lookup

configuring BAM data object, 638
lookupValue function, 580–581

loose coupling
BPM design guidelines, 346
defined, 24–25
of events, 37
Java applications with JMS Adapter, 386–394
in SCA, 53
security and, 484

low priority case, 263–264

M
managed servers, 71
management. See also governance

composite instance, 546–548
Enterprise Manager, 64
IT security, 488
life cycle. See life cycle management
OWSM policies, 501
OWSM policy, 502–503
system with BAM, 634
user with BAM, 635–636
XSDs and XML dependencies, 101–102

mapping
adding appointment identifiers to logging, 207–210
alternative means for value translation, 225–227
constructions and XSLT, 203–204
DeriveAppointmentType business rule, 240–243
enriching messages with referral identifier,

218–219
JMS queue to BAM data object, 639
Mapper editor, 143–145
moving to canonical messages using DVM,

221–222
OSB, 423
routing rules, 199–201
testing Mediator, 202–203
value mapping with DVM, 222–225

MAR (Metadata Archive), 554
marketing

in business architecture view, 7
moving to business SOA, 20–21

mash-ups, 711
MDBs (Message Driven Beans), 383
MDS (Metadata Services) repository

administration, 598–600
defined, 65
OWSM policy definition storage, 500

Index 761
publishing BPM project to, 371
SOA Suite 11g and, 592–598

Mediator
adding published events to, 287
alternative means for value translation, 225–227
appointment requests via Web application,

227–229
calling Spring component and File Adapter

Service, 404, 406–408
complex mapping: constructions and XSLT,

203–204
consuming and publishing events, 294
consuming events, 278–284
content-based routing for external requests,

210–212
creating picky subscriptions, 285–286
creating test cases for, 570–572
decoupling database adapter service, 229–231
defined, 34
dynamic routing rules, 267
dynamically distributing requests over log files, 221
enriching messages with referral identifier, 215–220
extracting doctor identifier from filename, 202
fault policies, 542
File Adapter Service for reading files with

requests, 191–196
File Adapter Service for writing records to log

file, 196–197
Human Task Service and, 321–322
invoking from BPEL, 408–409
Java callouts, 385
message exchange patterns and, 220
moving to canonical messages using DVM,

221–222
processing doctor’s incoming appointment

request files, 197–202
from real world to SOA Suite, 188–191
reconfiguring with JMS, 394
referencing DVM in, 580–581
routing rules with filter expressions, 212–215
sending requests to patient appointment service,

205–210
setting composite instance names, 530
in SOA Suite 11g, 60
summary, 231
testing application, 204–205
testing mapping, 202–203
value mapping with DVM, 222–225
vs. SCA composites and OSB, 457–459

meet-in-the-middle Web Services design, 731
memory

SOA Suite 11g requirements, 68
XSD hierarchy and, 102

MEPs (message exchange patterns)
Mediator and, 220
OSB, 424

merging
BPEL projects to composite, 736–738
service composites, 475–477

Message Driven Beans (MDBs), 383
message exchange patterns (MEPs)

Mediator and, 220
OSB, 424

message flows
definining proxy service, 441–443
instance inspection, 526
in OSB proxy service, 434–436
parallel request processing with Split-Join, 456
promotion from EDN to human task, 632
tracing composite, 473

message security
defined, 483–484
identity administration, 505–507
vs. transport security, 491–495

Message Transmission Optimization Mechanism
(MTOM) attachments, 500

messaging
appointment. See appointments
in CEP architecture, 620
correlation and asynchronous service calls,

173–174
creating test case, 570–571
enriching with referral identifier, 215–220
ESB, 34
extending the ArbitrateHighPriority task with

notification, 315–321
handling cancellations, 164–173
handling rejected, 545–546
JMS, 383, 386–387
log files, 526–528
moving to canonical using DVM, 221–222
OSB. See OSB (Oracle Service Bus)
OWSM policies, 501
Receive and Reply activities, 124
receiving requests in running BPEL instances,

163–164
sending notifications from BPEL process, 162–163
sending task notifications, 304
setting up notifications, 306
SOAP, 106
UMS, 64–65
WSDL definition, 103–105

Metadata Archive (MAR), 554
Metadata Services (MDS) repository. See MDS

(Metadata Services) repository
metrics

aggregate, 522–526
feeding run-time to OER, 605–606

mhdr:getProperty function, 202–203
middleware. See also FMW (Fusion Middleware), 46
migration

artifact in MDS across environments, 599–600
BAM report, 645

migration from SOA Suite 10g to 11g
defined, 79–80
migrating ESB and BPEL 10g projects, 733–740
moving to SCA, 732–733
overview, 728–730

762 Oracle SOA Suite 11g Handbook Index 763
migration from SOA Suite 10g to 11g (Cont.)

run-time environment, 730
software running on OC4J, 730–732
summary, 741

Model
in ADF architecture, 674–677
configuring business components to publish

events to EDN, 697
making ADF BC expose SDO-enabled Web

Service, 700–701
modeling

BPMN. See BPMN (Business Process
Model Notation)

canonical data model, 35–36
St. Matthews architecture, 6–13

Monitor Express, 665–671
monitoring

access to BPEL component, 516–518
BAM. See BAM (Business Activity Monitoring)
business process, 344
with CEP, 620–621
CEP output, 626
Enterprise Manager, 64
events in SOA Suite, 616–617
instances. See instance monitoring
OWSM policy, 502–503
security, 488
SLA with OSB, 426

mplan configuration, 294
MTOM (Message Transmission Optimization

Mechanism) attachments, 500
multitask processes, 348–352
mutual authentication, 492

N
names

composite instance, 530
filenames. See filenames
uniquely identifying XML elements, 94–97

namespace binding, 96
Native Format Builder, 194–195
navigation

deep link in SaaS, 723–724
task-oriented, 329–330

need-to-know basis, 25
nested service composites, 469–471
new patients

complex task routing, 330–336
implementing multitask process, 348–352
registering with finance department, 391–392

Next button, 329–330
nodes, 92
non-events

detecting the scheduling with BAM, 658–661
detecting to identify faulty sensors with CQL

query, 624–625
publishing in EDN, 299–300

noShowDeadline Property
access in BPEL process, 578
configuration, 578

notation, BPMN. See BPMN (Business Process
Model Notation)

notifications
extending the ArbitrateHighPriority task with,

315–321
flow for parallel execution of BPEL activities,

155–156
human task callbacks, 339
Human Task Service, 304
OER, 604
promotion from EDN to human task, 632
sending from BPEL process, 162–163
setting up human task, 306
UMS, 65

O
obesity rule, 262–263
objects, data. See data objects
OC4J software migration, 730–732
ODI (Oracle Data Integrator)

defined, 67
integration with BAM, 635

OER (Oracle Enterprise Repository)
defined, 602–606
OSB and, 427
SOA implementation, 41

ongoing events, 612
onMessage event handler, 163, 171–173
openness, 60
Operate action, 423–424
operations

CEP, 613–614
on decision tables, 266
implementing retrieve patient, 704–707
management with OSB, 426
pre- or post-deployment, 553
XML, 91–92

opportunistic SOA implementation, 22
OPSS (Oracle Platform Security Services), 67–68, 497
optimal use of project resources, 249
optimal use of system resources, 249
optimization

business process, 344
local in OWSM, 502

Oracle
complete, open and integrated: 2009 and

beyond, 57–60
Enterprise Manager. See Enterprise Manager
FMW and SOA Suite 11g. See FMW (Fusion

Middleware) and SOA Suite 11g
history of middleware in, 46–47
industry standards: 1998-now, 48–54
not invented here (2001-2008), 54–57

Index 763
Oracle Applications, 62
Oracle Data Integrator (ODI)

defined, 67
integration with BAM, 635

Oracle Enterprise Repository (OER). See OER (Oracle
Enterprise Repository)

Oracle Platform Security Services (OPSS), 67–68, 497
Oracle Service Bus (OSB). See OSB (Oracle Service Bus)
Oracle Service Registry (OSR)

defined, 601–602
OSB and, 426

Oracle WebServices Manager (OWSM). See OWSM
(Oracle WebServices Manager)

oramds prefix, 592
orchestration

in business processes layer, 30
defined, 344
industry standards, 49–53

organization, 23
organizational governance. See governance
Orion, 54
OSB (Oracle Service Bus)

choosing between SCA composites, Mediators
and, 457–459

defined, 63
functions, 421–427
harvesting from, 604–605
installation, 71
interoperability of security policies, 503–504
introduction, 420–421
OWSM and, 498–499
parallel request processing with Split-Join, 456
PatientAppointmentService and external parties,

437–446
product history and architecture, 427–428
requesting appointment status via e-mail,

446–453
requesting appointment status via REST, 453–456
security policy framework, 498
sending invoices to patients who had

appointments, 429–437
at St. Matthews, 427
summary, 459
vs. Mediator, 190

OSR (Oracle Service Registry)
defined, 601–602
OSB and, 426

outbound adapter actions, 546
outbound binding, 409–414
outbound e-mail transport, 446–450
outbound File Adapter Service

creating, 196–197
linking to Incoming File Services, 197–202
linking with Mediator, 197–202

outlining Treatment Approval workflow, 355–356
outputs

feeding from CEP to BAM, 636–647
inspecting BPEL sensor, 535–536

outputVariable
defined, 120
extending, 127–128

overlay, 524
ownership, 589
OWSM (Oracle WebServices Manager)

applying security using JDeveloper, 518–519
case: securing SOA composites, 504
defined, 55
identity administration, 505–507
inspecting SOA composite, 504–505
OSB security, 425
security in, 499–504
security policy framework, 498

P
PaaS (Platform as a Service), 717–718
parallel activities, 331
parallel execution flows

adding with Composer, 375–376
BPM design guidelines, 346
defined, 30

parallel gateways, 357
parallel merge gateways, 357
parallel requests, 456
parallel routing rules, 542
parameters

configuring for ScheduleAppointment task,
323–324

creating ADF data control, 679
defining ArbitrateHighPriority, 306–308
JMS Adapter, 389
system. See system parameters
task definition, 303–304

parsing XML documents, 91
partitions, 733
partner links

Assign activity and BPEL variables, 125–126
defined, 119–120
invoking, 132–133
PartnerLinkType element, 123–124
PartnerLinkTypes, 159

passwords, 506
patient care

appointments. See appointments
in business architecture view, 8
increasing satisfaction, 10

patient data
adding JMS in, 388–391
as asynchronous service, 133–134
creating scope, 153–154
extending BPEL process with

RetrievePatientIdentifier service, 139–141
extending event-based service, 295
implementing composite, 117–120
interface, 103

764 Oracle SOA Suite 11g Handbook Index 765
patient data (Cont.)

message definition, 105
monitoring service level, 662–665
in more detail, 120–123
publishing database events via AQ, 288–289
as SCA composite application, 132
SDO-bound BPEL variables for tighter data

integration, 698–707
synchronizing with EDN, 277–284
in WSDL contract, 107

patients
accepting new, 330–336
accepting new as multitask process, 348–352
ADF business components feeding events into

EDN, 692–698
appointments. See appointments
designing Treatment Approval workflow, 354–359
identifiers, 134–138
in information architecture view, 12

PatientsCollection element, 140
pattern detection, 614
payload of event

creating picky subscriptions with filter
expressions, 284–287

defined, 273–274
synchronizing patient data with, 278–283

PDFs (Portable Document Formats)
implementing Java code for generating, 401–402
SchedulerService generating, 409
wiring generator to SchedulingService BPEL

process, 404
peer reviews, 375–376
performance

analyzing computer with CEP, 619
changing composite application, 581
indicators. See KPIs (key performance indicators)
monitoring, 524–526

personalization of SaaS, 725
Phase activity, 178
physicalCharacteristic element

extending BPEL variables, 127–128
transforming, 145

Pick activity
parallel execution of BPEL activities, 156
receiving request messages in running BPEL

instances, 163–164
picky subscriptions, 284–287
pie charts in dashboards, 655
pipeline pair, 435
PL/SQL (Procedural Language/Structured Query

Language), 111
Plain-Old Java Objects (POJOs)

creating CEP application, 623
getting started with CEP, 621–622

planning
applying configuration plan during deployment,

565–568

in business architecture view, 8
creating configuration plan, 559–565

Platform as a Service (PaaS), 717–718
point-to-point interfaces, 33
POJOs (Plain-Old Java Objects)

creating CEP application, 623
getting started with CEP, 621–622

policies
agents and gateways pattern, 495–496
applying security using JDeveloper, 518–519
authentication using WS-Security, 507–510
authorization using WS-Security, 511–513
bulk attachment, 515
fault-handling framework, 537–544
FMW frameworks for Web Services, 497
FMW security, 498
logging, 528–530
OWSM, 499–504
SOA implementation, 41

policy assertions
custom, 503
defined, 500–501

policy interceptors
defined, 500
enforcement, 501–502

pooling services, 425–426
Portable Document Formats (PDFs). See PDFs

(Portable Document Formats)
Portlets

ADF, 713–714
consuming cloud-based SaaS, 720
registering with SaaS application, 723
for UI integration, 712
vs. task flows, 714–715

portTypes
defined, 103
SchedulerService, 159

post-deployment operations, 553
pre-deployment operations, 553
prefixes, 96
preparation

for BAM-powered ADF application, 690
bucket set, 258–261
for e-mail based services, 448–449
for JMS communication, 387–388
for SOA and BAM integration, 648–650
temperature sensor simulator, 621–623

prepare instructions, 157
presentation services, 716
principles of SOA, 24–28
priority, appointment. See appointment priority
privileges

in BAM, 636
restricting secretaries through limited access,

333–334
security, 483

Procedural Language/Structured Query Language
(PL/SQL), 111

Index 765
Process data objects

defined, 363
variables to hold process state, 363–364

process definitions, 115
Process Manager, 60
process models, 67
process-oriented BPEL. See BPEL (Business Process

Execution Language) processes
Process Spaces, 354
processing. See also running

BPM. See BPM (Business Process Management)
complex events. See CEP (Complex Event

Processing)
events in SOA Suite, 616–617
parallel requests with Split-Join, 456
performance monitoring, 526

product architecture
BAM, 634–636
CEP, 619–620
OSB, 427–428

products
Oracle acquisitions, 54–57
related FMW, 66–68

profiles
deployment, 553–555
identity administration, 505–507

programming languages
BPEL. See BPEL (Business Process Execution

Language)
CEP, 614–615
development of industry standards, 48–49
EDL, 274
Java. See Java
SOA implementation, 39
SOAP, 106
in technical architecture view, 12–13
WSDL. See WSDL (Web Service Definition

Language)
XML. See XML (eXtensible Markup Language)
XSD, 93–102

project migration, 733–740
promotion

from anonymous signal to business event, 627–632
with CEP, 614

propagation
with CEP, 614
identity, 485–486

properties
bucket sets, 257
correlation for PatientAppointmentService,

165–167
creating configuration plan, 559–560
designing customization into composite

applications, 577–581
modifying for composite, components, and

technology adapters, 577
replacing for technology adapter bindings,

562–563

property aliases, 167–169
providers

decoupling with ESB, 33–34
defined, 23–24

provisioning, identity, 486
proxy services

creating, 432–437
creating e-mail, 450
defining, 441
implementation, 450–452

publish-subscribe event pattern, 37
publishing

ADF Portlets, 713–714
assets, 590–591
BPM project to MDS, 371
with CEP, 615
Portlets, 712
service inventory for, 600–606

publishing events
from ADF business components to EDN,

692–697
alternate ways for, 295
BPEL extensions for, 294
consuming and in mplan configuration, 294
database via AQ, 288–289
decoupling through, 275
in EDN, 274–275
EDN from BPEL components, 289–292
non-events in EDN, 299–300
patient details change events, 287
in SCA specifications, 294–295

Q
quality

choosing between OSB, Mediator and SCA, 458
improvement via innovation and process

improvement, 10
standardizing, 26

quality assurance
in business architecture view, 8
OER, 604

querying
configuring temperature aggregate processor

with CQL, 624
detecting non-events with CQL, 624–625
retrieving patient identifier, 136–138
XML, 91

queues
analyzing JMS with CEP, 623–625
basic vs. business, 286
JMS, 386–394
mapping JMS to BAM data object, 639
preparing temperature sensor simulator, 621–623
publishing database events via AQ, 288–289
SOA Suite 11g adapters, 62

766 Oracle SOA Suite 11g Handbook Index 767

R
Range Gauge view, 643
RBAC (Role-Based Access Control), 487
RCU (Repository Creation Utility), 70
RDBMS (relational database management system), 47
re-creation vs. redeployment or revision, 584
reading files, 191–196
real-time data processing

with CEP. See also CEP (Complex Event
Processing), 613–615

creating real-time dashboards in custom
applications, 689–691

monitoring. See BAM (Business Activity Monitoring)
overview, 612–617
in SOA Suite, 616–617

receiving
HandleDoctorsAppointmentRequestFromDB, 228
Receive activity, 119, 124
ReceiveSignal activity, 178
request messages in running BPEL instances,

163–164
response from asynchronous service, 160–162

records
in ADF architecture, 675
authorization, 514
File Adapter Service for writing to log file, 196–197

redeployment
effects of, 582–583
vs. revision or re-creation, 584

refactoring, 581
reference elements

retrieving patient identifier, 138
wiring to component, 138–139

references
bindings, 501
component according to SCA, 463
composite according to SCA, 464–466
configuring EJB Adapter, 409–414
content-based routing for external appointment

requests, 210–212
creating configuration plan, 559–560
DVM in BPEL and Mediator, 580–581
integrating OSR with SOA Suite, 602
Spring dependency injection and SCA, 405

referral identifiers, 215–220
referral priority, 263
regional information exchange, 12
registration

asset, 590–591
creating scope for patient data, 153
custom class with SOA Suite, 385
custom task form with Human Task component,

686–687
Portlet with SaaS application, 723
service inventory for gathering and publishing,

600–606

registries
DIY service registry, 600–601
OSB and OSR, 426
OSR, 601–602
services, 26
SOA implementation, 41

Reject task, 315
rejected messages, 545–546
relationships and components, 23–24
released state, 591
reliable messaging, 501
remote listeners, 722–723
Remote Procedure Call (RPC-style) Web Services,

104–105
remote services, 538–539
Remove Entity activity, 178
replacement

creating configuration plan, 559–560
property for technology adapter bindings, 562–563

replay fault, 172
replying

handling cancellations, 167–171
with JMS, 392–393
mapping DeriveAppointmentType business rule,

240–243
Reply activity, 119, 124

reporting
adding to proxy service, 435–436
CEP and BAM, 636–645
creating appointment dashboard, 653–658
Monitor Express in action, 670–671
OER, 604
Report Cache, 635
using activity sensor statistics in BAM, 664–665

repositories
MDS. See MDS (Metadata Services) repository
OER, 67, 602–606
SOA implementation, 41

Repository Creation Utility (RCU), 70
Representational State Transfer (RESTful) services. See

RESTful (Representational State Transfer) services
request/reply pattern

creating new JMS FileAdapterService with, 394
with JMS, 392–393

requests
appointment details from

PatientAppointmentService instance, 175–176
appointment status via e-mail, 446–453
appointment status via REST, 453–456
in BAM dashboard, 657
content-based routing for external appointment,

210–212
custom UI for appointment, 677–683
defining appointment, 441
dynamically distributing appointment over log

files, 221

Index 767
File Adapter Service for reading files with

appointment, 191–196
handling cancellation, 164–173
implementing Treatment Approval, 365–366
Mediator to process doctor’s incoming

appointment, 197–202
parallel processing with Split-Join, 456
performance monitoring, 526
receiving in running BPEL instances, 163–164
sending appointment to patient appointment

service, 205–210
via Web application, 227–229

requirements for SaaS applications, 721–725
rescheduling cancelled appointments, 172
resource use

in batch processing, 345
in business rules, 249

resources
exporting MDS from FMW Control Console, 599
exporting OSB, 445–446
MDS, 593

RESTful (Representational State Transfer) services
consuming cloud-based SaaS, 720
Embedded Java in BPEL processes, 397–399
requesting appointment status via, 453–456
SOA implementation, 40–41

restricting access privileges, 333–334
result caching, 426, 452–453
Rete algorithm, 250
retired state, 591
retrieval

creating database service, 142–145
implementing retrieve patient operation, 704–707
Select service for patient identifier, 134–138
service result caching for business service,

452–453
status business service, 450

retrying
fault policies for, 539–540
inbound and outbound adapter actions, 546

returning message, 392–393
reusability

of business rules, 249
of Embedded Java, 396
with governance, 589
granularity of service components and, 471–472
as key to SOA Suite migration, 732–733
with MDS repository, 592–598
of SCA service components and composites,

468–469
security and, 484
shared artifact in composite application, 596–597
SOA principle, 26

revision
business process, 373–378
vs. redeployment or re-creation, 584

risks of cloud-based services, 718–719
Role-Based Access Control (RBAC), 487
roles

BPMN implementation, 371
creating and assigning, 511
elements in BPEL, 123
security, 483

routing
complex task, 330–336
content-based. See content-based routing
defined, 33
with Mediator and File Adapter Service, 191
OSB, 424
rules with filter expressions, 212–215
sending appointment requests to patient

appointment service, 205–207
routing rules

configuration, 199–201
dynamic in Mediator, 267
editing, 245–246
enriching messages with referral identifier,

217–219
fault policy, 542

RPC-style (Remote Procedure Call) Web Services,
104–105

RSS feeds, 41
rule-centric processes, 345–346
rule sets, 249
rules

BAM, 633
business. See business rules
for choosing between SCA and OSB, 457–459
configuring routing, 199–201
creating decision table, 261–262
defining alert in BAM Architect, 645–646
design at run time through, 580–581
obesity, 262–263
routing. See routing rules
for scheduling non-event alerts, 659–661
XSD, 93

run time
ahead of design time, 248
CEP components, 619–620
design at through rules and DVM in Composer,

580–581
designing at, 66
editing decision tables through Composer,

268–269
editing of DVMs, 225
feeding metrics to OER, 605–606
harvesting from SOA Suite and OSB, 604–605
management of adapter configuration and

endpoint settings, 576–577
migration from SOA Suite 10g to 11g, 730
OSR, 602
UI assembly, 716–717

768 Oracle SOA Suite 11g Handbook Index 769
running

ADF application, 696
application with Java inside, 399
BAM dashboard, 643–644
business process with BPMN, 371–373
composite applications with business rules, 244
composite PatientDataService, 706–707
“HelloWorld” of service composite applications,

75–79
process simulation, 361–362
receiving request messages in BPEL instances,

163–164
SDO-enabled PatientDataService, 703
SOA composite application, 131
test suite, 573–574

S
SaaS (Software as a Service), 717–725
saving appointments dashboard, 658
SCA (Service Component Architecture)

artifacts according to specification, 462–467
choosing between OSB, Mediator and, 457–459
configuring properties, 578
defined, 42, 53–54
EDN in, 293–295
events and publish/subscribe in, 294–295
granularity of service components, 471–477
migration from SOA Suite 10g to 11g, 732–733
PatientDataService as composite application, 132
Spring dependency injection and, 405
summary, 478
way of designing and developing applications,

468–471
scheduling

in BAM dashboard, 655–657
beyond decision making, 323–330
canceling appointment, 172
creating custom human task form in ADF, 684–688
detecting non-event with BAM, 658–661
flow for parallel execution of BPEL activities,

154–156
generating PDFs, 409
invoking asynchronous service, 158–162
wiring PDF generator to, 404

scheduling appointments
adding task to BPEL process, 324–325
generating task form, 325–326
parameter configuration, 323–324

schema element, 97
schemas, XSD, 93–102
scope

event handlers and, 175–176
in process-oriented BPEL, 153–154
undoing results through compensation handlers,

184–186
using replay fault to return to beginning of, 172

scripts
building and deploying from command line,

555–558
including testing in automatic deployment, 575
MDS resources through WLST and Ant, 599–600
WLST. See WLST (WebLogic Scripting Tool)

SDOs (Service Data Objects)
BPEL entity variables bound to, 385–386
defined, 384
SDO-bound BPEL variables for tighter data

integration, 698–707
searching OER, 603
Secure Sockets Layer (SSL). See SSL (Secure

Sockets Layer)
security

agents and gateways pattern, 495–496
applying using JDeveloper, 518–519
authentication using WS-Security, 507–510
authorization using WS-Security, 511–514
best practices for applying, 488–491
case for, 482–483
case: securing SOA composites, 504
CEP analysis, 618
cloud-based service, 719
in FMW 11g, 496–499
identity administration, 505–507
inspecting SOA composite, 504–505
integrity and confidentiality with transport,

514–516
IT in world of services, 484–488
monitoring access to BPEL component, 516–518
OSB, 424–425
OWSM, 499–504
SOA and, 483–484
starting SOA server without credentials, 72
summary, 519
transport vs. message, 491–495
with virtualization layer, 437–446

Select service, 134–138
sending

e-mail alert action, 543–544
notifications from BPEL process, 162–163

sensors
BPEL, 532–536
composite, 531–532
custom BPEL, 385
fine-grained BPEL tracking using actions, 661–665
temperature. See temperature sensors

separation of concerns, 248
sequences

flow for parallel execution of BPEL activities, 155
in process-oriented BPEL, 153–154
requesting appointment details, 175–176

server push, 633
servers

BAM, 63–64, 634
in CEP architecture, 619–620

Index 769
configuring for real-time dashboard, 691
migrating software running on OC4J, 730–732
preparing BAM for Monitor Express, 666
SOA Suite 11g installation, 70–71
WebLogic Server 11g, 64–65

service bindings, 501
Service Callout action, 454
Service Component Architecture (SCA). See SCA

(Service Component Architecture)
service consumers

decoupling with ESB, 33–34
defined, 23–24
determining roles, 123

service contracts. See contracts
service inventory

defined, 29
for gathering and publishing, 600–606

service-level agreement (SLA), 26
monitoring, 426

service providers
decoupling with ESB, 33–34
defined, 23–24
determining roles, 123

service registries. See registries
service repositories. See repositories
services

according to SCA, 464
BPEL, 150
BPEL ingredients, 115
cloud-based and SaaS, 717–725
decision. See Decision Service
decoupling two-way using Discussion Forum,

296–299
discoverability, 26
governance. See governance
human task. See Human Task Service
importance in SOA, 17–18
integrating OSR with SOA Suite, 602
intrinsic characteristics, 27–28
IT security in world of, 484–488
orchestration and composite, 49–53
pooling, 425–426
presentation, 716
result caching, 426, 452–453

services and events layer, 28–30
Session Beans

creating, 410–411
migrating those that expose WS to SOA Suite

11g, 731
setup

central library of system parameters, 252–255
notification, 306

shared artifacts, 592–598
Signal activity, 178
Simple Object Access Protocol (SOAP). See SOAP

(Simple Object Access Protocol)

simulations
execution of business process, 359–362
preparing temperature sensor, 621–623

Single Sign-On (SSO), 486
SLA (service-level agreement)

monitoring, 426
standardizing, 26

slowing down OSB messages, 425–426
SOA Bundle, 554
SOA-DIRECT, 439–440
SOA (Service-Oriented Architecture)

architectural principles of, 24–28
from business point of view, 19–23
canonical data model, 35–36
components and relationships, 23–24
composite applications. See composite applications
defined, 17–18
eAppointment pilot project, 42–43
events and EDA, 37–38
governance. See also governance, 36
hospital from architectural point of view, 6–13
from implementation point of view, 38–42
integration at UI level, 710–717
introduction to St. Matthews, 4–5
layering enterprise architecture, 28–34
overview, 4, 16–17
SaaS and, 717–725
security and, 483–484
summary, 13, 42

SOA Suite 10g. See migration from SOA Suite
10g to 11g

SOA Suite 11g
Decision Service. See Decision Service
EDA. See EDA (Event-Driven Architecture)
event processing and monitoring in, 616–617
exporting composite application from running, 558
Fault Management Framework, 183–184
FMW and. See FMW (Fusion Middleware) and

SOA Suite 11g
installation, 68–75
interoperability of security policies, 503–504
invoking from Java, 386
MDS and, 592–598
Mediator. See Mediator
migration from SOA Suite 10g to. See migration

from SOA Suite 10g to 11g
tools to facilitate BPM, 346–347
using OER with, 604

SOAP (Simple Object Access Protocol)
industry standards, 48
message security with WSS, 493–495
Web Services, 40
XML transmission language, 106

socket adapters, 62, 384
software

running on OC4J, 730–732
in technical architecture view, 12–13

770 Oracle SOA Suite 11g Handbook Index 771
Software as a Service (SaaS), 717–725
speeding up OSB messages, 425–426
Split-Join

parallel request processing with, 456
speeding up with, 425

splitting service composites, 474–475
Spring Beans

dependency injection and SCA references, 405
in SOA Suite 11g, 60

Spring Context component
for custom Java service components,

399–400
defined, 384
using, 401–409

SQL (Structured Query Language), 624
SSL (Secure Sockets Layer)

configuring in WebLogic Console, 515
defined, 492
keystores, 514–515

SSO (Single Sign-On), 486
St. Matthews Hospital Center

appointments. See appointments
from architectural point of view, 6–13
creating appointment dashboard, 653–658
eAppointment pilot project, 42–43
introduction to, 4–5
OSB at, 427
patient data. See patient data
security at. See security

stakeholders, 7
stale instances, 583
standards

BPMN. See BPMN (Business Process
Model Notation)

canonical data model, 35–36
industry, 42
SCA. See SCA (Service Component Architecture)
SDOs, 698
security, 490–491
service interface and contract, 25–26
SOA implementation, 39
in technical architecture view, 13
WS-Human Task and BPEL4People, 311

Starbucks decision table, 256–257
statelessness, 27–28
states

holding process with process data objects,
363–364

life cycle for SOA assets, 591–592
statistics, 664–665
status requests

extending custom ADF application, 681–682
getting appointment details, 175–176
sending status updates to BAM, 651–653
via e-mail with OSB, 446–453
via REST with OSB, 453–456

storage
archive instances, 548
MDS repository, 592–598
migration of run-time environment, 730
policy definition, 500
service inventory for gathering and publishing,

600–606
STP (straight-through processing)

security and, 484
vs. batch processing, 344–345

straight-through processing (STP)
security and, 484
vs. batch processing, 344–345

strategy
in business architecture view, 7, 9–10
moving to business SOA, 20–21

Structured Query Language (SQL), 624
subscriptions

creating picky with filter expressions, 284–287
EDN, 274–276
requirements for SaaS, 722–723
in SCA specifications, 294–295

summarizing appointments, 655
Sun Microsystems, 55, 80
supporting units, 8
surgical care cluster, 8
swimlanes, 353
Switch activity, 139–141
synchronizing patient data, 277–284
synchronous adaptation, 34
synchronous communication, 25
synchronous services, 116
synchronous Web invocation, 157
system administration, 634
system-centric processes, 344–345
system parameters

adding formulas to central library, 255
global formulas and, 251
setting up central library of, 252–255

system resources. See resources

T
tables, decision. See decision tables
tables for performance monitoring, 524
tactical considerations, 21–22
target services, 199–201
task flows

ADF, 713–715
presentation services, 716

task forms
creating custom human in ADF, 684–688
generating, 334–335
generating ScheduleAppointment, 325–326

tasks, human. See human tasks

Index 771
taxonomy, 29
technical architecture view

defined, 6
of St. Matthews, 12–13

technical coupling, 24
technical services

defined, 18
implementation of SOA, 38–42

technology
moving to SCA, 731–733
replacing properties for adapter bindings, 562–563
synchronous vs. asynchronous services, 116
trends in healthcare, 5

Technology Adapter
defined, 288
modifying properties, 577

temperature sensors
creating TemperatureReadingsProcessor

application, 623–625
getting started with CEP, 621–622
monitoring with CEP, 620–621
producing alert upon fierce temperature

deviations, 645–647
reporting on temperature sensor readings,

636–645
test run: pin pointing malfunctioning, 625–626

temporal coupling, 24
Terminate activity

defined, 177
event handling, 176

terminology, 71
testing

appointments dashboard, 658
authentication policy, 508–510
authorization policy, 512–513
automated unit testing for composite

applications, 568–575
BAM adapter, 650
BPEL event publishing, 290, 292
business rule architecture, 249
central library of system parameters, 254–255
DeriveAppointmentType Decision Service

business rules, 239–240
DoctorsAppointmentRequestsProcessor

application, 204–205
e-mail service interface for proxy service, 452
generating configuration plan for, 561–562
human task ArbitrateHighPriority, 311–315
IF/THEN rules, 237–238
Invoice Business Service, 432
Mediator mapping, 202–203
patient details change event, 282
PatientAppointmentService composite, 268
proxy services, 444–445
SCA service composites, 473

SchedulerService, 159
secured transport, 515–516
TemperatureReadingsProcessor application,

625–626
3D bar charts in dashboard report, 642
throttling with OSB, 425
Throw activity, 181–183
time window for performance monitoring, 524
titles of human tasks, 308
TLS (transport layer security)

configuring in WebLogic Console, 515
with FMW, 497
identity administration, 505–507
integrity and confidentiality with, 514–516
vs. message security, 491–495

tModel, 601
Todo List service Portlet in WebCenter, 338
tools, BPM, 346–347
top-down Web Services design, 730
topics, 386–394
TopLink, 138
tracing

BPEL process progress using BPEL sensors,
532–533

composite instances and messages, 473
message flow, 526

tracking
BPEL process execution using, 665–671
business process with BPMN, 371–373
by enriching messages with referral identifier,

215–220
fine-grained BPEL using sensor actions, 661–665

transformation
alternative means for value translation, 225–227
BPEL event publishing, 290
to canonical data model, 35–36
with Mediator and File Adapter Service, 191
message flow for proxy service, 441–443
OSB, 423
through ESB, 34
Transform activity, 143–145
Transformation activity, 178
value mapping. See DVMs (Domain Value Maps)
XML documents, 91

translating values, 225–227
transport layer security (TLS). See TLS (transport layer

security)
transportation

inbound and outbound e-mail in OSB, 446–450
SOA-DIRECT, 439–440

Treatment Approval process
implementation, 362–371
revising, 373–376
running and tracking, 371–373
running revised, 377–378

772 Oracle SOA Suite 11g Handbook Index 773
Treatment Approval workflow

designing with BPMN, 354–359
simulating execution of business process,

359–362
trust stores, 514–515
Twitter, 275
two-way services

decoupling with Discussion Forum, 296–299
with JMS, 392–393

type, appointment. See appointment type
types

partnerLink, 123–124
XML schema definitions, 99–100
XSD, 93

U
UDDI (Universal Description, Discovery, and

Integration) directory
defined, 41
industry standards, 48
Oracle support, 54
OSR, 601–602

UIs (user interfaces)
creating custom for human tasks, 684–688
creating custom in ADF, 677–683
rethinking applications, 31–32
SOA integration, 710–717
visual integration in SaaS, 723–724

UMS (User Messaging Service)
defined, 64–65
sending task notifications, 304, 317–319

unavailable remote services, 538–539
Uniform Resource Identifier (URI) syntax, 94–96
unit testing, 568–575
Universal Content Manager, 68
Universal Description, Discovery, and Integration

(UDDI) directory. See UDDI (Universal
Description, Discovery, and Integration) directory

unscheduled appointment, 655–657
updates

in BAM dashboard, 654
migration from SOA Suite 10g to 11g. See

migration from SOA Suite 10g to 11g
OSB message, 443
patient details, 281
sending appointment status to BAM, 651–653

URI (Uniform Resource Identifier) syntax, 94–96
user administration, 635–636
user-defined functions, 251
user interfaces (UIs). See UIs (user interfaces)
User Messaging Service (UMS). See UMS (User

Messaging Service)
user roles, 511
usernames, 506
utility services, 19–20

V
Validate, Enrich, Transform, Route, and Operate

(VETRO) pattern
defined, 189
in OSB, 422–424

validation
configuration plan, 563–565
ESB, 34
OSB, 423
routing rules, 200
Validate activity, 177
XML, 91

values
alternative means for translation, 225–227
creating configuration plan, 559–560
designing customization into composite

applications, 577–581
extracting from BPEL variables, 129–130
hard-coded, 251
listing temperature in dashboard report, 641
updating OSB messages, 443

variables
adding sensor to BPEL process, 533
Assign activity and BPEL, 125–126
BPEL business process, 120
BPEL entity bound to SDOs, 385–386
defining at scope level, 153
extending BPEL, 126–128
fault, 180–182
holding process state with Process data objects,

363–364
integrating Java with BPEL, 398–399
PatientDataService, 122
SDO-bound BPEL for tighter data integration,

698–707
updating OSB messages, 443
XPath in the Assign activity with complex, 128–131

vendors, 54–57
verification, 567–568
versioning

administration of MDS repositories, 598–600
changing composite applications, 582
governance, 592
redeployment vs. revision vs. re-creation, 584
Web Services, 583

VETRO (Validate, Enrich, Transform, Route, and
Operate) pattern

defined, 189
in OSB, 422–424

view objects, 693–695
ViewController

in ADF architecture, 674–677
creating custom task flow, 685–686
custom UI in ADF, 678–680
making ADF BC expose SDO-enabled Web

Service, 700–701

Index 773
views

creating dashboard report in Active Studio,
640–642

database for inspecting task details, 338
for performance monitoring, 524

virtualization layer
adding with OSB, 437–446
vs. configuration plans, 559

Visualizer
in CEP architecture, 619–620
monitoring CEP output with, 626

W
WADL (Web Application Definition Language), 40
Wait activity, 177
web application, 227–229
Web Application Definition Language (WADL), 40
Web Service Definition Language (WSDL). See WSDL

(Web Service Definition Language)
Web Services

ADF and invoking, 682–683
analyzing service interface according to WSDL,

103–108
API for Human Workflow Services, 337–338
ConsultPreparationInstruction, 157
creating simplest implementation, 108–111
eAppointment project, 86–91
Java, 382
making ADF BC expose SDO-enabled,

700–701
migration from SOA Suite 10g to 11g,

730–732
Oracle support, 54
requirements for SaaS, 722
security policy frameworks in FMW, 498
SOA implementation, 40
summary, 111
tactical SOA, 22
versioning, 583
WSDL, 102–103

WebCenter
ADF task flows, 713
consuming and publishing Portlets, 712
defined, 57, 66
Todo List service Portlet in, 338
Worklist Service, 305

WebLogic Console, 515
WebLogic Scripting Tool (WLST). See WLST

(WebLogic Scripting Tool)
WebLogic Server 11g

application deployment to another, 694–695
Fusion Middleware infrastructure and, 64–65
security policy framework, 498
SOA Suite 11g installation, 70–71

WebService for Remote Portlets (WSRP), 54
While loop, 172–173
white box testing, 569
widgets, 711
WLST (WebLogic Scripting Tool)

building and deploying from command line,
557–558

including testing in automatic deployment, 575
MDS resources through, 599–600
OWSM policy administration and

monitoring, 502
workflow

in business processes layer, 30
defined, 344
designing Treatment Approval workflow using

BPMN, 354–359
human task. See Human Task Service
implementing multitask process, 348–352
OER, 603
task-oriented navigation, 329–330

Worklist Service
ADF task flows, 713
defined, 305
registering custom task with Human Task

component, 686–687
sending task notifications, 317–319
Todo List service Portlet in WebCenter, 338
working on custom form in, 687–688

Workshop, 455
Workspace, 371–372
writing records, 196–197
WS-*, 49
WS-Addressing

correlation and asynchronous service calls,
173–174

OWSM policies, 500
WS-Human Task, 311
WS-Policy standard

defined, 41
OSB security, 424–425

WSDL (Web Service Definition Language)
analyzing service interface according to,

103–108
breaking contract, 132
creating simplest implementation, 108–111
creating simplest Web Service implementation,

108–111
industry standards, 48
introduction to, 102–103
SOA implementation, 40
WS design options, 730–731

WSRP (WebService for Remote Portlets), 54
WSS (WS-Security)

authentication using, 507–510
authorization using, 511–514
identity administration, 505–507

774 Oracle SOA Suite 11g Handbook

WSS (WS-Security) (Cont.)
keystores, 514–515
message security with, 492–495
standards, 490–491

X
XML (eXtensible Markup Language)

BPEL variables, 122
composite application ingredients, 61
documents, 92
eAppointment project, 86–91
fault-policies.xml, 543–544
history of middleware, 47
industry standards, 48
introduction to, 91–92
message definition, 103–105
messaging with Mediator. See Mediator

SOAP, 106
summary, 111
WSDL and, 102–103
XSD, 93–102
XSLT as Stylesheet language for

transformations, 204
XPath

Assign activity and, 126–132
Java integration with functions, 385
mhdr:getProperty function, 202–203

XSD (XML Schema Definition), 35
breaking contract, 132
defined, 93–102
WS design options, 730–731
WSDL and, 104–105

XSLT (XML transformations)
complex mapping, 203–204
Mapper files, 200–202

	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: Introducing SOA, St. Matthews, and the Oracle SOA Suite
	1 A Typical Case of SOA: Introduction of St. Matthews Hospital Center
	Introduction to St. Matthews Hospital Center
	The Hospital from an Architectural Point of View
	Summary

	2 Introduction to Service-Oriented Architecture
	Service-Oriented Architecture (SOA)
	Summary

	3 Oracle Fusion Middleware and SOA Suite 11g
	SOA Suite 11g: The Key Components
	Getting Started with SOA Suite 11g
	Migrating from SOA Suite 10.1.3
	Summary

	Part II: Developing Composite Applications
	4 XML and Web Services Fundamentals
	Kicking the Tires on the eAppointment Project
	Introduction to XML
	The Service Contract: Introducing WSDL
	Summary

	5 First Steps with BPEL and the Database Adapter
	Introducing the Business Process Execution Language (BPEL)
	Implementing the Composite PatientDataService
	The PatientDataService BPEL Process in More Detail
	Accessing the Database from a BPEL Process
	Summary

	6 Process-Oriented BPEL
	The Start of the Appointment Process
	Invoking a Synchronous Web Service: Prepare Instructions
	Invoking an Asynchronous Service: Calling the Appointment Scheduler
	Sending Notifications from the BPEL Process
	Receiving Request Messages in Running BPEL Instances
	Dealing with and Compensating for Exceptional Circumstances
	Summary

	7 Mediator Service for Straight Talk and No Nonsense
	The Mediator: From the Real World to the World Inside the SOA Suite
	Processing Files with Appointment Requests
	Adding Flexibility Using Filtering and Transformation of Messages
	Moving to Canonical Messages Using Domain Value Maps
	Appointment Requests via a Web Application
	Decoupling the Database Adapter Service
	Summary

	8 Rules Rule—on Decision Services
	Deriving the Type of the Appointment
	Separating Out Business Logic Using Business Rules
	System Parameters and Global Formulas
	Using a Decision Table to Establish the Appointment’s Priority
	Summary

	9 Event-Driven Architecture for Super Decoupling
	Event-Driven Architecture for Super Decoupling
	First Round with EDN: Consuming Events
	Publishing Patient Details Change Events
	Event Delivery Network in SCA and BPEL
	Decoupling Two-way Services Using the Discussion Forum Approach
	Summary

	10 The Missing Link: The Human Service Provider
	Introducing the Human Task Service
	Defining the First Human Task—Approve Highest Priority
	The Scheduler Service—Beyond Mere Decisions
	Acceptance of New Patient: Complex Task Routing
	Advanced Features for Human Tasks
	Summary

	11 Business Process Management with BPEL and BPMN
	Business Process Management (BPM)
	Implementing Business Processes Through BPEL and Human Tasks
	Introducing BPMN Service Components
	Revising the Business Process
	Summary

	12 Leveraging Java in Composite Applications
	Java Integration in Various Ways
	Using the JMS Adapter to Loosely Couple with Java Applications
	Embedding Java Logic in BPEL Processes
	The Spring Context Service Component for Custom Java Service Components
	Leveraging the Outbound EJB Binding
	Exposing SOA Composite Applications as EJB
	Summary

	13 Enterprise-Level Decoupling with Oracle Service Bus
	Introducing the Oracle Service Bus
	Sending Invoices to Patients Who Had Appointments
	The PatientAppointmentService and External Parties
	Requesting the Appointment Status via E-mail
	Requesting the Appointment Status via REST
	Parallel Processing of Appointment Requests Using Split-Join
	Choosing Between OSB and SCA Composites (and Mediators)
	Summary

	14 Service Components and Composite Applications According to SCA
	Artifacts According to the SCA Specification
	The SCA Way of Designing and Developing Applications
	Granularity of Service Composites
	Summary

	Part III: Administration, Security, and Governance
	15 For Your Eyes Only
	The Case for Security
	IT Security
	Security in Oracle Fusion Middleware 11g
	Case: Securing SOA Composites
	Summary

	16 What Is Going On: Monitoring SOA Composite Applications
	Monitoring Instances of Composite Applications
	Responding to Exceptions in Composite Execution
	Managing Composite Instances
	Summary

	17 Lifecycle Management: Testing and Dealing with Environmental Change
	Building and Deploying SOA Composite Applications
	Environmentally Friendly Customization Using Configuration Plans
	Automated Unit Testing for Composite Applications
	Embracing Change
	Summary

	18 Tactical Management and Governance
	Introducing Governance
	MDS Repository for Managing and Reusing Shared Artifacts
	Service Inventory for Gathering and Publishing
	Summary

	Part IV: Beyond the Basics
	19 From Live Data to Real-time Insight and Action Using Complex Event Processing and Business Activity Monitoring
	Sorting Out the Real-time Data Avalanche
	Analyzing Continuous Data Streams Through Complex Event Processing
	Monitoring Temperature Sensors
	Promotion from a Simple, Anonymous Signal to a Business Event
	Oracle BAM: Real-time Business Activity Monitoring
	Feeding the Output from the Complex Event Processor into the Business Activity Monitoring
	Integrating SOA Composites into Business Activity Monitoring
	Fine-grained BPEL Tracking Using BAM Sensor Actions
	Tracking BPEL Process Execution Using Business Activity Monitoring and the Monitor Express
	Summary

	20 ADF as UI Glue (and More) in FMW
	Very-High-Level Architecture of ADF
	Custom User Interface to Request an Appointment
	Creating a Custom Human Task Form for ScheduleAppointment
	Creating Real-time Dashboards Based on BAM in Custom ADF Applications
	ADF Business Components Feeding Events into the EDN
	Improving the Efficiency and Elegance of the PatientDataService Using SDO-Bound BPEL Variables—Tighter Data Integration for BPEL Processes
	Summary

	21 The Bigger Picture: SOA for User Interfaces, SaaS, and the Cloud
	Integration at the User Interface Level
	Software as a Service and SOA Across the Cloud
	Summary

	A: Migration from SOA Suite 10g to 11g
	Overview of the Migration
	Run-time Environment
	Software Running on OC4J
	Moving from Different Standards and Technologies to SCA
	Migrating ESB and BPEL 10g Projects
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

